
Oops, I Heard That! Situated Communication
with Locality-Aware KQML

Angelo Ferrando1[0000−0002−8711−4670], Andrea Gatti2[0009−0003−0992−4058], and
Viviana Mascardi2[0000−0002−2261−9926]

1 University of Modena-Reggio Emilia, Italy, angelo.ferrando@unimore.it
2 University of Genova, Italy, andrea.gatti@edu.unige.it,

viviana.mascardi@unige.it

Abstract. In traditional BDI (Belief-Desire-Intention) Multiagent Sys-
tems (MAS), agent communication languages such as KQML (Knowl-
edge Query and Manipulation Language) facilitate structured message
exchange and are supported by widespread BDI implementations like Ja-
son. However, KQML lacks mechanisms to account for the situatedness of
agents within dynamic environments. This paper proposes an extension
to KQML, KQML-S, that incorporates the notion of locality, enabling
message semantics to adapt based on the agents’ shared context. Specif-
ically, we introduce a framework where agents within the same logical
communication space, or “logical room”, perceive indirect updates from
interactions occurring within their locality. We present the theoretical
foundations of KQML-S and its implementation within VEsNA (Virtual
Environments via Natural language Agents), a framework extending Ja-
son with chatbots for natural language interaction, and a Virtual Reality
environment implemented in Godot.
KQML-S bridges two foundational features of agents: social ability and
situatedness.
VEsNA agents, being natively situated in Virtual Reality and inheriting
KQML communication from Jason, fully exploit the potential of KQML-
S and showcase its usefulness in those scenarios where agents are logically
or physically embodied in a discrete, “room-based” environment.

Keywords: Belief-Desire-Intention · KQML · Situated Communication
· Virtual Communication Spaces · VEsNA.

1 Introduction

To achieve goals they cannot satisfy individually, agents must coordinate. This
coordination typically relies on one of three mechanisms: (i) point-to-point pri-
vate communication; (ii) direct interaction via coordination artifacts; and (iii)
indirect interaction through the environment.

Examples of the first mechanism include the Knowledge Query and Manip-
ulation Language (KQML), developed within the “Knowledge Sharing Effort”
project [21], and FIPA-ACL [15], standardized by the Foundation for Intelli-
gent Physical Agents (FIPA). Frameworks like Jason [6] and Jade [2] adopt,

2 A. Ferrando, A. Gatti, and V. Mascardi

respectively, KQML and FIPA-ACL. Jadescript [3] uses a subset of FIPA-ACL
performatives, while Jadex [32] uses point-to-point communication but remains
agnostic with respect to the language.

Coordination artifacts provide shared interaction media, giving agents access
to local resources, enabling discovery of other agents, and supporting cooperative
behaviors [34]. TuCSoN [31] is a well-known example, using tuple centers to
support mediated coordination. In the Agents and Artifacts (A&A) meta-model
[36,30], agents are proactive entities that pursue goals, while artifacts are reactive
components providing shared services. This model is implemented in frameworks
like CArtAgO [35] and integrated into JaCaMo [4].

Situated agents also interact indirectly with their environment, sensing and
modifying it to influence others. Swarm intelligence, for example, emerges from
simple agents coordinating via local interactions and environmental cues [5].
Frameworks such as NetLogo [41], Mason [28], and Repast [29] rely on the en-
vironment as the primary shared medium, with stigmergy [39,23] as the central
coordination mechanism.

Point-to-point communication is typically private and lacks locality, which is
instead a native feature of environment-based and artifact-mediated coordina-
tion. Locality may be physical (e.g., an agent near a pheromone trail) or logical
(e.g., participation in an online chat group). However, even point-to-point mes-
saging in Multiagent Systems (MAS) is not always private in practice.

In realistic environments – particularly those involving shared physical or
virtual spaces – messages may be overheard, unintentionally propagated, or in-
terpreted differently depending on who else is present. Traditional communica-
tion models like KQML or FIPA-ACL support direct, intentional dialogue but
overlook these situated, emergent dynamics. Yet these phenomena are not pe-
ripheral: they are central to coordination and knowledge exchange in both human
and artificial collectives. We formalize these dynamics – overhearing, incidental
influence, and context-sensitive responsiveness – as first-class communication
features. By embedding them into the communication model, we enable more
context-aware reasoning and more realistic agent interaction.

KQML transport model is assumed to employ unidirectional communication
links, to be reliable and order-preserving (messages are received in the order they
were sent) [26]. These assumptions do not depend on the KQML language itself
but on its implementation, and do not capture relevant aspects of real agent
communication – see for example [11,12] for a discussion of order-preserving
communication and its consequences on protocol enactability. Also, interactions
shaped by spatial or social proximity are not captured by these assumptions.

Besides these limitations, KQML has also been criticized for its lack of formal
semantics and the perceived arbitrariness of its performatives [37], but it is
nevertheless the foundation for communication in widely adopted agent-oriented
frameworks like Jason and JaCaMo, and by far a well known format for message
exchange among agents: at the time of writing, the citations of [13], [26], and
[14] on Google Scholar sum up to more than 4700.

Oops, I Heard That! Situated Communication with Locality-Aware KQML 3

Our choice to extend KQML is thus pragmatic: instead of proposing a new
model, we enrich existing infrastructure with locality-aware semantics, enabling
context-sensitive agent interaction without sacrificing compatibility.

Our work does not discard message routing or private messaging – in fact,
KQML-S is a conservative extension of KQML and hence supports them, as long
as the underlying KQML implementation does. Instead, we generalize KQML’s
semantics to better accommodate contexts where communication is inherently
observable to co-located agents. By elevating locality to a first-class concept
– rather than hiding it inside assumptions on the transport model – and dis-
tinguishing between public and private communication modes, KQML-S enables
both deliberate and incidental communication in shared environments. This pro-
motes more expressive, flexible interaction in open MAS, where transparency,
coordination, and social influence are essential.

