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Abstract. The literature that analyzes how neuroscience inspired AI,
and viceversa, mainly takes a machine learning point of view: however,
the connections between neuroscience findings and intelligent software
agents modeled after the Belief-Desire-Intention (BDI) architecture are
many, and deserve to be addressed and understood. In order to provide a
framework to our exploration, and make it more concrete, we introduce
the BDI-inspired MEDiTATe conceptual architecture encompassing the-
ory of Mind, Emotions, Deep TAlk, and small Talk.
MEDiTATe is intended as a principled means to analyze the connections
between neuroscience and BDI approaches in a systematic way, and to in-
teract with neuro-scientists by sharing a common terminological ground.
The contribution of this paper is indeed to survey the relevant scientific
literature and organize the findings of this review coherently with the
MEDiTATe conceptual architecture.
Nonetheless, most modules of MEDiTATe have been, or may be, imple-
mented using a well known framework for BDI agents, Jason. In this
sense, the possibility to move MEDiTATe from the conceptual level to
the practical one is backed up by existing software tools.
MEDiTATe features small talk and deep talk that we conjecture to be
related but distinct cognitive functions, each with its own purpose and
possibly dedicated different brain areas. We expect that MEDiTATe –
once fully developed – may support the study of these functions and of
their relations with other, better understood, cognitive processes, possi-
bly inspiring experiments by neuro-scientists to validate the hypothesis.
In fact, in our long-term vision, MEDiTATe should offer to computer
scientists and neuro-scientists a shared gym for experimenting models
and theories of brain functioning.

Keywords: MEDiTATe, Deep Talk, Small Talk, Neuroscience, Mind,
Emotions, Beliefs-Desires-Intentions, BDI, Cognitive Agents

1 Introduction

Since its conception in the mid-1950, Artificial Intelligence (AI) – envisioned by
John McCarthy as the science and engineering of making intelligent machines
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– was interconnect with sciences studying human intelligence from a biological,
functional, medical, and psychological perspective.

Even before the term AI was born, the studies carried out by McCulloch and
Pitts on artificial neural networks were directly rooted in neuroscience [64], and
Reinforcement Learning is inspired by animal learning psychology [94].

These examples show that, often, computer science and AI rely on discover-
ies by psychologists and neuroscientists. Some times, however, computer science
and AI anticipate discoveries made later on. One example is the idea that mem-
ory might consist of a fast access, short term component, and a slower access,
long term one. The cache computer memory, implementing this idea, was first
developed by Wilkes in 1965 [102], but systematic and coherent models of short
term and long term human memory appeared only later [92,6].

Finally, in some cases AI systems show unanticipated similarities with human
cognitive functions, suggesting that the exploration of how the AI system works
might lead to a better understanding of how the brain works [97].

Some reviews analyze how neuroscience inspired AI, and viceversa [47,54],
but – unfortunately, but not surprisingly – they mainly assume that artificial
intelligence is machine learning. In this review paper we complement those works
via a principled discussion of the connections between neuroscience findings and
intelligent software agents modeled after the Belief-Desire-Intention (BDI) archi-
tecture [79]. We limit our investigation to theory of mind, emotions and language,
and we envision MEDiTATe (theory of Mind, Emotions, Deep TAlk, and small
Talk) that extends the BDI architecture and provides a conceptual framework
for our investigation.

Two innovative elements characterize this paper. On the neuroscience side,
we consider small talk and deep talk as two distinct cognitive functions, pursuing
different goals. While this is rooted on psychological studies [5,88,56,66], we
formulate the hypothesis that – in the same way as different parts of the brain
are involved in fast and slow thinking [29], in short and long term memory, etc –
the brain’s areas specifically devoted to small talk and deep talk are different, and
this is reflected in the MEDiTATe architecture. On the Engineering Multiagent
Systems side, we envision that being based in solid scientific studies from both
computer science and neurosciences, MEDiTATe may represent the first step
towards the development of an effective playground for experimenting not only
sophisticated models of cognitive software agents and of their communication
mechanisms, but also theories on the brain functioning.

The MEDiTATe vision is grounded in recent scientific literature and has a
strong practical flavor: working prototypes of most of its components have been
– or might be – implemented in Jason [12], one very popular implementation of
the AgentSpeak(L) language [78] for programming BDI agents.

2 From BDI to Neuroscience

The work by Georgeff and Rao on BDI agents was inspired by the philosophical
studies on intentionality by Brentano [17], Dennet [33], Bratman [16]. To the
best of our knowledge, they did not directly take neuroscience findings into
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account. Nevertheless, generation and management of Beliefs, Desires, Goals,
Intentions, Plans, namely of the key components of the BDI architecture, are
brain functionalities, supported by specific areas in the brain.

