
Towards Explainable BDI Agents for End-users

Marcel Mauri[0000−0002−4135−1945] and Mirjam Minor[0000−0002−6592−631X]

{mauri, minor}@cs.uni-frankfurt.de

Department of Computer Science, Goethe University Frankfurt, Germany

Abstract. Explainable agency (XAg) aims at providing users with in-
sights about the reasoning and decisions taken by an agent. Most of the
newer XAg approaches are particularly useful as explanations for devel-
opers and researchers. In contrast, our novel XAg framework presented
in this paper intends to answer explanation demands of end-user, includ-
ing domain experts and lay users. It is a challenging task since this kind
of users is not familiar with the methodological and technical aspects of
agency. We propose a representation for end-user questions and potential
explanatory answers in both a verbal and a formal description as well as
a mapping structure of questions to multiple possible explanations. We
develop a pattern-based approach to extract explanatory content from an
execution log and to validate potential answers to a user question which
is based on the TriQPAN decision patterns from the literature [15]. We
organize the novel concepts in a four-layered architecture with layers for
end-user questions, validation logic, TriQPAN patterns, and answer text
generation. A running sample from a Jadex-BDI project on autonomous
mobility on demand provides a demonstration scenario to illustrate some
data structures and pseudocode. Further, it highlights the plausibility of
our novel XAg framework.

Keywords: BDI Agent, XAI, XAg, BDI-ABM Framework, TriQPAN,
Traffic Simulation, Jadex, Agent Development Framework

1 INTRODUCTION

Agent-oriented Programming (AOP) [16] has a rich research tradition of imple-
menting intelligent behavior in complex environments. The decisions of cognitive
agents are transparent and well explainable by established notions of agenthood
in AI, such as beliefs, desires, intentions, plans or norms. The state of an agent
can be ’read’ directly from its data structures. Thus, Bordini et al. [3] consider
BDI-based approaches [13] per se as Explainable AI (XAI) and argue that the
intelligibility of agent behavior by end-users and other stakeholders is their key-
contribution. However, with the advent of larger amounts of data and more com-
plex decision processes involved in modern agent approaches, this transparency
claim does not fully hold any more.

Recently, the field of explainable agency (XAg) has evolved [1, 6, 15, 9, 20,
21]. XAg describes the ability of agents “to explain their decisions and the rea-
soning that produces their choices” [6]. Today, the main target groups of XAg



2 Mauri et al.

approaches are researchers and developers who have a sound scientific and tech-
nological understanding. Ribera and Laprediza [14] categorize explainees of AI
systems in three main groups, namely developers and AI researchers, domain
experts, and lay users. The end-user perspective (domain experts and lay users)
has not yet been addressed in depth in XAg. There is especially a lack of meth-
ods to communicate generated explanations to lay users. Mualla et al. [9] have
published some preliminary work on enriching visual simulations of BDI agent
behaviour by summarized beliefs and alerts. Yan et al. [21] recognize that ex-
planations of agent-based systems can be used by different kinds of users but
do not yet achieve domain level explanations for end-users in their prototypical
framework. There is a research gap on developing XAg methods for end-users, in-
cluding their evaluation in real application scenarios. It is a challenging research
topic to bridge the gap between the explanations demands from an end-user per-
spective and the agent decisions that have been developed from an agent design
and problem-solving perspective.

In this paper, we introduce a novel framework for XAg that takes the end-
user perspective into consideration. It builds on TriQPAN design patterns [15] for
recording agent decisions in an execution trace. The TriQPAN design patterns
are particularly useful for expert users (MAS developers) as explanations. In our
model, we integrate them with additional layers for the end-user perspective.
This includes a mapping between the user’s information needs and potential
answers, a validation layer for (multiple) potential answers, and a verbalization
layer with different degrees of granularity for communicating the explanations
to the end-users. The novel framework is demonstrated by means of a running
sample in a Jadex-BDI environment. A fully functional implementation in Java
is currently under development. The sample explanation scenario is taken from
an Autonomous Mobility on Demand (AMoD) project called ATRIAS where
a fleet of autonomous e-trikes is simulated [8]. The demonstration serves as a
proof-of concept for the novel representation forms and validation mechanisms.

The main contributions of this paper are threefold:

– To develop an XAg framework targeting end-users. It integrates an existing
design pattern approach for expert users with the aim to let also lay users
get insights about the reasoning of an agent.

– To integrate TriQPAN with Jadex agents in a preliminary implementation
concept.

– To demonstrate a further application scenario for TriQPAN with typical
decisions of a fleet of autonomous e-trikes.

The remainder of this paper is structured as follows: Section 2 presents the
related work. Necessary background is covered in Section 3. The concept design of
our explanation model is introduced in Section 4. In Section 5, we present a first
feasibilty check of our framework. Using an example, we first show the necessary
representation forms to capture all information for future explanations. Then
we show how that information can be extracted and validated for generating



Towards Explainable BDI Agents for End-users 3

explanations. Further typical end-user questions will be explained by the means
of a table with several examples.

