
LTL Semantics for Tumato: A Declarative
Approach to Autonomous Agent Planning

Jan Vermaelen1[0000−0002−7898−7859] and Tom Holvoet1[0000−0003−1304−3467]

DistriNet, KU Leuven, 3001 Leuven, Belgium
{jan.vermaelen,tom.holvoet}@kuleuven.be

Abstract. This paper explores the semantics of Tumato 2.0, a con-
straint-based planning framework, through the lens of Linear Temporal
Logic (LTL). Tumato enables the generation of policies for autonomous
agents, ensuring safe and robust goal-oriented behavior. The framework
guarantees that critical safety constraints hold across all potential out-
comes of non-deterministic actions, while pre-computed policies elimi-
nate the need for runtime decision-making. By translating Tumato’s lan-
guage constructs into LTL, we formalize its approach to handling safety,
liveness, and robustness properties. This contribution offers a founda-
tion for reliable agent behavior under real-world uncertainties, as well as
improved interpretability.
We further demonstrate the semantics of Tumato’s specification language
through a case study, demonstrating how LTL guides system specifica-
tion and supports potential formal verification efforts. These contribu-
tions align with key challenges in engineering intelligent and multi-agent
systems, focusing on safety, correctness, and robust operation within
complex environments. Overall, this work emphasizes the importance
of declarative approaches in delivering reliable solutions for real-world
applications.

Keywords: Tumato 2.0 · Linear Temporal Logic (LTL) · Autonomous
Agents.

1 Introduction

Autonomous agents and multi-agent systems require rigorous planning frame-
works to operate safely and effectively in complex, real-world environments. The
Tumato framework, originally introduced by Hoang Tung Dinh et al. [3], is a
constraint-based planning tool designed to generate safe, goal-oriented behav-
ior policies. However, the uncertainty inherent in real-world conditions—such as
unexpected obstacles and sensor and actuator inaccuracies—demands that an
agent’s planning framework be robust. By incorporating these non-deterministic
action outcomes within its constraint-based structure, Tumato 2.0 [8] ensures
that agents can reliably face these challenges, making it particularly relevant for
the engineering of robust autonomous agents.

The approach adopted by Tumato—offline, complete policy generation—fur-
ther enhances robustness by eliminating the need for real-time re-planning. In



2 J. Vermaelen, T. Holvoet

safety-critical applications, where stable and reliable behavior is required, re-
planning under computational constraints can introduce risk and latency. By
generating policies ahead of runtime, Tumato reduces computational demands
during operation, enabling agents to execute predefined, guaranteed safe, and
goal-oriented behavior. Furthermore, the planning approach generates complete
policies, specifying which actions to execute in every potential state of the sys-
tem. The approach is valuable for systems deployed in industries such as au-
tonomous logistics, healthcare robotics, and field operations.

To fully value Tumato’s capabilities, we analyze it through the lens of for-
mal logic, which provides a structured, rigorous way to evaluate and reason
about agent behavior. Tumato’s declarative specification language enables users
to specify desired outcomes and constraints without detailing the specific actions
required to achieve them. A natural choice for such an analysis is Linear Tem-
poral Logic (LTL), which facilitates reasoning about sequences of actions and
states over time. LTL enables the specification of safety and liveness properties,
providing a foundation for well-defined behaviors.

This paper formalizes Tumato’s specification framework using LTL. We fo-
cus on the guarantees Tumato provides: safety (avoiding dangerous actions and
states), robustness (handling non-determinism), and goal achievement (meeting
specified objectives). While Tumato, the planning tool itself, is not formalized in
this work, nor can it be fully expressed in LTL, this paper focuses on the seman-
tics of Tumato’s specification framework. The presented formalization improves
the interpretability of Tumato’s guarantees but does not aim to redefine or en-
hance the planning tool’s underlying mechanisms. For a deeper exploration of Tu-
mato’s planning capabilities, we refer to [8]. By mapping Tumato’s functionalities
into LTL, we analyze its alignment with formal methods and assess its implica-
tions for reliable agent planning. To demonstrate its practical utility, we include
a case study that represents Tumato’s features as LTL expressions, in a robotic
pick-and-place scenario. Tumato’s declarative specification framework inherently
supports multi-agent systems, as multi-agent interactions can be implemented
in a state-action-based manner. This work does not delve into the modeling of
multi-agent-specific features. Additionally, probabilistic approaches—which Tu-
mato avoids by design—and detailed implementation aspects fall outside the
scope of this work.

The remainder of this paper is structured as follows. Section 2 provides the
background and related work, introducing LTL-based approaches as well as Tu-
mato. Section 3 shows the relationship between Tumato specifications and LTL,
offering insights into Tumato’s approach. Section 4 presents the case study, fol-
lowed by Section 5 discussing the findings. Finally, Section 6 concludes.