To achieve our goal we enrich communication in the AgentSpeak(L) agent-
oriented programming language [33], for which Jason provides an extended in-
terpreter [40], by incorporating locality – modeled as logical rooms populated
by potentially overlapping agent subsets – into the environment configuration
and by distinguishing between private and public message modes. Logical rooms
are not MASs themselves: they are more similar to organizations within MASs,
where agents may enter and leave, and may reside in more than one logical room
at the same time. However, logical rooms may have a digital – or even physical
– twin, that automatically drives how communication inside a room works. For
example, if the room is physical, we may expect that agents physically located
inside the room may overhear messages exchanged there, but those outside the
room cannot. In our work, we also model agents’ attitudes toward overheard
information, influencing whether and how they respond to it. Our formal setting
is AgentSpeak(L)’s speech act semantics, using KQML as the base communi-
cation language and Jason as the implementation platform. We focus on the
KQML Achieve and Tell performatives. The resulting extension, KQML-S, is
integrated into VEsNA [19,20,18], a framework that connects Jason agents to
Virtual Reality environments developed in Godot [22], and enables natural lan-
guage interaction. Because agents in VEsNA are spatially situated in Virtual
Reality (VR), the adoption of KQML-S, with logical rooms corresponding to
physical rooms in VR, is both natural and effective.

2 Motivation

Let us consider five scenarios taken from daily life of academic computer scien-
tists.

Scenario 1. Alice enters the open space of her lab and says to her colleague
Bob “Hi Bob, I’m late... I forgot to make two further copies for today’s exam,
may you kindly print them?”. Alice believes that Bob – who is an early bird
– is already at his desk, not visible from Alice’s desk, and that the point to
point Achieve message just sent was properly received. She starts collecting all
the stuff she needs for running the exam, counting on the two further copies

4 A. Ferrando, A. Gatti, and V. Mascardi

appearing soon, but Bob is enjoying a coffee in another room and does not hear.
Alice has to print the copies herself, the toner is low, the paper is missing, and
the exam starts late...

Scenario 2. At the other extreme, a message is (unexpectedly) heard by
too many agents. Alice enters the lab very early in the morning, when Bob is
- usually - the only one already there, and she says “Hi Bob, we won that big
project on BDI agents with Carol... We have plenty of money, but do not tell the
PhD students...”. Today Frank, George, and Hilary, three PhD students, have
a deadline and are already in the lab, although not visible from the door. The
point to point Tell message was meant from Alice to Bob but the space where
it was sent was not a private one. What Alice says when she is in her lab, cannot
be heard elsewhere, as locality poses constraints on which agents may receive
messages that were not directed to them. However, Frank and George – that
believe everything they hear – have already recorded that there is more money
for them. Hilary is instead skeptical, and just ignores it.

Scenario 3. Let us suppose that Alice and Bob are in the same WhatsApp
group with Carol: a safer way for Alice to share the good news of the funded
project would be to send a WhatsApp message there. Even if Alice and Bob are in
the same physical room, other “logical rooms” exist: they can be in more rooms at
the same time, with different persons. Although incautious communications may
lead to eavesdropping, it may also happen that unexpected hearing is beneficial.
Let us consider a fourth scenario.

Scenario 4. Alice asks Bob to look for the funded projects’ rules, but Bob
is sipping his second coffee somewhere else. However, Dave is at his desk. He
hears the request and, being altruistic, says “I can do it” to Alice. Although
Alice asked Bob for the favor, she happily accepts Dave’s help.

A last, different situation is the following.

Scenario 5. Alice enters the lab and says “Hi, may anyone print one copy
of the EMAS 2025 call for papers? It’s online...”. We distinguish this message,
having a generic “anyone in the lab, although I do not know who is in” recipi-
ent, from a broadcast message intentionally sent to a specific set of receivers, or
to all the agents in the MAS. In fact, in this case, the request might be heard
by Irene, a new PhD student that Alice does not even know, who is in the lab
and volunteers to make the print. Bob is at the coffee machine in another room
and, again, sneaks out of work. Messages sent to anyone in a logical room raise
the problem of coordination among those persons that might achieve the goal,
resulting into dozens copies of the paper printed. It will be up to Alice to decide
to whom assigning the task.

These examples show that also KQML-like speech-act based communication,
by default point-to-point and mediated neither by coordination artifacts nor by
the environment, may be affected by situatedness. When the agent framework
environment is implemented in Virtual Reality and consists of rooms – or regions
– therein, communication must take them into account.

Oops, I Heard That! Situated Communication with Locality-Aware KQML 5

3 Preliminaries

In this section, mainly based on the paper by Vieira et al. [40], we introduce the
foundational concepts necessary to understand the paper.

AgentSpeak(L). AgentSpeak(L) is a logic programming language that provides
an abstract framework for programming BDI agents [33].
The beliefs of an agent determine what an agent currently knows about itself,
the other agents in the system, and the environment. They are defined as atomic
formulae, as follows:

b ::= P (t1, . . . , tn) (n ≥ 0)
where P denotes a predicate symbol, and t1, . . . , tn are standard terms of first-
order logic. A belief base is a sequence of beliefs:

beliefs ::= b1 . . . bn (n ≥ 0)
The beliefs defined by the programmer at design time make up for the initial
belief base. The rest of the beliefs are then added dynamically during the agent’s
lifetime.
An achievement goal in AgentSpeak(L) is specified as:

g ::= !at
where at is an atomic proposition.
Finally, an action in AgentSpeak(L) is defined as:

a ::= A(t1, . . . , tn) (n ≥ 0)
Action are written using the same notation as predicates, except that an action
symbol A is used instead of a predicate symbol.
Plans are used to define the course of action for the agent to fulfill its goals.
A plan has three main components: a triggering event te, denoting the event
triggering the execution of the plan, a context ctxt, denoting the conditions that
must hold to consider the plan applicable, and a body h consisting of a sequence
of steps to be executed. A plan in AgentSpeak(L) is defined as:

p ::= te : ctxt← h

The triggering event is defined as follows:
te ::= +b | − b | + g | − g

meaning the addition (resp. deletion) of a belief b, and the addition (resp. dele-
tion) of a goal g. A plan is relevant for a triggering event if the event can be
unified with the plan’s head.
For a plan to be considered applicable a condition ctxt must hold as a logical
consequence of the agent’s belief.
The body of a plan is composed of actions (a), belief updates (+b, −b), and
achievement goals (g). We omit test goals for brevity. The sequence of formulae
denoting the body of a plan is:

h ::= a | g | + b | − b | h;h′

An agent program contains a plain library with a set of plans:
plans ::= p1 . . . pn (n ≥ 1)

Finally, we define an agent through its beliefs and plans:
agent ::= beliefs plans

6 A. Ferrando, A. Gatti, and V. Mascardi

KQML. One of the earliest formal definitions of KQML semantics was provided
by Labrou and Finin [25], building on the foundational work of Cohen and Per-
rault on action-theoretic semantics for natural language speech acts [8]. Their
key insight was that if utterances are considered actions, then formal action-
reasoning frameworks, such as STRIPS-style pre- and post-conditions, can be
applied to model their effects. Specifically, Cohen and Perrault used this ap-
proach to define the semantics of the “inform” and “request” speech acts, framing
them in terms of the beliefs, desires, and abilities of conversation participants.