Section 6 draws a conclusion and discusses future work.

2 RELATED WORK

Langley et al. [6] describe elements of explainable agency (XAg) in a position
paper. The elements comprise representation forms for content that supports
explanation, an episodic memory of target agents, as well as methods to access
and extract content from episodic memory. Our approach has been inspired
by this work in the sense that it uses execution traces from a simulation as
episodic memory. Events and decision patterns will provide a structured form of
representation in this episodic memory, allowing relevant content to be retrieved
and extracted for explanation.

Anjomshoae et al.’s [1] literature review discusses application scenarios, main
drives, social science and psychological background, platforms and architectures,
explanatory granularity, presentation and evaluation of XAg. The authors state
that most of the studied works either lack evaluations or conduct a user study
for relatively simple scenarios. The findings provide a further incentive for our
intended work on developing methods for the end-user perspective in XAg, in-
cluding their evaluation.

Mualla [9] provides visual explanation also for end-users of a parcel delivery
service. However, the explanations are still at an atomic level which makes it
rather difficult to grasp the relation to the user’s demand for information.

There is a body of XAg work on BDI agents where the agents inform hu-
man observers about their internal reasoning such as intentions [5, 10], recent
actions [4], or decision processes [15, 19, 20]. Some of the work consider build-
ing blocks for explanations with a formal setting. Dennis & Oren’s framework
[4] uses predicate dictionaries to provide natural language substitutes in semi-
formal explanations for domain experts with technical expertise. Winikoff et al.
[20] generate explanations of the behavior of BDI agents from goal trees. A goal
tree is a tree of nodes, where leaves are actions, and inner nodes are goals that
can be decomposed using AND, SEQ or OR. The children of an OR decompo-
sition are options that are selected at run time based on valuings, that means
which outcome the agent prefers most in the current situation. The valuings
approach has been evaluated in a sandbox scenario with end-users to assess the
believability, acceptability, and comprehensibility of explanations [19]. Rodriguez
et al. [15] describe design patterns for developing explainable-by-design agents.
The aim is to explain the agent’s reasoning and decision processes based on
patterns that have a well-defined structure called TriQPAN. Since our approach
uses TriQPAN patterns as a formal setting they are described in more detail
below. As an extension to the design approach discussed in the literature [15],
our work has a scope on the explanatory demands of end-users in an application
scenario with real world data.



4 Mauri et al.

The issue of creating explanatory narratives for end-users of BDI agents
has been discussed in the literature [21] by means of a domestic robot running
example. It is part of a multi layered framework for different user perspectives.
Two perspectives namely the implementation view and the BDI design view are
formalized and prototypically implemented. The third layer, the domain view,
has not yet been formalized and implemented.

3 BACKGROUND

3.1 ATRIAS system

ATRIAS [8] for Autonomous trikes as a service is a framework that connects
BDI agents, implemented with Jadex [11] with the traffic simulation platform
MATSim [2]. It was built upon the BDI-ABM interface [17]. Every Jadex vehicle
agent is assigned to an agent in MATSim where the Jadex agents act as the de-
cision making component (brain) where the MATSim counterpart is limited to
the execution of actions and perception in the simulation environment (body).
This allows complex reasoning capabilities to be combined with a feature-rich
simulation platform. The intended scope of ATRIAS is all types of AMoD sce-
narios including ride-hailing, last-mile delivery or waste disposal logistics. The
main focus is on the name giving autonomous trikes which process incoming
trip requests on demand. Within ATRIAS, the area of operation is divided into
several sub-areas, each with its own area agent. Incoming customer requests are
sent by the area agents to the vehicle agents located closest to the customer in
their area. These vehicle agents are designed to work in a decentralized manner
for easier scalability and are completely self managed. Following the initial allo-
cation of a customer request, an evaluation is conducted in order to calculate a
utility score. The purpose of this is to determine how well an agent is suited to
execute this request. If it will be below a certain threshold vehicle agents will use
the contract-net-protocol (CNP) [18] to try to find a better suited agent for that
customer request. When their batteries are low they will also drive to charging
stations on their own.

The decision logic of the vehicle agents is designed following the BDI paradigm.
Several goals have been specified to handle incoming customer requests. Beliefs
about incoming customer requests are stored inside the DecisionTaskList. The
goal ManageJobs processes the DecisionTasks depending on their current sta-
tus and decides about the next action to be executed (evaluate it, negotiate with
other agents to find a more suitable vehicle for execution, commit to it, etc.).
When the status of a DecisionTask is set to ’commit’ it will cause the creation
of a customerTrip which will be stored alongside all other scheduled trips inside
the TripList. The goal BatteryLoaded watches the current battery level and
can create a chargingTrip. The trips inside the TripList then will be exe-
cuted by the goal TripService which sends the corresponding drive operations
to MATSim.