2 Background and Related Work

To ensure reliable and safe operation in autonomous systems, formal methods
such as temporal logic are often essential for specifying and verifying system



LTL Semantics for Tumato 3

properties. This section introduces LTL and explores its applications and adap-
tations in autonomous systems, before focusing on the Tumato framework.

2.1 Linear Temporal Logic (LTL)

Temporal logic, especially LTL, has become a natural choice for specifying (and
verifying) properties on safety and liveness in autonomous and multi-agent sys-
tems [1].

LTL enables reasoning about sequences of states and events over paths using
propositional variables (such as at_charger and object_loaded) which can be
either true or false, logical operators (¬, ∨, ∧, →, ↔), and temporal modal
operators (X, F, G, U, R). The temporal operators allow for describing the
progression of states over time:

– X (Next): Specifies that a condition will hold in the next state. For example,
Xp means that p is true in the state immediately following the current one.

– F (Eventually): Specifies that a condition will hold at some point in the
future. For example, Fq means that q will become true at least once.

– G (Globally): Specifies that a condition holds in all future states. For exam-
ple, Gr means that r is true in every state.

– U (Until): Specifies that one condition must hold at least until another be-
comes true. For example, pU q means that p must hold continuously up to
the point where q becomes true.

– R (Release): Specifies that one condition releases another. For example, pR q
means that q must hold until and including the point where p becomes true.
If p never becomes true, q must hold indefinitely.

As mentioned before, the suitability of looking at LTL to understand Tu-
mato arises from its ability to capture conditions critical to safety, liveness, and
robustness. Common properties in robotics, for example in a (mobile) pick and
place application, include:

– Safety:
• G¬u (with an unsafe condition u, which should never occur),
• e.g. G¬collision (a collision should never happen),
• e.g. G(loaded → ¬pickup) (a pickup should never execute if the robot is

already loaded).
– Liveness:

• Ft (with single task formula t) or GFg (with repeating goal formula g),
• e.g. G(¬loaded → F loaded) (if the robot is not loaded, it should be

loaded in the future), and
e.g. G(loaded → F¬loaded) (if the robot is loaded, it should be unloaded
in the future),

• e.g. G(F loaded ∧ F¬loaded) (true liveness).
From a more practical (yet more procedural) viewpoint, one could also con-
sider G(at_delivery_station → (loaded → Xdeliver)). That is, if the robot
is at the delivery station while loaded, it should deliver, next.



4 J. Vermaelen, T. Holvoet

– Robustness (regarding the failure of actions):
• of the form v U w (with formula v the intended operation and formula w

the desired effect),
• e.g. G(pickup → pickupU loaded) (pickup should be executed until suc-

cessfully loaded).

Looking at related work in this context, LTL-based approaches have focused
on managing conflicting objectives and handling constraints imposed by the
environment, as in the work by Tumova et al. [6, 7], where methods are devel-
oped to minimize specification violations. This line of work emphasizes practical
adaptability by finding the least-violating control strategy. In contrast, Tumato
ensures absolute safety without compromise, opting instead to only generate be-
havior that succeeds in maintaining and restoring safety. If safety can not be
guaranteed, it refrains from generating behavior.

Handling both high-level abstraction and continuous low-level observation
and execution remains a universal challenge in autonomous control [4]. This chal-
lenge has been observed using Tumato as well, and is addressed by using mon-
itoring modules that translate low-level observations into high-level states [8],
although the details are beyond this paper’s scope.

Various approaches include probabilistic aspects in agent planning, poten-
tially combined with LTL. An example is a method to generate a control strat-
egy that maximizes the probability of accomplishing a task given as an LTL
formula [2]. Tumato, however, avoids probabilistic dependencies to mitigate the
complexities of obtaining and maintaining reliable probabilities in dynamic en-
vironments. Instead, it assumes (biased) foreseeable, non-deterministic action
outcomes, enabling robust planning while maintaining a declarative approach to
safety.

LTL frameworks are often capable of real-time plan (re)calculation, for dy-
namic tasks or changing environments [11]. Tumato, however, generates com-
plete, sound policies offline, enabling it to preemptively address safety constraints
and remove the need for runtime recalculations. This pre-planned robustness
ensures that no additional runtime intervention is needed beyond executing the
existing policy.

LTL has been effectively applied to task assignment and planning in multi-
robot systems, leveraging techniques like lazy collision checking to simplify the
planning problem [5]. Although multi-agent applications are beyond this paper’s
immediate focus, Tumato’s planning structure inherently supports multi-robot
scenarios. It enables flexible, high-level task allocation and, when needed, com-
munication among agents. Since planning is handled offline, the required com-
putational power is readily available.