Pre-condition(S): bel(S,X) ∧ know(S,want(R, know(R, bel(S,X))))
Pre-condition(R): intend(R, know(R, bel(S,X)))
Post-condition(S): know(S, know(R, bel(S,X)))
Post-condition(R): know(R, bel(S,X))
Action Completion: know(R, bel(S,X))

Fig. 1. Semantics for Tell (Labrou & Finin, 1994).

Figure 1 illustrates the semantics of the KQML performative Tell(S, R,
X) (where S informs R that it believes X to be true), following [25].

With Achieve, R is asked to want to try to make the content X true of the
system. With respect to Tell, the Achieve performative makes sense when the
receiver R has a representation of the real world in its belief base and the result
of the attempt to “make the content true” is some action in the real world [26].

3.1 Speech Act Communication in AgentSpeak(L)

KQML messages in AgentSpeak(L) follow the format ⟨mid, id, ilf, cnt⟩, where
mid uniquely identifies the message, id specifies the recipient when sending or
the sender when receiving, ilf denotes the illocutionary force (namely, the per-
formative), and cnt contains the message content.

Messages are exchanged asynchronously and stored in a mailbox, with one
message processed at the start of each reasoning cycle. The transition system
manages three key sets: MIn, which holds received but unprocessed messages;
MOut, containing messages awaiting transmission; the set of suspended inten-
tions awaiting responses to previously sent information requests is also needed
in the general case, but not in this paper.

Messages of type “ask” (AskIf, AskAll, AskHow) suspend intentions and we
do not deal with them in this paper. The rule ExecActSnd-noAsk below pro-
vides the semantics of sending a message different from an ask one. To keep the
presentation simple, we discuss only those elements in the configuration of an
agent, that are affected by the .send action.

(ExecActSnd-noAsk)
next action to be executed by ag is .send(id, ilf, cnt) ilf /∈ AskSet

⟨ag, C,M, T,ExecInt⟩ → ⟨ag, C′,M ′, T, ClrInt⟩

Oops, I Heard That! Situated Communication with Locality-Aware KQML 7

where AskSet = {AskIf,AskAll, AskHow}
M ′

Out = MOut ∪ {⟨mid, id, ilf, cnt⟩}
with mid a new message identifier;

.send(id, ilf, cnt) is removed from the intention it belonged to

The semantics of sending involve adding a well-formed message to the agent’s
mail outbox, as defined by the ExecActSnd rule. For non-suspended intentions,
the cycle proceeds with ClrInt, ensuring that the updated intention – now with-
out the sending action – undergoes the necessary clearing.

On the receiver side, receiving a message with Tell performative and Bs
content, where Bs is a set of beliefs, has the following semantics:

(Tell)

SM (MIn) = ⟨mid, id, Tell, Bs⟩
(mid, i) /∈ MSI for any intention i

⟨ag, C,M, T, ProcMsg⟩ → ⟨ag′, C′,M ′, T, SelEv⟩
where M ′

In = MIn \ {⟨mid, id, Tell, Bs⟩}
for each b ∈ Bs
ag′bs = agbs + b
C ′

E = CE ∪ {⟨+b[id], T ⟩}
A Tell message can be received either as a reply or as an inform action.

When received as an inform, the AgentSpeak(L) agent incorporates the message
content into its belief base, tagging the sender as the source of that information.
This reflects the “action completion” condition outlined by [25], where the re-
ceiver acknowledges the sender’s perspective on the belief.

The rule for receiving a message with Achieve performative and at content,
where at is an atom, is

(Achieve)

SM (MIn) = ⟨mid, id, Achieve, at⟩
(mid, i) /∈ MSI [for any intention i]

⟨ag, C,M, T, ProcMsg⟩ → ⟨ag, C,M ′, T, SelEv⟩
where M ′

In = MIn \ {⟨mid, id,Achieve, at⟩}
C ′

E = CE ∪ {⟨+!at, T ⟩}
In an appropriate social context (e.g., when the sender holds authority),

receiving an Achieve message prompts the agent to execute a plan triggered by
+!at, attempting to fulfill the goal specified in the message. This adds an external
event to the event set, linked to an empty intention (T). With Achieve messages,
new intention stacks can be created directly from incoming goals, and these plans
may themselves include further achievement goals, pushing additional plans onto
the stack.

The rule MsgExchg provides a semantics to KQML communication at the
MAS level:

(MsgExchg)
⟨mid, idj , ilf, cnt⟩ ∈ MidiOut

{AGid1 , ..., AGidi , AGidj , ..., AGidn , env} →
{AGid1 , ..., AG′

idi
, AG′

idj
, ..., AGidn , env}

8 A. Ferrando, A. Gatti, and V. Mascardi

where M ′
idiOut

= MidiOut
\ {⟨mid, idj , ilf, cnt⟩}

M ′
idjIn

= MidjIn
∪ {⟨mid, idi, ilf, cnt⟩}

It means that if agent idi sends a message to agent idj in a MAS where
there are id1, ..., idn agents, the only two agents affected by the communication
are idi, whose mailbox is updated by removing ⟨mid, idj , ilf, cnt⟩ and idj whose
mailbox is updated by adding it. The environment env is not affected by the
communication.

From a technical point of view, Jason provides a .send(Receiver, Per-
formative, Cnt, Answer, Timeout) action where Receiver can be either
the name of another agent or a list of names, Performative is one of the known
KQML illocutionary forces, or performatives (tell, askOne, achieve, ...), Cnt
is the content, Answer is an optional parameter used with ask messages to unify
the answer from Receiver and Timeout is an optional parameter that sets a
timeout in case the agent is waiting for an answer. When .send is called, the
message is sent.

4 Formalization of KQML-S

In this section, we present the design of KQML-S. We begin by illustrating how
the standard KQML semantics must be adapted to account for the situated-
ness of agents. Following this, we show how KQML-S can be integrated into the
operational semantics of AgentSpeak(L). Both modifications are implemented
modularly, preserving the existing syntax and semantics of KQML and AgentS-
peak(L). New performatives and their corresponding semantics are introduced,
ensuring full backward compatibility.

4.1 How to make KQML situated

We now focus on extending KQML to incorporate the situatedness of agents
within a MAS by introducing the concept of a room, which serves as a logical
representation of agent locality.