ATRIAS has been designed as a framework to simulate AMoD scenarios and
to test and evaluate agent behavior. The plan is to port the ATRIAS agents



Towards Explainable BDI Agents for End-users 5

to control a fleet of autonomous trikes that will be operating on the campus of
Goethe University Frankfurt. When the development of the ATRIAS framework
started, XAg was not part of the project. Therefore, a possible future integration
of XAg methods was not considered when designing the agent architecture. This
makes it an interesting test case to show how an XAg model designed for end
users can be adapted to such a non-optimized architecture.

3.2 TriQPAN patterns

TriQPAN [15] (Trigger, Query, Process, Action and Notify) are XAg design pat-
terns that can be used to explain the behavior of agents to expert users like
agent developers. In this paper we want to use TriQPAN as a part of an ex-
plainability model to extend the scope of applicability to end-users. TriQPAN
processes are designed to work with an underlying event store, a log database
in which all related events are stored. It has recently been implemented directly
into the Sarl programming language [15] in which the capturing of these logs is
directly integrated. The use of the pattern itself is not limited to a specific agent
language or architecture. To apply the pattern, it is necessary to adapt it to the
respective agent architectures specific processes. Therefore these patterns have
to be modeled manually.

Every TriQPAN process starts with a Trigger. A Trigger might comprise
perceptions, an update of a belief or the activation of a goal or plan. During
the Query step the agent retrieves all information needed to execute an action.
The Action step contains all initiated processes. These can relate both to belief
updates as well as movements of the agent within the environment. The final
step Notify will list all the changes made during the Action step and inform
the used components which can trigger other TriQPAN patterns. After a TriQ-
PAN process is completed, all the information it contains is captured within an
XAgentProcess and stored together with the other logs generated at runtime at
the event store.

Explanation approaches like those using TriQPAN patterns are well suited
to explain how an agent’s decision was made. This makes them a good tool for
agents developers. Since they know the agent architectures and their reasoning
mechanisms well, they can directly ask for agent internals such as goals/plans
to get the information they need. They are also able to understand answers
containing technical vocabulary and extract the information they need from
them.

To make them better usable also for end-users (lay users), there are some
research gaps that have to be closed. First end-users of agents do not possess
knowledge about the internals of an agent. A question asked by an end-user
does not necessarily stand in a direct relation to an agent component/decision
or can contain situation specific aspects. Another problem is that the generated
outputs can contain too many technical, agent-specific vocabulary or would not
directly relate to the question. Therefore, a transformation of the facts given by
the patterns into an answer in everyday language is required.



6 Mauri et al.

4 XAG MODEL FOR END-USER ALIGNMENT

The novel XAg model addresses the information demands of end-users. The
explanations shall be understandable without technical background knowledge.
It aims to fill the gap between the direct explanation of the decisions of the agents
and the more general questions raised by end-users. In a preliminary survey of
potential end users of the ATRIAS system [12], users were confronted with a
mobile application to interact with our ATRIAS framework. A brief evaluation
of the user experience with the app revealed, among other things, a few questions
they would like to ask the system. The questions which have been formulated
are “Why is my trike late?”, “What are alternative transport modes?” or “What
are the CO2 savings when using the ATRIAS trikes instead of driving by car?”.

Answering such questions requires mapping the user’s query to appropriate
patterns that allow explaining the rationale behind an agent’s decision relevant
to the question, validating their truth within the event store, and verbalising a
textual explanation for the patterns in everyday language. Some of the questions
require additional knowledge beyond the agent decisions, including the vehicle’s
consumption of electrical power, which might be recorded in the agents’ belief
base or even be retrieved from external sources. We have developed a model for
the end-user questions that are explainable by means of the agents’ decision.
The model builds on the XAg framework TriQPAN to extract the information
on the agents’ decision behavior from an event store.

Figure 1 depicts the architecture of the novel model for XAg with an end-user
alignment. It comprises four main vertical layers (from the right to the left): End-
user questions, validation logics, TriQPAN patterns, and answer text generation.
First, the end-user can select a question from a list of possible questions. The
questions are formulated as texts using the vocabulary of potential end-users and
are free from technical terms (that are only understood by agent experts). In the
second step the selected question will be processed by the validation logic. This
component will retrieve a list of possible answers fitting to the user question.
These possible answers are based on the functionality of the agent. A possible
answer to the initial user question can depend on multiple different decisions the
agent has made in the past. These decision points are captured by the TriQPAN
patterns designed for the agent and stored alongside changes made to beliefs
inside the event store. The patterns in the event store can be reused to answer
different user questions. This is because they can refer to the same patterns.