Other advancements have led to the development of HyperLTL [10], which
extends LTL to express planning objectives like optimality, robustness, and pri-
vacy across multiple paths. Tumato’s approach to non-determinism shares a
related concept by ensuring safety across multiple possible outcomes for each
action, illustrating a comparable need for handling relationships among multiple
possible execution paths.



LTL Semantics for Tumato 5

Overall, a range of LTL adaptations has been investigated before. In this
work, we align Tumato with such efforts, seeking to provide a comprehensive
understanding of the semantics within its specification framework.

2.2 Tumato

As introduced earlier, the Tumato 2.0 framework is a constraint-based planning
tool designed to generate policies for autonomous systems, emphasizing safety,
robustness, and goal-oriented behavior [8]. Tumato enables users to specify sys-
tem behavior in a declarative manner, which is then automatically translated
into sets of constraints. These constraints allow for the generation of a sound
and complete policy that ensures safe and robust operation, even in realistic,
non-deterministic environments. A Tumato-generated policy is a state-based be-
havior mapping, in which each state is associated with a set of actions to be
executed. A recent empirical evaluation has demonstrated Tumato’s effective-
ness when compared to other, more ad-hoc approaches [9].

Tumato is not directly applicable to arbitrary problems in a fully observable
non-deterministic (FOND) planning context, nor does it employ PDDL syntax.
Instead, Tumato is a hands-on practical behavior planning tool that generates
robust, constraint-based policies for autonomous agents. The focus of this work
is on the formalization of its specification framework, rather than on Tumato
itself.

Tumato’s Specification Language Tumato employs a high-level declarative
specification language for modeling autonomous systems. This language allows
users to express system behavior in terms of states, actions, safety constraints,
and goals. Below, we outline the core constructs of the Tumato language, along
with examples to clarify their use.

States System states are defined using state variables, specifying all possible
configurations of the system and its environment:

state <StateVarName> can be <StateValue> [, <StateValue> ...]

Here, StateVarName represents the name of the state property, and StateValues
define its discrete possible values. For example:

state location can be pickup, dropoff, corridor

This definition specifies that the robot’s location can be one of three discrete
values: pickup, dropoff, or corridor.

Actions Actions define the operations the system can perform and are specified
as follows:



6 J. Vermaelen, T. Holvoet

action <ActionName>
[duration: <Cost>]
[controlled resources: <ActionResource> [, <ActionResource> ...]]
preconditions: [none | <Predicate> [, <Predicate> ...]]
nominal effects: [none | <Predicate> [, <Predicate> ...]]
[alternative effects: [none | <Predicate> [, <Predicate> ...]]];

The key components of an action are:
– <ActionName>: The name of the action being defined.
– Preconditions: Conditions (written as predicates) that must hold before

the action can be executed.
– Nominal Effects: Expected outcomes of the action under normal circum-

stances.
– Alternative Effects: (Zero or more) less desirable and less likely but pos-

sible deviations from the nominal effects.

Additionally, controlled resources can be specified, preventing two actions
from executing simultaneously if they require the same resource. The optional
duration parameter is used exclusively for prioritizing safety restoration actions:
when safety must be restored, actions with shorter durations are prioritized. If
safety is not violated, the duration parameter is ignored.

For example, a pickup action might be defined as:

action pickup
preconditions: location is pickup
nominal effects: object_status is loaded
alternative effects: object_status is free

This action requires the robot to be at the pickup location (preconditions)
and results in the object being loaded (nominal effects) or failing to load
(alternative effects).

Safety Rules Safety rules in Tumato ensure that the system maintains or restores
safety. Rules are defined using the following syntax:

rule: <Predicate>

Tumato supports two types of rules:
– Reaction Rules: These enforce immediate actions or prohibit actions under

specific conditions. They are expressed in the following form:
rule: IF <condition> THEN [NOT] executing <action>

This rule specifies reactive behavior triggered by the given condition.
– State Rules: These define conditions that must hold across all state-action

outcomes. They are expressed in the following form:
rule: IF <condition> THEN <other condition>

State rules specify safety constraints that must hold in the next state, after
the effects of the action have taken place.



LTL Semantics for Tumato 7

Goals Goals specify the desired states or conditions the system must achieve.
Tumato supports both unconditional and conditional goals:

goal: <goal condition> // unconditional
when <condition> then goal: <goal condition> // conditional

In the second case, the goal is pursued only while the condition holds.

Maximum Plan Length The maximum plan length is specified using:

max_plan_length: <value>

This parameter sets an upper bound on the number of steps considered during
offline planning. By limiting the plan length, Tumato ensures computational
feasibility while still focusing on generating effective plans.