We identify the set of logical rooms with Rooms. Rooms may evolve over
time, as does the set Ags = {AGid1 , ..., AGidi , AGidj , ..., AGidn} of agents in the
MAS, and the enviroment env. For example, logical rooms might include the
coffee machine room, the MAS lab, and a WhatsApp chat. It is important to
note that a logical room does not need to correspond to a physical space in the
real world; for instance, the WhatsApp chat represents a logical communication
group rather than a physical location.

Given a set of rooms, we define a function loc : Ags → P(Rooms) mapping
each agent to a set of logical rooms the agent currently occupies.

The first data structure that must be extended is the one modeling the MAS:
in KQML-S, we add a loc element to the tuple, that becomes

{AGid1 , ..., AGidi , AGidj , ..., AGidn , env, loc}

Oops, I Heard That! Situated Communication with Locality-Aware KQML 9

All the agents in the MAS are, by default, in the mas logical room and they
cannot exit it, unless they leave the MAS. If one agent is in more than one room,
it will receive all the messages – either private and directed to it, or public –
that are sent by agents in that room. The values associated by loc with agents
may change over time, as agents move/act, and new logical rooms might become
available.

The second data structure that we must change is the one for messages, that
is extended with a mode. In the simplest setting that we address in this paper,
mode is a couple whose first element is one room identifier (mas for the logical
room where all the agents are located, by default), and the second element is
either public or private. Independently from the room, agents may communicate
privately, for example using private chats on social media, or whispering in a
crowded room, or in public mode, meaning that communication is meant to be
received by one agent, but both the sender and the receiver (should...) know that
all the other agents in the room will hear what they say.

A KQML-S message looks like ⟨mid, idj , ilf, cnt, (room, how)⟩. The idj re-
ceiver can assume the all value. This should not be confused with a broadcast
message. In broadcast, we expect that the list of receivers is known to the sender:
we do not cope with broadcast explicitly, as it can be resorted to as many individ-
ual point-to-point private messages as the intended recipients. The all receiver
identifier, instead, stands for “all agents in room, whoever they are”. For sim-
plicity and coherence with our intended use, all is allowed only in public mode.

The standard KQML semantics is a special case of the KQML-S one obtained
by setting loc = {(AGid1 , {mas}), ..., (AGidi , {mas}), ..., (AGidn , {mas})} and
mode = (mas, private). Apart from the addition of loc and mode, only a few
rules of the KQML semantics are affected by the KQML-S extension.

4.2 Extension of global rules

In KQML-S the behavior of the MAS remains the same as in KQML, if commu-
nication is private. However, if it is public, all the agents in the same room as
the speaker are affected. Interestingly, the receiver of the message might not be
affected, if it is not in the same room as the speaker. And interestingly, in the
default setting, the speaker will still believe that the intended receiver got the
message, and will make plans accordingly.

The KQML-S extension of MsgExchg is

(MsgExchg-S one)
⟨mid, idj , ilf, cnt, (room, public)⟩ ∈ MidiOut

{AGid1 , ..., AGidi , AGidj , ..., AGidn , env, loc} →
{AG′

id1
, ..., AG′

idi
, AG′

idj
, ..., AG′

idn , env, loc}

where 1. M ′
idiOut

= MidiOut
\ {⟨mid, idj , ilf, cnt, (room, public)⟩}

2. M ′
idjIn

= MidjIn
∪

{⟨mid, idi, ilf, cnt, (room, public)⟩}
if room ∈ loc(idj);

10 A. Ferrando, A. Gatti, and V. Mascardi

3. M ′
idkIn

= MidkIn
∪

{⟨mid, idi, Notify, sent(idj , ilf, cnt), (room, public)⟩}
for all agents idk ̸= idj such that room ∈ loc(idk);

4. M ′
idkIn

= MidkIn

for all agents idk (possibly including idj) s.t. room /∈ loc(idk).

The semantics is as follows: if agent idi sends a message to idj in pub-
lic mode (analogous to speaking loudly in a room), all agents present in the
same room will become aware that the message was sent. The intended recip-
ient, idj , if present in the room, will receive and process the message directly,
triggering the standard message-handling mechanism (Condition 2: MidjIn

∪
{⟨mid, idi, ilf, cnt, (room, public)⟩}). All other agents in the room will update
their knowledge to reflect that idi sent a message to idj (Condition 3: M ′

idkIn
=

MidkIn
∪{⟨mid, idi, Notify, sent(idj , ilf, cnt), (room, public)⟩}). Agents not present

in the room – including idj if located elsewhere – remain unaffected (Condition
4).

The Notify performative is new in KQML-S, and its effect on the agent’s
semantics is described in Section 4.3.

In KQML-S, messages sent in public mode retain their recipient field. This
field defines the sender’s communicative intent, which is used both by the des-
ignated receiver and by overhearing agents to interpret the social context of the
message. For example, an overhearing agent may infer that the message was
not intended for them, and adjust their behavior accordingly (e.g., ignoring it,
intervening altruistically, or reacting with skepticism). Thus, the recipient field
is essential for interpreting the semantics of overheard messages.

A different situation is when Alice says “May anyone print this paper?”,
without directing the information to anyone. This implicitly means that it is
directed to all the colleagues in the lab, and can be modelled by setting all as
the intended receiver:

(MsgExchg-S all)
⟨mid, all, ilf, cnt, (room, public)⟩ ∈ MidiOut

{AGid1 , ..., AGidi , AGidj , ..., AGidn , env, loc} →
{AG′

id1
, ..., AG′

idi
, AG′

idj
, ..., AG′

idn , env, loc}

where 1. M ′
idiOut

= MidiOut
\ {⟨mid, all, ilf, cnt, (room, public)⟩}

2. M ′
idkIn

= MidkIn
∪ {⟨mid, idi, ilf, cnt, (room, public)⟩}

for all agents idk such that room ∈ loc(idk).

Differently from MsgExchg-S one, MsgExchg-S all changes the message queues
of all the agents in the room in the same way, as if all of them were the intended
receivers.

4.3 Extension of local rules

In the previous section, we examined how the operational semantics of AgentS-
peak(L) must be adapted to account for the situatedness of agents involved in

Oops, I Heard That! Situated Communication with Locality-Aware KQML 11

the communication. This led to the introduction of a new performative, Notify,
used to create messages that inform agents within the same logical room where
the communication occurs.