During this step, a full list of possible answers will be calculated. These can
be independently validated. Every possible candidate answer will have a test
criterion which will be validated by the use of TriQPAN patterns. Every agent
will store all events and already occurred patterns inside an event store. The
validation algorithm will then access the event store to validate the corresponding
possible answers by means of pre-defined test criteria. The validation logic then
returns a list of identified technical answers to the user’s question, along with
the corresponding events. In the final step an answer for the end-user will be
generated. Therefore we will use an LLM/RAG system [7] to create an easy to
understand answer which will contain all the information given by the validation



Towards Explainable BDI Agents for End-users 7

Generate text
(LLM/RAG)

Select prompt 
template (answer 
granularity, etc.)

Why is my trike late?

Why is this trike 
responsible for me?

How many vehicles 
are part of the fleet?

How much CO2 
saving do I achieve?

...

Retrieve
question/answer

pairs

possible answers:
1. There was a charging Trip before your trip
2. There was a customer trip before your trip
3. ...

Validate 
candidate answer

Event log

I will be late because 
another customer 
trip was planned 

before yours.

Validated answer:

2. There was a customer trip before your trip - ✓

test criteria

Fig. 1: Four-layered architecture of the novel XAg model.

logic. As customers may have different requirements for the level of detail of the
answers, there is also the option to select a prompt template to specify the
intended granularity of the answer.

5 XAG MODEL FEASIBILTY CHECK

In the following we will carry out a feasibilty check by discussing the data struc-
tures and pseudo code for a running sample within our ATRIAS framework. It
will serve as a preliminary proof of concept of the model presented above.

We will use a typical sample question from end-users of our ATRIAS frame-
work: “Why is my trike late?”. Based on this question we will explain the mea-
sures necessary to log the information required. Then we will explain how we can
extract the necessary information out of our logs to generate an answer. Finally,
we will look at some of the other questions that end users may ask and the ways
in which logs can be reused to generate answers for them.

5.1 Information recording

The question “Why is my trike late?” does not directly relate to an internal
goal or plan which could give a direct answer to that question. To answer that
question it has first to be connected to internal components from which the



8 Mauri et al.

necessary information can be extracted. The knowledge base of the XAg system
comprises data structures for events and TriQPAN patterns that are assigned to
the possible answers.

For the running sample in our ATRIAS scenario, a delay in the arrival of a
vehicle can have various causes (possible answers). In the current state of our
system, external factors like traffic jams are not yet considered. Thus, a delay is
always caused by internal events or decisions made by the agent. In this scenario,
the delay results from another trip that has been committed before the recent
customerTrip but was not completed on time.

We have modeled two possible answers that can be validated independently
from each other:

1. There is a chargingTrip before your trip, that does not finish in time.
2. There is a customerTrip before your trip, that does not finish in time.

A couple of events and TriQPAN patterns are assigned to each of the potential
answers. In the following example, we will focus on the events and patterns for
the case where another customerTrip has caused the delay (possible answer 2).
This includes recording the previous customerTrip the agent is willing to serve,
the agent’s decision to commit to the current customerTrip, and the estimated
time the previous trip will be completed by the agent. The two commit decisions
for the previous and the recent customer can be recorded as two instances of the
same pattern called customerTripCreation.

First, we define the trigger event for customerTripCreation named Decision-
TaskCommit. The event will be logged everytime the status of a DecisionTask
is set to ’commit’. It records the state before and after the change. These and
other events relating to changes made to beliefs can be easily integrated into a
Jadex agent. Therefore, every write access to a belief will be coupled with the
execution of a log operation. The creation of the log has to be coupled to the
method that creates new trips. Changes to the TripList will be captured by
TripList_BeliefUpdated events (Fig. 2). For better understanding the content
of the TripList is simplified. Every line in Fig. 2 represents a trip which contains
the TripID, the StartTime and the currently expected EndTime. The latter is
of special importance for the validation (see below). Its value can still change
during future updates of the TripList.

TripList_BeliefUpdated = {
Old value = [[Trip1, StartTime, Endtime, ...]]
New value = [[Trip1, StartTime, Endtime, ...],

[Trip2, StartTime, Endtime, ...]]
}

Fig. 2: Log of the changes made to the TripList (simplified)



Towards Explainable BDI Agents for End-users 9

XAgProcess = {
name = { customerTripCreation }
Trigger = { DecisionTaskCommit }
Queries = { DecisionTaskList }
Criterion = { A DecisionTask which status equals commit

will cause the creation of a customerTrip }
Actions = { Set DecisionTask.status = commited,

Create new CustomerTrip = (TripID, StartTime,
EndTime, ...),

Notification = {DecisionTaskCommitted,
TripList_BeliefUpdated}

}
}

Fig. 3: Sample TriQPAN pattern to be recorded in the event store.