Core Features of Tumato Tumato’s offline policy generation process elim-
inates the need for real-time re-planning during execution. This precomputed
approach guarantees stable and predictable behavior, which is especially impor-
tant in safety-critical environments. As described, the system specifications are
transformed into constraints that are solved by a constraint solver. This ensures:

– Completeness: Every possible state has an associated action or set of ac-
tions.

– Soundness: No unsafe (or resource-conflicting) actions are executed, adher-
ing to all specified safety rules, while the goals are pursued.

– Robustness: The system accounts for non-deterministic outcomes by con-
sidering both nominal and alternative effects of actions.

Tumato’s declarative approach simplifies system modeling by abstracting
procedural details. Users can modify high-level constraints as needed, and Tu-
mato automatically regenerates the corresponding policy. This flexibility makes
Tumato suitable for evolving system requirements.

Another key strength is Tumato’s handling of non-deterministic action out-
comes. Actions are modeled with both nominal and alternative effects to account
for possible deviations. For example, a robot tasked with moving to a location
might encounter obstacles or actuator malfunctions, resulting in delays or fail-
ures. Tumato considers such foreseeable alternatives during planning, ensuring
that the policy remains safe. The completeness of the policy ensures that, re-
gardless of the outcomes of actions, the system can keep progressing toward its
goals.

By combining offline policy generation, a declarative specification language,
and a robust constraint-based backbone, Tumato provides a comprehensive solu-
tion for generating safe, goal-oriented policies for autonomous systems operating
in uncertain environments.

Further details on Tumato’s capabilities (and a case study) can be found
in [8].



8 J. Vermaelen, T. Holvoet

3 Mapping Tumato to LTL and CTL

We use LTL (and CTL) to formalize the semantics of Tumato’s specification
constructs. While these logics provide a way to reason about the behavior, they
can not capture the decision-making process. They are suited for specifying
properties over paths of states (and actions) during execution. By translating
elements of a Tumato specification into LTL, we enable formal reasoning about
the properties of the generated policy.

The completeness of Tumato’s generated policy refers to the existence of a
set of actions for every possible state—unless explicitly assumed otherwise in
the specification. This completeness can be trivially verified since each state is
guaranteed to have a corresponding state-action mapping generated by Tumato.

The specification of a maximum plan length in Tumato contains a parameter
that guides the offline planning process, defining the execution horizon over
which the planning system reasons. However, this does not constrain the infinite
execution traces of the policy at runtime.

Using LTL formulas for state transitions, goals, and safety, Tumato policies
can be verified to be sound, as claimed by the tool. The entries in a policy can
also be represented using LTL as:

G(s → a),

meaning that in a state s, action(s) a is (are) executed. In turn, potential state
transitions resulting from actions can be expressed as

G((s1 ∧ a) → X(s2a1 ∨ s2a2 ∨ . . .)),

where s2a1, s2a2, . . . represent all possible individual next states after execut-
ing action a in s1. More details about the effects of actions can be found in
Section 3.1.

3.1 Modeling Actions

In Tumato, actions are associated with preconditions and effects that can be
mapped into LTL.

Preconditions Preconditions specify conditions that must hold before an ac-
tion can be executed. If an action a1 has preconditions c1, c2, . . ., they can be
represented in LTL as:

G(a1 → (c1 ∧ c2 ∧ . . .)).

This ensures that action a1 is only taken when its preconditions are satisfied.



LTL Semantics for Tumato 9

Resource Constraints In Tumato, actions that use the same resources are
mutually exclusive. LTL can also enforce that no two actions with overlapping
resource needs execute simultaneously. For a pair of actions ai and aj (with
i ̸= j) that require the same resource, mutual exclusion is expressed as:

G(ai → ¬aj), or equivalently G¬(ai ∧ aj).

This guarantees that resources can be allocated without conflict.

Effects of Actions Effects describe the outcomes of executing an action. The
resulting next state depends on the effects of the action(s)—executed in a specific
state.

In an idealized setting (without external interference and no intermediary
states), we assume that executing an action a leads directly to its nominal effect
effectnom in the next state. This idealized effect can be expressed in LTL as:

G(a → X(effectnom)).

In realistic settings, action outcomes are often non-deterministic, meaning
that an action a may lead to one of several possible effects effectnom, effectalt1,
effectalt2, . . .. To model this uncertainty, we can express that one of these effects
will eventually occur if the action is executed:

G(a → F (effectnom ∨ effectalt1 ∨ effectalt2 ∨ . . .)).

However, this formulation assumes that the effects occur regardless of whether
the action continues to be executed, which may not always be accurate.