In this section, we detail how AgentSpeak(L)’s semantics is extended to han-
dle this addition. Specifically, we introduce two new rules to manage messages
with the Notify performative. In our framework, notifications relate to either a
Tell or an Achieve messages, sent to one agent sharing the same logical room,
as outlined in the extended global rules. Although additional rules could be de-
fined to cover other interpretations of Notify, this work focuses on these two
primary and common cases to maintain clarity and conciseness.

The first rule, NotifyTell, handles the notification of a Tell message. This
rule governs the reception of the notification and updates the agent’s belief base
based on its current mood. The mood set defines characteristics that influence
an agent’s behavior when receiving Tell or Achieve messages. An agent may
be Credulous and/or Altruistic. We assume a closed world assumption in
interpreting the agent’s mood: if an agent is not Credulous, it is skeptical. If it
is not Altruistic, it is selfish. There is no need to be explicit on being skeptical
or selfish: they are just a consequence of not being Credulous or Altruistic.
If the agent is in an Credulous mood, it fully trusts the information overheard
in its logical room and updates its belief base as if it were the direct recipient of
the original Tell message.

(NotifyTell)

SM (MIn) = ⟨mid, id,Notify, sent(_, T ell, Bs),mode⟩
(mid, i) /∈ MSI for any intention i

⟨ag, C,M, T, ProcMsg,mood⟩ → ⟨ag′, C′,M ′, T, SelEv,mood⟩

where M ′
In = MIn \ {⟨mid, id,Notify, sent(_, T ell, Bs),mode⟩}

if Credulous ∈ mood then
for each b ∈ Bs
ag′bs = agbs + b
C ′

E = CE ∪ {⟨+b[id], T ⟩}

The second rule, NotifyAchieve, handles the notification of an Achieve mes-
sage. The agent’s response to this notification depends on its current mood. If the
agent is in an Altruistic mood, it checks whether it possesses any relevant plans
– applicable given its current beliefs – that can achieve the goal overheard in
the logical room. In this scenario, the receiving agent recognizes that the sender
requires assistance in achieving a goal and acknowledges its own ability to help.
However, it would be inappropriate for the agent to autonomously pursue the
goal without coordinating with the sender. To address this, the NotifyAchieve
rule specifies that if the notified agent can assist (i.e., it has an applicable plan),
it sends a message to the sender, offering to achieve the goal on their behalf.
What follows is domain-dependent and must be programmed by the developer:
it is up to the sender agent to autonomously decide whether to accept the offer,
delegate the goal, or continue pursuing other strategies.

Similar to the previous rule, if the agent is not in an Altruistic mood,
it simply discards the message and takes no action to assist in achieving the
overheard goal.

12 A. Ferrando, A. Gatti, and V. Mascardi

(NotifyAchieve)

SM (MIn) = ⟨mid, id,Notify, sent(_, Achieve, at),mode⟩
(mid, i) /∈ MSI [for any intention i]

⟨ag, C,M, T, ProcMsg,mood⟩ → ⟨ag, C,M ′, T, SelEv,mood⟩

where M ′
In = MIn \ {⟨mid, id,Notify, sent(_, Achieve, at),mode⟩}

if Altruistic ∈ mood then
if AppP lans(agbs, RelP lans(agps, at)) ̸= ∅
M ′

Out = MOut ∪ {⟨mid′, id, Tell, can_achieve(at),mode⟩}

5 Implementation

Fig. 2. VEsNA KQML-S design. Each agent has a body and a mind, it is physically
located inside a region, and models (and stores) this information using Region Con-
nection Calculus [9]. Whenever the agent moves, it updates the White Pages artifact.
When an agent a calls the .send action in Jason, the action accesses the White Pages
to check which other agents are in the same region as a.

In this section, we present the instantiation of KQML-S inside the VEsNA
framework. The code is available to the community from the KQML-S repository
[17].

VEsNA [20] extends Jason by enabling peer-to-peer connections between an
agent and its body and uses some features of JaCaMo [4] when artifacts are
needed. Jason, implemented in Java, provides the foundation for this exten-
sion. In Jason a class Agent manages the agent’s lifecycle and reasoning process,
interpreting the AgentSpeak(L) source, and agents have a predefined set of in-
ternal actions implemented through the DefaultInternalAction class. VEsNA
extends the default Jason implementation in three ways:

1. the Agent class is extended into VesnaAgent, which creates a WebSocket
client for bidirectional communication with the body;

Oops, I Heard That! Situated Communication with Locality-Aware KQML 13

Fig. 3. Scenario 1. Alice (red agent) asks Bob (white agent) to print two copies of
the exam. The request is heard by nobody.

2. a new DefaultInternalAction walk is introduced, enabling agents to per-
form walking actions;

3. a set of high-level plans is provided to facilitate agent implementation.

VEsNA agents reason logically on space using the Region Connection Calcu-
lus (RCC) [16]. In RCC, the relation ntpp(X, Y) describes that X is strictly
contained in Y. This property is crucial for the implementation, as it naturally
expresses an agent a’s situatedness within a region r as ntpp(a, r). In the
current KQML-S in VEsNA implementation, we only consider situatedness in
regions: logical rooms like WhatsApp are not yet supported. Figure 2 shows the
architecture we implemented.

To implement the KQML-S extension a new DefaultInternalAction .send
has been developed starting from the .send standard one: the KQML-S .send
action provides this API

.send(Mode, Receiver, Performative, Cnt, Answer, Timeout)

where Mode can be set to either private or public to change the privacy
level of the message and the other parameters are the same as the default one.
The message is sent only if the sender and Receiver are in the same region.
Since in this current implementation we only support region-based situatedness,
the Mode actual parameter, that in our formalization is a couple (Room, How),
only needs to state the How (private or public), as the Room is computed
automatically as “the RCC region in the Virtual Environment where the sender
is” by taking advantage of the White Pages artifact. If Mode is public all the
agents in the region that are neither Receiver nor in Receiver list will find the

14 A. Ferrando, A. Gatti, and V. Mascardi

Fig. 4. Scenario 2. Alice (red agent) tells Bob (one of the white agents) they won
a big project. The message is heard also by Frank, George and Hilary who are in the
room. As shown in the MAS Console, Frank and George are credulous and they add
the content to their belief base while Hilary does nothing.

Fig. 5. Scenario 5. Alice (red agent) requests all agents inside the office room to
print EMAS call for papers. The message is received from Bob and Irene, and both
print it.

Oops, I Heard That! Situated Communication with Locality-Aware KQML 15

notify(Performative, Receiver, Cnt)[source(Sender)] belief among
their mental notes. In addition, an agent can perform a .send with all as
Receiver. In this case, the message is sent to all the agents present in the
region.