Figure 3 depicts the pattern for customerTripCreation. The value of De-
cisionTaskList is recorded within the Queries part of the pattern since the
agent has used it to take the decision. The Criterion part describes the con-
ditions under which the Actions take place. It is specified in our example as
follows. When a DecisionTask within the DecisionTaskList has the status
’commit’ it will cause the action to create a customerTrip and set the status of
the DecisionTask to ’committed’. The changes made during the execution will
cause several notifications which can also be used for other explanations.

For an integration into an Jadex agent, the first step is to identify the decision
points within the agent architecture.

The decision logics is complex and each decision comprises several steps that
we call decision points. For instance a commit decision to serve a customer trip
is part of a sequence of decisions subsumed under the goal EvaluateDecisonTask
which processes every step in the live cycle of an customer request. This includes
the decision whether a contract net protocol should be started or an request
should be delegated as a result of the outcome of a contract net protocol. Not all
of these micro decision are of interest with respect of the user demands. Thus,
some of them are explicitly annotated as decision points.

Decision points are derived from state changes of beliefs, goals or plans.
When the decision points are identified you can place a logging event at

every possible outcome of the decision point. Figure 4 shows a snippet of one of
these outcomes in the source code of a vehicle agent. The decision point shown
represents the case where the vehicle agent decides to commit a customer request
and creates a customer trip. The eventTracker is used to log all the information
about that event into a .json file.

This procedure is not limited to Jadex-based agents, but should be applicable
to all, or at least many, agent development frameworks that implement reasoning
agents, as long as the decision points are clearly identifiable.



10 Mauri et al.

case COMMIT: {
//Decision point: customerTripCreation
// creationof a new customer trip
Trip newTrip = new Trip(currentDecisionTask,

currentDecisionTask.getJobID(), "CustomerTrip",
currentDecisionTask.getVATimeFromJob(),
currentDecisionTask.getStartPositionFromJob(),
currentDecisionTask.getEndPositionFromJob(), "NotStarted");

trikeAgent.tripList.add(newTrip);
//excecution of the logger
eventTracker.addEvent(event, trikeAgent.tripList,"trike_events/Trike"

+ trikeAgent.agentID + ".json");

Fig. 4: A log functionality integrated into a decision point in a Jadex agent

5.2 Information extraction and validation

The validation algorithm can now search for relevant information inside the event
store to validate the possible answer according to the specified test criterion.

Last update of PredecessorTrip.Endtime
(Event: TripList_BeliefUpdated)

QuestionerTripStartTime
(Event: CustomerTripCreation)

timespan in which PredecessorTrip.EndTime can be updated

Commitment of the PredecessorTrip
(Event: CustomerTripCreation)

oldest newesttimestream of all logged eventsoldest newesttimestream of all logged events

PredecessorTrip.EndTime
before QuestionerTripStartTime

PredecessorTrip.EndTime
after QuestionerTripStartTime

Fig. 5: important events for the validation visualized as a timestream.

We assume that the TripID that the customer’s question refers to is known
and that the entries inside the event store are sorted chronologically. A sample
timestream of the events which can be a part of the validation is illustrated in
Fig. 5. Below on the left side there is the customerTripCreation event of the
predecessorTrip. This is followed by a timespan during which the EndTime of
that trip can be updated with the final TripList_BeliefUpdated at its end. The
second customerTripCreation event shows the commitment of the questioners
trip. The two alternative time points (before or after) of the EndTime for the
predecessorTrip are shown on the upper right corner.

The code depicted in Fig. 6 shows the validation algorithm. It searches the
event store from the newest to the oldest entry. It will first search for the trip
of the questioner, an event with the name customerTripCreation where the
TripID equals the questionerTripID (line 3-9). With its time stamp (EventTime)



Towards Explainable BDI Agents for End-users 11

1 INPUT: QuestionerTripID
2 CauseOfDelay = false
3 # search for of the trip of the customer
4 FROM (EventTime: newest TO older){
5 IF ((name == CustomerTripCreation) &&
6 (TripID == QuestionerTripID)){
7 EventTimeOfQuestionerTripCreation = EventTime
8 BREAK
9 }

10 }
11 # search for the predecessor trip
12 FROM (EventTime: EventTimeOfQuestionerTripCreation TO older){
13 IF (name == customerTripCreation){
14 PredecessorTripID = TripID
15 EventTimeOfPredecessorTripCreation = EventTime
16 BREAK
17 }
18 }
19 # search for the most recent endtime of the predecessor trip
20 FROM (EventTime: newest TO PredecessorCreationTime){
21 IF ((name == TripList_BeliefUpdated) &&
22 (contains PredecessorTripID)){
23 # validation criterion
24 IF (PredecessorTrip.EndTime > QuestionerTripStartTime){
25 CauseOfDelay = true
26 }
27 BREAK
28 }
29 }
30 RETURN: CauseOfDelay