A more realistic formulation incorporates the condition that the effects only
occur as long as the action a is being executed. This relationship can be captured
as:

G(a → (a U (effectnom ∨ effectalt1 ∨ effectalt2 ∨ . . . ∨ ¬a))).

This formula states that while a is being executed, it must continue until one of
its effects occurs, unless a is stopped.

Further, Tumato addresses the frame problem implicitly. While we do not
represent this in LTL, it is assumed that any state variables not affected by an
action’s outcome remain unchanged. In Tumato, all relevant variables are up-
dated explicitly in the effects of actions, and those not mentioned are understood
to persist by default.

If multiple actions are executed simultaneously, Tumato treats each action’s
effects as a distinct potential outcome.1 At runtime, the effects of one action
occur first, followed by an evaluation of the new state and corresponding actions.
When modeling in LTL, simultaneous actions can be modeled by a composite
action with all possible effects. However, in Tumato we should keep actions
separate to maintain the notion of bias toward nominal effects.
1 If actions directly interfere with each other, they should be modeled with shared

resources to prevent conflicts.



10 J. Vermaelen, T. Holvoet

Indeed, Tumato introduces a bias toward nominal outcomes, which represent
the expected result of actions, while alternatives model less likely deviations.
This bias is not probabilistic but semantic: Tumato assumes that if an action is
executed repeatedly, its nominal effect will occur. In logical terms, this reflects
a fairness assumption—namely, that the system is fair with respect to nominal
outcomes and does not indefinitely fail. The bias can not be expressed directly
in LTL.

3.2 Modeling Goals

Liveness properties in Tumato ensure that certain desirable states or conditions
will eventually be reached or maintained:

– Basic Goals: The simplest form of a goal in Tumato can be interpreted as
GFg, meaning that a goal condition g will eventually be reached and reoccur
(or be maintained) indefinitely. This is useful for specifying tasks that should
continue to be achieved, unconditionally.
Multiple goals can be conjoined using Tumato’s constraint goal option. The
conjunction of all goals gi for i = 1, 2, . . . , n is represented as g ↔ (g1 ∧ g2 ∧
. . . ∧ gn).

– Conditional and Prioritized Goals: Tumato enables more complex goal
structures, where goals are prioritized and active only under certain con-
ditions. These prioritized conditional goals can be represented in LTL as
follows:

G(c1 → (c1U(g1 ∨ ¬c1)))

G((c2 ∧ ¬c1) → ((c2 ∧ ¬c1)U(g2 ∨ ¬c2)))

. . .

G((cn ∧ ¬c1 ∧ ¬c2 ∧ . . . ∧ ¬cn−1) →

((cn ∧ ¬c1 ∧ ¬c2 ∧ . . . ∧ ¬cn−1)U(gn ∨ ¬cn))).

These formulas ensure that a goal gi is pursued when its corresponding
condition ci holds, provided no higher-priority goals (depending on their
order) are active under their respective conditions. This ensures that goals
are pursued in priority order when their conditions are met.

Under the fairness assumption (with respect to nominal outcomes), Tumato’s
planner synthesizes strong cyclic plans. Such plans guarantee that the goals will
eventually be reached from all states. The argument can be made by contradic-
tion: assume there exists an infinite execution where the goal is never reached.
Consider the closest state to the goal—according to some distance metric—that
is revisited infinitely often without progressing toward the goal. The planner as-
sociates each state with an action whose nominal effect moves closer to the goal.
Therefore, the only way to never reach the goal is if the nominal effects never
occur, which contradicts the fairness assumption. It follows that, under fairness,
the generated policy ensures goal reachability.



LTL Semantics for Tumato 11

3.3 Handling Safety

Safety constraints in Tumato take the form of either reaction rules or state rules:

– Reaction Rules: These are typically expressed as G(c → a), where c is
a condition under which action a should (or should not: G(c → ¬a)) be
executed. For example, if a robot detects an obstacle, it should execute a
braking action.

– State Rules: State rules push the constraint to the next state and are
used to specify conditions that must hold after state transitions. State rules
can be interpreted as GXb in LTL, where b represents a safe condition.
Whichever actions are executed, they should always lead to a state where a
safety constraint b holds.

When including potential alternative outcomes of actions, LTL theoretically
falls short, as it can not reason about different possible futures or guarantee
safety across all outcomes. Branching-time logic, such as CTL, may be more
suitable, as it can express properties over different possible execution paths.
For example, A(GXb) specifies that b must always hold for all possible next out-
comes, ensuring safety across all paths. While LTL cannot fully express Tumato’s
bias toward nominal outcomes or its handling of safety regarding potential al-
ternative outcomes, it does still provide a foundational framework for reasoning
about Tumato’s (safety) semantics.