Every time one agent moves from one region to another, it calls the White
Pages artifact to update its position. The .send action retrieves all agents in the
same room as the sender and delivers the message to them only. By leveraging
this environmental artifact, locality information is correctly managed within the
environment, preserving individual agent perspectives: one agent may believe
that another agent is in a room based on prior information, or remain unaware
of other agents’ presence unless explicitly informed.

The implementation has been tested in the five scenarios described in Section
2, apart from Scenario 3 that considers logical rooms (WhatsApp), not supported
yet. Scenario 4 has been implemented but is not discussed for space constraints.
The agents are embodied in a virtual office environment implemented using
Godot. The screenshots below capture a single moment of execution, while the
MAS Console window provides a full log of previous events along with detailed
real-time information on agent interactions.

Scenario 1. Alice moves to the open area of the office, where Bob is usu-
ally present, to request that he prints two copies of the exam. Alice performs
.send(public, bob, achieve, print(paper(exam, 2))); and Bob has in-
deed a plan to print but, as shown in Figure 3, he is enjoying a coffee in the
common room.

Scenario 2. Alice returns to the open office where Bob is and announces that
they won a big project, speaking loudly without realizing that Frank, George,
and Hilary are also present, as shown in Figure 4.

Scenario 5. Alice enters the office and asks if anyone can print a copy of the
EMAS 2025 call for papers. In the office there are Bob and Irene, that she does
not know. Alice sends the request using send with all as the receiver, ensuring
that everyone in the room directly receives the achieve message. Since, in this
simplified setting, no coordination mechanism is in place, both Bob and Irene
print the document and provide a copy to Alice, as illustrated in Figure 5.

6 Related and Future Work

This paper introduced KQML-S, a KQML extension that incorporates locality
and distinguishes between private and public communication, enabling agents
to adjust interactions based on shared logical spaces. Inspired by realistic in-
teraction dynamics such as overhearing and eavesdropping, KQML-S enriches
coordination and awareness in MAS.

Situated communication in BDI-based frameworks has received limited at-
tention, particularly in recent years. Our interest in this direction emerged from
work on VEsNA, where agents act in virtual environments where locality shapes
communication. As distributed systems increasingly rely on spatial or logical
co-location, we expect locality-aware communication to grow in importance.

16 A. Ferrando, A. Gatti, and V. Mascardi

Previous approaches have touched on related aspects. CG-KQML+ [7] ex-
tends KQML with conceptual graphs and enhanced performatives, but lacks
the focus on spatial context. Coo-BDI [1] enables plan sharing among trusted
peers, emphasizing structural cooperation rather than dynamic, context-driven
communication. Moise+ [24] models role-based social behavior, while KQML-
S focuses on how locality and presence influence message propagation. Liu et
al. [27] offer a domain-specific KQML adaptation for control systems, whereas
KQML-S remains general-purpose. Dell’Anna et al. [10] address norm revision,
which aligns with our interest in context-sensitive message interpretation.

Unlike these works, KQML-S introduces a communication layer grounded
in environment-aware semantics and agent attitudes (e.g., altruistic, skeptical),
supporting nuanced responses based on message content and context.

Looking forward, several directions can expand KQML-S. Extending the set
of KQML performatives to include Ask or TellHow would support more expres-
sive agent dialogues, enabling agents to handle a broader range of communication
behaviors. Moreover, we aim to explore the impact of nested or connected logical
rooms on message propagation, beyond discrete, isolated spaces. Additionally,
integrating social structures such as norms, roles, and hierarchies would enable
agents to adjust their communication strategies based on authority, trust, or
group membership. Studying the connections between situated communication
and Information Protocols like BSPL [38] would also expand the application field
of the proposed approach.

Another important future direction is the integration of coordination and
conflict resolution protocols to enhance the robustness of KQML-S. This would
be especially useful in scenarios where multiple agents respond to a single over-
heard message, potentially leading to conflicts (e.g., multiple agents pursuing the
same goal). Large-scale experiments will also be essential to assess how KQML-S
scales in more complex MAS environments, testing its performance and scala-
bility as the number of agents and logical spaces increases.

Looking beyond virtual environments, extending KQML-S to interact with
physical environments and IoT devices could open new applications in domains
like smart homes, autonomous vehicles, or robotic swarms. This would allow
agents to interpret and react to both digital and physical cues in a more inte-
grated, real-world context.

Finally, integrating KQML-S with privacy-preserving communication mech-
anisms, such as encryption or access control, could enhance its security. This
would allow agents to reason not only about who might overhear a message but
also about whether certain communications should be hidden, thereby bridging
the gap between situated communication and security-aware MAS design.

These directions aim to evolve KQML-S into a comprehensive framework for
situated communication in dynamic, socially rich MAS environments.

Acknowledgements. This work was partially supported by ENGINES – EN-
Gineering INtElligent Systems around intelligent agent technologies, funded by
the Italian MUR program PRIN 2022 under grant number 20229ZXBZM.

Oops, I Heard That! Situated Communication with Locality-Aware KQML 17

References

1. Ancona, D., Mascardi, V.: Coo-BDI: Extending the BDI model with cooperativity.
In: Leite, J.A., Omicini, A., Sterling, L., Torroni, P. (eds.) Declarative Agent Lan-
guages and Technologies, First International Workshop, DALT 2003, Melbourne,
Australia, July 15, 2003, Revised Selected and Invited Papers. Lecture Notes in
Computer Science, vol. 2990, pp. 109–134. Springer (2003). https://doi.org/10.
1007/978-3-540-25932-9_7, https://doi.org/10.1007/978-3-540-25932-9_7

2. Bellifemine, F.L., Caire, G., Greenwood, D.: Developing Multi-Agent Systems with
JADE. John Wiley & Sons (2007)

3. Bergenti, F., Caire, G., Monica, S., Poggi, A.: The first twenty years of agent-
based software development with JADE. Auton. Agents Multi Agent Syst. 34(2),
36 (2020)

4. Boissier, O., Bordini, R., Hubner, J., Ricci, A.: Multi-Agent Oriented Program-
ming: Programming Multi-Agent Systems Using JaCaMo. Intelligent Robotics
and Autonomous Agents series, MIT Press, United States (2020), https://books.
google.com.br/books?id=GM_tDwAAQBAJ

5. Bonabeau, E., Dorigo, M., Theraulaz, G.: Swarm Intelligence - From Natural to
Artificial Systems. Santa Fe Institute Studies in the Sciences of Complexity, Oxford
University Press (1999)