Fig. 6: Pseudocode with test criterion to validate if another customerTrip caused
a delay.

we can narrow down the scope of the further search. From that EventTime we
search for the PredecessorTrip (the next oldest customerTripCreation) to
get its TripID and EventTime (line 10-17). For a validation of the potential
answer we need the EndTime of the PredecessorTrip. The EndTime of a trip is
stored inside the TripList, which is logged by TripList_BeliefUpdated events
(Fig. 2). Should the EndTime of that trip have been changed during the runtime
of the agent, every change will be stored within a TripList_BeliefUpdated
event. To get the most recent one we look up the last TripList_BeliefUpdated
event where the PredecessorTrip was mentioned (line 18-20). If the EndTime of
the PredecessorTrip will be later than the StartTime of our QuestionerTrip
we expect a delay and the CauseOfDelay is set to true (validation criterion, line
21-23).



12 Mauri et al.

Similarly to this algorithm, other possible causes for a delay can also be
validated and a list of all positively validated causes can be created.

5.3 Answer verbalization

The short answer to the running sample discussed above would be: “There is a
customerTrip before your trip.” It hides details like the EndTime of the previous
customerTrip, the commit time of the previous customer, belief updates and so
on. It is still ongoing work to formulate different prompts for degrees of gran-
ularity that fit to the particular end user’s demand for information. Promising
solution ideas are to design a dialogue with the user to request further details
and to integrate a dialogue management component into a RAG or plain LLM
system. It is a further open issue how to deal with multiple causes that have
been positively validated for the same question. A naive solution would be to let
the LLM generate a couple of sentences for a conjunction of different causes.

5.4 Pattern reuse

Figure 7 gives an overview of some other questions of possible end-users of
ATRIAS that can be answered by our model. The question “Why is this trike
responsible for me?” refers to the concept of “responsibility”, which is unknown
to the agent. Responsibility can be inferred from various decisions made by the
agent. For this special case there would be three possible answers. The agent is
responsible for the trip because it “was delegated from the taxi control center and
got a high utility score”, it “was delegated from the taxi control center, got a low
utility score, but was still committed after a CNP” and that it “was delegated
by another trike after a CNP”. In order to be able to validate the circumstances
under which the trike committed the trip, the underlying reasoning processes
have to be modeled by TriQPAN patterns. These will be “commitNewCustomer-
Request”, “CommitDespiteCNP”, “CommitAsCNPparticipant”.

The validation algorithm shown in Figure 6 was quite complex and had to
be designed specifically for this single question. In contrast, many other possible
answers can be validated by a simple approach that can be reused for different
questions. For a validation of the above questions, it is sufficient to search for
the listed patterns or logs within our event store. If such a pattern or log exists
and relates to the TripID the possible answer can be validated.

Some other user questions just refer to a simple belief inside the agent and
do not even require a reasoning process to refer to. “When will I reach my
destination?”, “What is your position at the moment?”, “When will you arrive?”
just require a mapping to the corresponding belief which stores that information.

As the number of possible end-user questions we consider increases, it be-
comes apparent that the events we need to log and the validation algorithms we
need begin to repeat themselves (e.g. TripList_BeliefUpdated).

With a increasing amount of user questions, we expect this to become even
clearer.



Towards Explainable BDI Agents for End-users 13

U
se

r
Q

ue
st

io
n

P
os

si
bl

e
A

ns
w

er
P
at

te
rn

&
L
O

G
s

V
al

id
at

io
n

A
lg

or
it

hm
an

d
T
es

t
C

ri
te

ri
on

W
hy

is
m

y
tr

ik
e

la
te

?
T

he
re

is
a
cu

st
om

er
Tr

ip
be

-
fo

re
yo

ur
tr

ip
,t

ha
t

do
es

no
t

fin
is

h
in

ti
m

e.

cu
st

om
er

Tr
ip

Cr
ea

ti
on

,
De

ci
si

on
Ta

sk
Co

mm
it

,
Tr

ip
Li

st
_B

el
ie

fU
pd

at
ed

Se
e

F
ig

ur
e

6,
(c

ri
te

ri
on

in
lin

e
21

-2
3)

T
he

re
is

a
ch

ar
gi

ng
tr

ip
be

-
fo

re
yo

ur
tr

ip
,t

ha
t

do
es

no
t

fin
is

h
in

ti
m

e.