4 Case Study: a Mobile Pick-and-place Robot

In this case study, we examine a pick-and-place robot tasked with moving objects
from a pickup location to a drop-off location. The robot operates in a well-defined
environment with a corridor between the two locations, and it must adhere
to specific safety and liveness requirements. This example highlights Tumato’s
semantics, expressed in LTL, and its approach to generating robust policies.
These policies ensure safety across all potential action outcomes while achieving
liveness goals.

4.1 Model in LTL

To express this system in LTL, we define atomic propositions representing actions
and states:

Actions:

– pickup: object pickup action (precondition: at pickup location),
– drop_off : object unload action (precondition: at drop-off location),
– move_to_a: move to pickup location,
– move_to_b: move to drop-off location,
– secure: secure object if one is present on the robot,
– release: release (or unsecure) the secured object, if any.



12 J. Vermaelen, T. Holvoet

States:

– a: robot is at the pickup location,
– b: robot is at the drop-off location,
– c: robot is in between locations, in the corridor,
– obj: an object is present on the robot,
– sec: the object on the robot is secured for transport,
– bat: the battery level is in range for normal operation.

Please note that a, b, and c are mutually exclusive. The robot will always be at
one (and only one) of those locations.

These propositions enable us to formalize both liveness properties—ensuring
transport goals are reached—and safety properties—ensuring objects are secured
before transport.

The robot’s states and actions (state transitions) can be represented in an
automaton, see Figure 1, including nominal and alternative outcomes. The tran-
sitions show the non-deterministic nature of actions, where the robot cannot
predict which outcome will occur at runtime but ensures safety regardless of the
result. Battery levels have been omitted in this overview for readability. Please
note, the action move_to_b (moving to the drop-off location) could be exe-
cuted after pickup and before secure as moving has no preconditions. Since (one
outcome of) this action is not safe—see later in this section—it has not been
included in the figure. Similarly, moving to a workstation without (un)loading
first does not progress the system and is not included—although again, possible.

For goal-oriented planning, Tumato assumes nominal outcomes of actions
over the far less likely and less desirable alternative ones. When guaranteeing
safety, however, also the alternative outcomes are considered. Tumato’s policies
ensure that actions exist for all states, enabling continuous operation without
the need for runtime decision-making.

Action Preconditions For some actions, certain preconditions must be sat-
isfied to ensure appropriate execution. For instance, the robot must be at the
pickup location before it can execute the pickup action. In LTL, we can enforce
this precondition by requiring that the action only occurs when the robot is
indeed at the pickup location:

G(pickup → a)

This formula states that pickup implies a (the robot being at the pickup loca-
tion), ensuring that the action pickup can only occur when a is true.

Robust Operation To ensure robust operation, the robot must handle poten-
tial failures, requiring retries of actions when necessary. For example, if the robot
attempts to pick up an object, the object may occasionally fall back down. To
handle such failures, one can include robustness in that the robot will persist in
attempting the pickup action until it succeeds.



LTL Semantics for Tumato 13

a,¬b,¬c,¬obj,¬sec ¬a, b,¬c,¬obj,¬sec

¬a,¬b, c,¬obj,¬sec

a,¬b,¬c, obj,¬sec

a,¬b,¬c, obj, sec

¬a,¬b, c, obj, sec

¬a, b,¬c, obj, sec

¬a, b,¬c, obj,¬sec

move_to_a_N

move_to_a_Amove_to_a_N

move_to_a_A

pickup_N

secure

move_to_b_N

move_to_b_A

move_to_b_A

move_to_b_N

release

drop_off

pickup_A

Fig. 1. An automaton showing the state transitions, visualizing both nominal and
alternative effects of actions as <action>_N and <action>_A respectively

Using LTL, we define this as follows:

pickupU obj

This expression denotes that the robot will continue attempting the pickup ac-
tion pickup until the object is successfully loaded onto the robot, indicated by
obj.

Tumato’s policy structure inherently guarantees robustness by ensuring that
each state has associated actions. This ensures the system can retry failed actions
or correct deviations caused by unintended action outcomes, without additional
runtime decision-making.

Liveness Properties The robot is expected to continuously fulfill its objective
of picking up and delivering objects, represented in LTL by goals that must be
repeatedly achieved.

General Liveness of Pickup and Delivery: G(Fpickup) denotes that the robot
will always eventually pick up an object. Similarly, G(Fdrop_off) denotes that
the robot will always eventually deliver an object.

Refined Liveness Properties: Using conditions to define when specific goals must
be met:



14 J. Vermaelen, T. Holvoet

– If the robot is not currently carrying an object, it should obtain an object.
We use "conditionU goal" rather than "F goal" to emphasize a required
continuous condition:

G(¬obj → (¬obj U obj)).