6. Bordini, R., Hübner, J., Wooldridge, M.: Programming Multi-Agent Systems in
AgentSpeak Using Jason, vol. 8. John Wiley & Sons, Ltd, United Kingdom (10
2007). https://doi.org/10.1002/9780470061848

7. Bouzouba, K., Moulin, B., Kabbaj, A.: CG-KQML+: an agent communication
language and its use in a multi-agent system. In: Proc of the 9th Int. Conf. on
Conceptual Structures. pp. 1–14 (2001)

8. Cohen, P.R., Perrault, C.R.: Elements of a plan-based theory of speech
acts. Cognitive Science 3(3), 177–212 (1979). https://doi.org/https:
//doi.org/10.1016/S0364-0213(79)80006-3, https://www.sciencedirect.
com/science/article/pii/S0364021379800063

9. Cohn, A.G., Bennett, B., Gooday, J., Gotts, N.M.: Qualitative spatial representa-
tion and reasoning with the region connection calculus. GeoInformatica 1(3), 275–
316 (1997). https://doi.org/10.1023/A:1009712514511, https://doi.org/10.
1023/A:1009712514511

10. Dell’Anna, D., Dastani, M., Dalpiaz, F.: Runtime revision of sanctions in normative
multi-agent systems. Auton. Agents Multi Agent Syst. 34(2), 43 (2020)

11. Ferrando, A., Winikoff, M., Cranefield, S., Dignum, F., Mascardi, V.: On
enactability of agent interaction protocols: Towards a unified approach. In:
EMAS@AAMAS. Lecture Notes in Computer Science, vol. 12058, pp. 43–64.
Springer (2019)

12. Ferrando, A., Winikoff, M., Cranefield, S., Dignum, F., Mascardi, V.: On enactabil-
ity of agent interaction protocols: Towards a unified approach. In: AAMAS. pp.
1955–1957. International Foundation for Autonomous Agents and Multiagent Sys-
tems (2019)

13. Finin, T., Fritzson, R., McKay, D., McEntire, R.: KQML as an agent commu-
nication language. In: Proceedings of the Third International Conference on In-
formation and Knowledge Management. p. 456–463. CIKM ’94, Association for
Computing Machinery, New York, NY, USA (1994). https://doi.org/10.1145/
191246.191322, https://doi.org/10.1145/191246.191322

https://doi.org/10.1007/978-3-540-25932-9_7
https://doi.org/10.1007/978-3-540-25932-9_7
https://doi.org/10.1007/978-3-540-25932-9_7
https://doi.org/10.1007/978-3-540-25932-9_7
https://doi.org/10.1007/978-3-540-25932-9_7
https://books.google.com.br/books?id=GM_tDwAAQBAJ
https://books.google.com.br/books?id=GM_tDwAAQBAJ
https://doi.org/10.1002/9780470061848
https://doi.org/10.1002/9780470061848
https://doi.org/https://doi.org/10.1016/S0364-0213(79)80006-3
https://doi.org/https://doi.org/10.1016/S0364-0213(79)80006-3
https://doi.org/https://doi.org/10.1016/S0364-0213(79)80006-3
https://doi.org/https://doi.org/10.1016/S0364-0213(79)80006-3
https://www.sciencedirect.com/science/article/pii/S0364021379800063
https://www.sciencedirect.com/science/article/pii/S0364021379800063
https://doi.org/10.1023/A:1009712514511
https://doi.org/10.1023/A:1009712514511
https://doi.org/10.1023/A:1009712514511
https://doi.org/10.1023/A:1009712514511
https://doi.org/10.1145/191246.191322
https://doi.org/10.1145/191246.191322
https://doi.org/10.1145/191246.191322
https://doi.org/10.1145/191246.191322
https://doi.org/10.1145/191246.191322

18 A. Ferrando, A. Gatti, and V. Mascardi

14. Finin, T., McKay, D.P., Fritzson, R., McEntire, R.: KQML - A Language and
Protocol for Knowledge and Information Exchange. IOS Press (September 1994),
revised paper from the 13th Int. Distributed Artificial Intelligence Workshop, July
28-30, 1994

15. Foundation for Intelligent Physical Agents: FIPA ACL Message Structure Specifi-
cation (2002), http://www.fipa.org/specs/fipa00061/SC00061G.html, accessed
on April 22, 2025

16. Gatti, A.: Reason logically, move continuously. In: Ferrando, A., Cardoso, R.C.
(eds.) Agents and Robots for reliable Engineered Autonomy. pp. 115–127. Springer
Nature Switzerland, Cham (2025)

17. Gatti, A., Ferrando, A., Mascardi, V.: KQML-S web site (2025), https://github.
com/VEsNA-ToolKit/KQML-S, accessed on April 22, 2025

18. Gatti, A., Ferrando, A., Mascardi, V.: VEsNA-Toolkit web site (2025), https:
//github.com/VEsNA-ToolKit, accessed on April 22, 2025

19. Gatti, A., Mascardi, V.: Towards VEsNA, a framework for managing virtual envi-
ronments via natural language agents. In: AREA@IJCAI-ECAI. EPTCS, vol. 362,
pp. 65–80 (2022)

20. Gatti, A., Mascardi, V.: VEsNA, a framework for virtual environments via natural
language agents and its application to factory automation. Robotics 12(2), 46
(2023)

21. Genesereth, M.R., Ketchpel, S.P.: Software agents. Commun. ACM 37(7),
48–ff. (Jul 1994). https://doi.org/10.1145/176789.176794, https://doi.org/
10.1145/176789.176794

22. Godot foundation: Godot web site (2025), https://godotengine.org/, accessed
on April 22, 2025

23. Hadeli, Valckenaers, P., Kollingbaum, M., Van Brussel, H.: Multi-agent co-
ordination and control using stigmergy. Comput. Ind. 53(1), 75–96 (Jan
2004). https://doi.org/10.1016/S0166-3615(03)00123-4, https://doi.org/
10.1016/S0166-3615(03)00123-4

24. Hübner, J.F., Sichman, J.S., Boissier, O.: Developing organised multiagent systems
using the MOISE+ model: programming issues at the system and agent levels. Int.
J. Agent Oriented Softw. Eng. 1(3/4), 370–395 (2007). https://doi.org/10.1504/
IJAOSE.2007.016266, https://doi.org/10.1504/IJAOSE.2007.016266