ch
ar

gi
ng

Tr
ip

Cr
ea

ti
on

,
es

ti
ma

te
Ba

tt
er

yA
ft

er
TI

P_
-

Be
li

ef
Up

da
te

d,
Tr

ip
Li

st
_B

el
ie

fU
pd

at
ed

Si
m

ila
rl

y
to

ex
am

pl
e

sh
ow

n
in

F
ig

ur
e

6

W
hy

is
th

is
tr

ik
e

re
sp

on
-

si
bl

e
fo

r
m

e?
T

he
tr

ip
w

as
de

le
ga

te
d

fr
om

th
e

ta
xi

co
nt

ro
l

ce
nt

er
an

d
go

t
a

hi
gh

ut
ili

ty
sc

or
e

co
mm

it
Ne

wC
us

to
me

rR
eq

ue
st

C
he

ck
IF

(P
at

te
rn

&
L
O

G
s)

ex
is

t
an

d
co

nt
ai

n
ID

T
he

tr
ip

w
as

de
le

ga
te

d
fr

om
th

e
ta

xi
co

nt
ro

l
ce

nt
er

,
go

t
a

lo
w

ut
ili

ty
sc

or
e,

bu
t

w
as

st
ill

co
m

m
it

te
d

af
te

r
a

C
N

P

Tr
ip

Li
st

_B
el

ie
fU

pd
at

ed
C

he
ck

IF
(P

at
te

rn
&

L
O

G
s)

ex
is

t
an

d
co

nt
ai

n
ID

T
he

tr
ip

w
as

de
le

ga
te

d
by

an
ot

he
r

tr
ik

e
af

te
r

a
C

N
P

Co
mm

it
De

sp
it

eC
NP

C
he

ck
IF

(P
at

te
rn

&
L
O

G
s)

ex
is

t
an

d
co

nt
ai

n
ID

W
he

n
w

ill
I

re
ac

h
m

y
de

st
in

at
io

n?
Tr

ip
Li

st
_B

el
ie

fU
pd

at
ed

T
ak

e
th

e
m

os
t

re
ce

nt
(P

at
-

te
rn

&
L
O

G
s)

w
hi

ch
co

nt
ai

n
ID

W
ha

t
is

yo
ur

po
si

ti
on

at
th

e
m

om
en

t?
Ag

en
tP

os
it

io
n-

_B
el

ie
fU

pd
at

ed
T
ak

e
m

os
t
re

ce
nt

(P
at

te
rn

&
L
O

G
s)

W
he

n
w

ill
yo

u
ar

ri
ve

?
Tr

ip
Li

st
_B

el
ie

fU
pd

at
ed

T
ak

e
m

os
t
re

ce
nt

(P
at

te
rn

&
L
O

G
s)

w
hi

ch
co

nt
ai

n
ID

Fig. 7: Overview of end-user questions and the requirements to our model to
answer them.



14 Mauri et al.

6 FUTURE WORK AND CONCLUSION

In this paper we have presented a XAg model for End-user alignment. It was
built upon an existing solution which was aimed at experts and expanded it
to this new area of application. Further we carried out a feasibilty check by
discussing the data structures and pseudo code for a running sample within our
ATRIAS framework.

For the future, we are planning an empirical study with a potential user
base to evaluate which questions users would really ask our agents. With a
list of potential questions we can do a full implementation of our four-layered
architecture to test the theory described in this paper in practice. This prototype
then can be used to evaluate the strengths and limitations of our approach and
think about further improvements. One possible refinement could be to allow
the user to formulate questions freely, which are then mapped by an LLM or
RAG system to a list of predefined questions that our system can answer.

Acknowledgements The authors would like to thank: Sebastian Rodriguez,
who showed us examples of how TriQPAN patterns can be adapted to ATRIAS.
Mariam Rahimi who conducted a preliminary survey on the interests of potential
customers of our ATRIAS framework as part of her master’s thesis.

References

1. Anjomshoae, S., Najjar, A., Calvaresi, D., Främling, K.: Explainable agents and
robots: Results from a systematic literature review. In: 18th International Con-
ference on Autonomous Agents and Multiagent Systems (AAMAS 2019), Mon-
treal, Canada, May 13–17, 2019. pp. 1078–1088. International Foundation for Au-
tonomous Agents and Multiagent Systems (2019)

2. Axhausen, K.W., ETH Zürich: The Multi-Agent Transport Simulation MATSim.
Ubiquity Press (Aug 2016)

3. Bordini, R.H., El Fallah Seghrouchni, A., Hindriks, K., Logan, B., Ricci, A.: Agent
programming in the cognitive era. Autonomous Agents and Multi-Agent Systems
34, 1–31 (2020), publisher: Springer

4. Dennis, L.A., Oren, N.: Explaining BDI Agent Behaviour Through Dialogue. Au-
ton. Agents Multi Agent Syst. 36(1), 29 (2022), https://doi.org/10.1007/s10458-
022-09556-8