– If the robot has an object loaded, it should eventually unload it:

G(obj → (obj U ¬obj)).

After also including the battery level:

G((¬obj ∧ bat) → ((¬obj ∧ bat)U (obj ∨ ¬bat))),

G((obj ∧ bat) → ((obj ∧ bat)U (¬obj ∨ ¬bat))),
G(¬bat → (¬bat U bat)).

These formulas ensure the robot continuously attempts to pick up and deliver
objects while prioritizing battery constraints and hence charging.

Safety Properties The safety requirements aim to prevent the robot from
entering unsafe states, such as moving (in the corridor) with an unsecured object.
Most practically, with a procedural mindset, we write:

G(obj → ((secure ∨ sec)U drop_off))

where we have to assume that securing happens instantly since moving is not
prohibited.

In practice, however, actions do not effectuate instantly. Furthermore, unlike
in this secure example, action outcomes are seldom purely deterministic, making
it necessary to include robustness to account for these potential failures or delays.

To more directly address this safety property, we can require the robot to
explicitly (successfully) secure any object before movement is permitted. This
can be captured as:

G((obj ∧ ¬sec) → X(secR¬c)).

Or more generally applicable, reflecting Tumato’s state rules, if an object is
present but not secured, the robot is not allowed to be in the corridor:

G(X((obj ∧ ¬sec) → ¬c))

4.2 Enabling Policy Verification

The derived LTL formulas provide the necessary elements to formally reason
about state transitions, goal satisfaction, and safety constraints in Tumato’s
policies. In principle, model-checking techniques could be employed to verify
that Tumato’s policies comply with specified safety and liveness properties.

However, explicit verification is unnecessary as Tumato’s constraint-solving
approach inherently guarantees compliance with these properties by construc-
tion. The policy generation process ensures:



LTL Semantics for Tumato 15

– All specified constraints are enforced, ensuring soundness.
– All reachable states have corresponding actions, ensuring completeness.
– Robustness is achieved through precomputed policies that account for non-

deterministic outcomes.

Nonetheless, the formalization provided here enables verification if needed
for specific cases or additional validation.

By addressing safety and liveness requirements while accounting for non-
deterministic outcomes, Tumato effectively tackles key challenges in generating
reliable policies for autonomous systems. These contributions also align with
broader challenges in multi-agent engineering, particularly for systems deployed
under real-world uncertainties.

5 Discussion

The mapping of Tumato’s specifications into LTL highlights its contribution to
generating sound and robust policies for autonomous systems. This formalization
reveals how Tumato aligns with key safety and liveness properties while manag-
ing uncertainties, offering valuable insights for engineering intelligent agents.

Tumato’s policy generation relies on constraint-solving to meet safety and
goal requirements by construction. It ensures policies are sound, adhering to
safety rules, and complete, covering all possible states. This inherent reliability
guarantees that the generated policies align with specifications whose semantics
can be appreciated through LTL, eliminating the need for (runtime) verification.
The approach is particularly effective in environments where action outcomes are
non-deterministic.

The offline nature of Tumato’s policy generation eliminates the need for dy-
namic, on-the-fly planning. By pre-computing policies that address all reach-
able states, all contingencies are accounted for. This avoids reliance on ad-hoc
re-planning, which poses challenges in real-world environments and distributed
settings. As such, Tumato is particularly advantageous for applications where
safety guarantees are critical, such as autonomous robotics.

The alignment of Tumato’s policies with the safety and liveness properties
expressed in LTL is observed. Safety properties, such as ensuring that objects
are secured before transport, map directly to constraints that must always hold.
Similarly, liveness properties, such as continuous pickup and delivery of objects,
are represented as recurring goals within Tumato. This connection underscores
Tumato’s suitability for systems requiring operational guarantees.

LTL provides a solid foundation for specifying safety and liveness proper-
ties. In this work, it was used to provide the semantics of Tumato’s specification
constructs. However, LTL can not represent the explicit accounting for alterna-
tive effects of actions in terms of safety nor the bias toward nominal outcomes.
Also, the approach of restoring safety the most preferred way, based on a dura-
tion is outside LTL’s scope. These discrepancies are due to Tumato’s origin of
addressing practical needs in engineering (robotic) agents. Rather than focus-
ing on LTL’s expressiveness, Tumato employs a constraint-solving mechanism



16 J. Vermaelen, T. Holvoet

that directly integrates robustness into policy generation, ensuring safety even
when actions have multiple possible outcomes. The balance between formal logic
and practical needs sets Tumato apart from prior works, which often prioritize
theoretical guarantees over real-world applicability.