25. Labrou, Y., Finin, T.: A semantics approach for KQML – a general purpose com-
munication language for software agents. In: Proceedings of the Third Interna-
tional Conference on Information and Knowledge Management. p. 447–455. CIKM
’94, Association for Computing Machinery, New York, NY, USA (1994). https:
//doi.org/10.1145/191246.191320, https://doi.org/10.1145/191246.191320

26. Labrou, Y., Finin, T.: A proposal for a new KQML specification. Tech. rep., TR
CS-97-03 from UMBC (1997)

27. Liu, Y., Zhang, X., Wu, Q.: Optimizing KQML for usage in wood drying multi-
agent coordination system. In: 2011 Chinese Control and Decision Conference
(CCDC). pp. 3725–3730 (2011). https://doi.org/10.1109/CCDC.2011.5968872

28. Luke, S., Balan, G.C., Sullivan, K., Panait, L.: Mason (2003), https://cs.gmu.
edu/~eclab/projects/mason/, george Mason University

29. North, M.J., Collier, N.T., Vos, J.R.: Repast (2006), https://repast.github.io/,
argonne National Laboratory

30. Omicini, A., Ricci, A., Viroli, M.: Artifacts in the A&A meta-model for multi-agent
systems. Auton. Agents Multi Agent Syst. 17(3), 432–456 (2008)

31. Omicini, A., Zambonelli, F.: Coordination for internet application development.
Auton. Agents Multi Agent Syst. 2(3), 251–269 (1999)

http://www.fipa.org/specs/fipa00061/SC00061G.html
https://github.com/VEsNA-ToolKit/KQML-S
https://github.com/VEsNA-ToolKit/KQML-S
https://github.com/VEsNA-ToolKit
https://github.com/VEsNA-ToolKit
https://doi.org/10.1145/176789.176794
https://doi.org/10.1145/176789.176794
https://doi.org/10.1145/176789.176794
https://doi.org/10.1145/176789.176794
https://godotengine.org/
https://doi.org/10.1016/S0166-3615(03)00123-4
https://doi.org/10.1016/S0166-3615(03)00123-4
https://doi.org/10.1016/S0166-3615(03)00123-4
https://doi.org/10.1016/S0166-3615(03)00123-4
https://doi.org/10.1504/IJAOSE.2007.016266
https://doi.org/10.1504/IJAOSE.2007.016266
https://doi.org/10.1504/IJAOSE.2007.016266
https://doi.org/10.1504/IJAOSE.2007.016266
https://doi.org/10.1504/IJAOSE.2007.016266
https://doi.org/10.1145/191246.191320
https://doi.org/10.1145/191246.191320
https://doi.org/10.1145/191246.191320
https://doi.org/10.1145/191246.191320
https://doi.org/10.1145/191246.191320
https://doi.org/10.1109/CCDC.2011.5968872
https://doi.org/10.1109/CCDC.2011.5968872
https://cs.gmu.edu/~eclab/projects/mason/
https://cs.gmu.edu/~eclab/projects/mason/
https://repast.github.io/

Oops, I Heard That! Situated Communication with Locality-Aware KQML 19

32. Pokahr, A., Braubach, L.: From a research to an industry-strength agent platform:
JADEX V2. In: Wirtschaftsinformatik (1). books@ocg.at, vol. 246, pp. 769–780.
Österreichische Computer Gesellschaft (2009)

33. Rao, A.S.: AgentSpeak(L): BDI agents speak out in a logical computable language.
In: 7th European Workshop on Modelling Autonomous Agents in a Multi-Agent
World, Eindhoven, The Netherlands, January 22-25, 1996. Lecture Notes in Com-
puter Science, vol. 1038, pp. 42–55. Springer (1996). https://doi.org/10.1007/
BFb0031845, https://doi.org/10.1007/BFb0031845

34. Ricci, A., Omicini, A., Denti, E.: The TuCSoN coordination infrastructure for vir-
tual enterprises. In: Proceedings Tenth IEEE International Workshop on Enabling
Technologies: Infrastructure for Collaborative Enterprises. WET ICE 2001. pp.
348–353 (2001). https://doi.org/10.1109/ENABL.2001.953442

35. Ricci, A., Piunti, M., Viroli, M., Omicini, A.: Environment programming in
CArtAgO. In: Multi-Agent Programming, Languages, Tools and Applications, pp.
259–288. Springer (2009)

36. Ricci, A., Viroli, M., Omicini, A.: Give agents their artifacts: the A&A approach
for engineering working environments in MAS. In: AAMAS. p. 150. IFAAMAS
(2007)

37. Singh, M.P.: Agent communication languages: Rethinking the principles. Com-
puter 31(12), 40–47 (1998). https://doi.org/10.1109/2.735849, https://doi.
org/10.1109/2.735849

38. Singh, M.P.: Information-driven interaction-oriented programming: BSPL, the
blindingly simple protocol language. In: The 10th International Conference on
Autonomous Agents and Multiagent Systems - Volume 2. pp. 491–498 (2011)

39. Theraulaz, G., Bonbeau, E.: A brief history of stigmergy. Artif. Life 5(2), 97–116
(Apr 1999). https://doi.org/10.1162/106454699568700, https://doi.org/10.
1162/106454699568700

40. Vieira, R., Moreira, Á.F., Wooldridge, M.J., Bordini, R.H.: On the formal semantics
of speech-act based communication in an agent-oriented programming language.
J. Artif. Intell. Res. 29, 221–267 (2007). https://doi.org/10.1613/jair.2221,
https://doi.org/10.1613/jair.2221

41. Wilensky, U.: Netlogo (1999), ttp://ccl.northwestern.edu/netlogo/, center for
Connected Learning and Computer-Based Modeling, Northwestern University

https://doi.org/10.1007/BFb0031845
https://doi.org/10.1007/BFb0031845
https://doi.org/10.1007/BFb0031845
https://doi.org/10.1007/BFb0031845
https://doi.org/10.1007/BFb0031845
https://doi.org/10.1109/ENABL.2001.953442
https://doi.org/10.1109/ENABL.2001.953442
https://doi.org/10.1109/2.735849
https://doi.org/10.1109/2.735849
https://doi.org/10.1109/2.735849
https://doi.org/10.1109/2.735849
https://doi.org/10.1162/106454699568700
https://doi.org/10.1162/106454699568700
https://doi.org/10.1162/106454699568700
https://doi.org/10.1162/106454699568700
https://doi.org/10.1613/jair.2221
https://doi.org/10.1613/jair.2221
https://doi.org/10.1613/jair.2221
ttp://ccl.northwestern.edu/netlogo/

	Oops, I Heard That! Situated Communication with Locality-Aware KQML