5. Koeman, V.J., Dennis, L.A., Webster, M., Fisher, M., Hindriks, K.: The
“Why Did You Do That?” Button: Answering Why-Questions for End Users
of Robotic Systems. In: Dennis, L.A., Bordini, R.H., Lespérance, Y. (eds.)
Engineering Multi-Agent Systems, vol. 12058, pp. 152–172. Springer Interna-
tional Publishing, Cham (2020). https://doi.org/10.1007/978-3-030-51417-4_8,
http://link.springer.com/10.1007/978-3-030-51417-4_8, series Title: Lecture Notes
in Computer Science

6. Langley, P., Meadows, B., Sridharan, M., Choi, D.: Explainable agency for intel-
ligent autonomous systems. In: Proceedings of the AAAI Conference on Artificial
Intelligence. vol. 31, pp. 4762–4763 (2017), issue: 2



Towards Explainable BDI Agents for End-users 15

7. Lewis, P., Perez, E., Piktus, A., Petroni, F., Karpukhin, V., Goyal, N., Küttler,
H., Lewis, M., Yih, W.t., Rocktäschel, T.: Retrieval-augmented generation for
knowledge-intensive NLP tasks. Advances in Neural Information Processing Sys-
tems 33, 9459–9474 (2020)

8. Mauri, M., Erduran, Ö., Minor, M.: Jadex BDI Agents Integrated with MATSim
for Autonomous Mobility on Demand. In: Engineering Multi-Agent Systems, 12th
International Workshop, EMAS 2024, Auckland, New Zealand, May 6–7, 2024,
Revised Selected Papers, vol. LNCS 15152, pp. 125–143. Springer (2024)

9. Mualla, Y., Kampik, T., Tchappi, I.H., Najjar, A., Galland, S., Nicolle, C.: Explain-
able Agents as Static Web Pages: UAV Simulation Example. In: Calvaresi, D., Na-
jjar, A., Winikoff, M., Främling, K. (eds.) Explainable, Transparent Autonomous
Agents and Multi-Agent Systems. pp. 149–154. Lecture Notes in Computer Science,
Springer International Publishing, Cham (2020). https://doi.org/10.1007/978-3-
030-51924-7

10. Persiani, M., Hellström, T.: The Mirror Agent Model: a Bayesian Architecture
for Interpretable Agent Behavior. In: 4th International Workshop on EXplainable
and TRAnsparent AI and Multi-Agent Systems (EXTRAAMAS 2022), Online via
Auckland, NZ, May 9-10, 2022 (2022)

11. Pokahr, A., Braubach, L., Jander, K.: The Jadex Project: Programming Model.
In: Multiagent Systems and Applications: Volume 1:Practice and Experience, pp.
21–53. Springer, Berlin, Heidelberg (2013)

12. Rahimi, M.: Explainable Agency for Users in Mobility on Demand. Master’s thesis,
Goethe Universität Frankfurt, Frankfurt am Main, Gemrany (March 2024)

13. Rao, A.S., Georgeff, M.P.: BDI agents: from theory to practice. In: ICMAS. vol. 95,
pp. 312–319 (1995)

14. Ribera, M., Lapedriza, A.: Can we do better explanations? A proposal of user-
centered explainable AI. In: IUI Workshops. vol. 2327, p. 38 (2019)

15. Rodriguez, S., Thangarajah, J., Davey, A.: Design Patterns for Explainable Agents
(XAg). In: Proceedings of the 23rd International Conference on Autonomous
Agents and Multiagent Systems. pp. 1621–1629 (2024)

16. Shoham, Y.: Agent-oriented programming. Artificial intelligence 60(1), 51–92
(1993), publisher: Elsevier

17. Singh, D., Padgham, L., Logan, B.: Integrating BDI Agents with Agent-Based
Simulation Platforms. Autonomous Agents and Multi-Agent Systems 30(6), 1050–
1071 (Nov 2016). https://doi.org/10.1007/s10458-016-9332-x

18. Smith: The contract net protocol: High-level communication and control in a dis-
tributed problem solver. IEEE Transactions on Computers C-29(12), 1104–1113
(1980)

19. Winikoff, M., Sidorenko, G.: Evaluating a mechanism for explaining BDI agent
behaviour. In: Calvaresi, D., Najjar, A., Omicini, A., Aydogan, R., Carli, R., Ciatto,
G., Mualla, Y., Främling, K. (eds.) Explainable and Transparent AI and Multi-
Agent Systems. pp. 18–37. Springer Nature Switzerland, Cham (2023)

20. Winikoff, M., Sidorenko, G., Dignum, V., Dignum, F.: Why bad coffee? Explaining
BDI agent behaviour with valuings. Artificial Intelligence 300, 103554 (2021)

21. Yan, E., Burattini, S., Hübner, J.F., Ricci, A.: A multi-level explainability frame-
work for engineering and understanding BDI agents. Autonomous Agents and
Multi-Agent Systems 39(1), 9 (Jan 2025). https://doi.org/10.1007/s10458-025-
09689-6