Tumato also differs from approaches based on probabilistic models, which
rely on accurate probabilistic information to guide decision-making. While these
models are mathematically powerful, they are challenging to apply in uncertain
environments where probabilities are difficult to estimate. By avoiding such de-
pendencies, Tumato ensures greater reliability in dynamic and non-deterministic
scenarios.

6 Conclusion

This work formalizes the semantics of Tumato’s constraint-based planning frame-
work using LTL. We investigated the specification used to generate sound, com-
plete, and robust policies for autonomous systems by satisfying safety and live-
ness requirements. The obtained semantics form a structured way to inter-
pret Tumato’s specifications and understand its guarantees, particularly in non-
deterministic and safety-critical settings.

Tumato’s focus on nominal outcomes, while accounting for other contingen-
cies, provides a practical solution for real-world applications. Although LTL can-
not fully capture every aspect of Tumato’s safety handling, it provides a valuable
framework for understanding specifications and verifying policies. By combining
explicit robustness with pre-computed, complete policies that eliminate runtime
checks, Tumato effectively balances theoretical rigor with practical applicability,
making it highly effective for engineering safe and robust autonomous (robotic)
systems.

Future work should investigate Tumato’s capabilities regarding dynamic goal
assignment and explicit support for multi-agent collaboration, which would en-
hance its utility in evolving tasks and cooperative planning. Additionally, the
use of machine learning techniques could be explored to assist users in ade-
quately representing real-world systems without relying on probabilistic models.
Furthermore, prioritizing safety rules could enable Tumato to weigh more criti-
cal constraints more heavily when resolving unsafe situations. Finally, exploring
the possibility of temporarily allowing (transient) less safe states before fully
restoring safety could expand Tumato’s flexibility in highly constrained envi-
ronments. This trade-off must be carefully examined to ensure alignment with
safety-critical requirements. Such advancements would broaden Tumato’s appli-
cability and contribute to ongoing efforts to engineer intelligent agents capable
of operating in complex, real-world scenarios.

Acknowledgments. This research is partially funded by the Research Fund KU Leu-
ven.

Throughout this work, the authors used Grammarly and, to a lesser extent, Chat-
GPT for grammar and readability improvements. All edits were reviewed and refined
by the authors, who take full responsibility for the publication’s content.



LTL Semantics for Tumato 17

Disclosure of Interests. The authors have no competing interests to declare that
are relevant to the content of this article.

References

1. Baier, C., Katoen, J.P.: Principles of model checking. MIT press (2008)
2. Ding, X.C.D., Smith, S.L., Belta, C., Rus, D.: LTL control in uncertain environ-

ments with probabilistic satisfaction guarantees. IFAC Proceedings Volumes 44(1),
3515–3520 (2011)

3. Dinh, H.T., Cruz Torres, M.H., Holvoet, T.: Sound and com-
plete reactive UAV behavior using constraint programming (2017),
https://lirias.kuleuven.be/retrieve/470086

4. Fainekos, G.E., Kress-Gazit, H., Pappas, G.J.: Temporal logic motion planning
for mobile robots. In: Proceedings of the 2005 IEEE International Conference on
Robotics and Automation. pp. 2020–2025. IEEE (2005)

5. Luo, X., Zavlanos, M.M.: Temporal logic task allocation in heterogeneous multi-
robot systems. IEEE Transactions on Robotics 38(6), 3602–3621 (2022)

6. Tumova, J., Castro, L.I.R., Karaman, S., Frazzoli, E., Rus, D.: Minimum-violation
LTL planning with conflicting specifications. In: 2013 American Control Confer-
ence. pp. 200–205. IEEE (2013)

7. Tumova, J., Karaman, S., Belta, C., Rus, D.: Least-violating planning in road
networks from temporal logic specifications. In: 2016 ACM/IEEE 7th International
Conference on Cyber-Physical Systems (ICCPS). pp. 1–9. IEEE (2016)

8. Vermaelen, J., Holvoet, T.: Tumato 2.0-a constraint-based planning approach for
safe and robust robot behavior. Annals of Mathematics and Artificial Intelligence
pp. 1–27 (2024)

9. Vermaelen, J., Holvoet, T.: An empirical evaluation of a formal approach versus ad
hoc implementations in robot behavior planning. Science of Computer Program-
ming 241, 103226 (2025)

10. Wang, Y., Nalluri, S., Pajic, M.: Hyperproperties for robotics: Planning via Hy-
perLTL. In: 2020 IEEE International Conference on Robotics and Automation
(ICRA). pp. 8462–8468. IEEE (2020)

11. Xu, N., Li, J., Niu, Y., Shen, L.: An LTL-based motion and action dynamic plan-
ning method for autonomous robot. IFAC-PapersOnLine 49(5), 91–96 (2016)