In this section we make the connection between Beliefs, Desires, Goals, Inten-
tions, Plans and brain functionalities explicit: for each of them we discuss what it
serves for (its function), the major anatomical structures involved in the
brain, according to recent literature and accurate brain maps3, and one feasible
implementation in Jason . The Theory of Mind, Emotions, Deep and Small
Talk components are presented in Section 3, following the same schema.

2.1 Beliefs

Although the most immediate counterpart of Beliefs is memory, memory also
involves unconscious procedural information which has no “twin” in the BDI
architecture. Budson and Price’s [18] provide a clear introduction to human
memory by classifying memory systems in explicit (associated with conscious
awareness) and declarative (that can be consciously recalled), versus implicit
(associated with change in behavior) and nondeclarative (unconscious). They
also present four different kinds of memory: episodic, semantic, procedural, and
working.

Episodic Memory – Function: Episodic memory refers to the explicit and
declarative memory system used to recall personal experiences framed in our own
context. Major anatomical structures involved: Prefrontal cortex, medial
temporal lobes, anterior thalamic nucleus, mammillary body, fornix. Feasible
implementation in Jason: Beliefs with personal, long-term annotation.

Semantic Memory – Function: Semantic memory refers to our general store
of conceptual and factual knowledge not related to any specific memory. It is a
declarative and explicit memory system. Major anatomical structures in-
volved: Inferolateral temporal lobes. Feasible implementation in Jason:
Beliefs with factual, long-term annotation.

Procedural Memory – Function: Procedural memory refers to the ability to
learn behavioral and cognitive skills and algorithms that are used at an auto-
matic, unconscious level. Procedural memory is nondeclarative but during ac-
quisition may be either explicit or implicit. Major anatomical structures
involved: Basal ganglia, cerebellum, supplementary motor area. Feasible im-
plementation in Jason: No explicit and direct BDI twin exists for procedural
memory, as the BDI architecture does not integrate “cognitive skills used in an
automatic way”. However, in Jason internal actions may represent a feasible way
for the agent to run an algorithm “without thinking about it”, so in an “uncon-
scious”, “automatic” way. Jason internal actions are implemented in Java and
support is given, e.g., for binding of logical variables. This paves the way to
model (simulated, but also real, in principle) actions like “driving in a known
3 See for example https://dana.org/resources/neuroanatomy-the-basics/.

https://dana.org/resources/neuroanatomy-the-basics/
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road with light traffic”. What cannot be easily supported by Jason, w.r.t. human
procedural memory, is the ability to learn such internal actions, and to move
them from System 2 (deliberative, slow) to System 1 (unconscious, fast) [29].
We are not aware of proposals dealing with this capability in the BDI literature.

Working Memory – Function: Working memory is an explicit and declarative
memory system combining the fields of attention, concentration, and short-term
memory. It refers to the ability to temporarily maintain and manipulate informa-
tion that one needs to keep in mind. Major anatomical structures involved:
Prefrontal cortex, Broca’s area, Wernicke’s area (limited to phonologic working
memory). Feasible implementation in Jason: Beliefs with short-term an-
notation instead of long-term one.

2.2 Desires and Goals

Function: Pleasure serves to motivate individuals to pursue rewards necessary
for fitness, and rewards involve a composite of several psychological components:
liking (core reactions to hedonic impact), wanting (motivation process of incen-
tive salience), and learning (Pavlovian or instrumental associations and cognitive
representations) [10]. Intuitively, goals are usually states we want but have diffi-
culty achieving even when we know they are achievable. Discriminating between
desires and goals in neurobiology is difficult, as desires may be seen as one of
the two goals’ dimensions, the will, with the other dimension being the way [9].
Major anatomical structures involved: Prefrontal cortex. Feasible imple-
mentation in Jason: The support that Jason offers to representing goals and
to managing them during the agent’s reasoning cycle directly comes from the
AgentSpeak(L) operational semantics, and is described in the Jason related re-
sources. As far as liking is concerned, besides ad-hoc beliefs that model what
agents like and dislike, or annotations to beliefs, there is no directly supported
counterpart in Jason. We may consider preferences associated with goals, along
the lines of [22,23,24]. When learning comes into play, we may mention the recent
proposals to integrate Reinforcement Learning (RL) in Jason [7,8,100,13,76,72].
While the idea of injecting some RL into BDI agents dates back to the begin-
ning of the millennium [69,61,60,1,77,59,95], implementations in Jason became
available only recently.

2.3 Intentions and Plans

Function: Intentions operate at the interface of thought and action, translat-
ing cognitive states into detailed motor coordination. Jahanshahi [52] and Brass
and Haggard [15] suggests that intentions consist of a “what to do” component,
a decision “when to act”, and an inhibitory process (a “whether” element in
Brass and Haggard model). Apparently, plans should be easier to characterize
than intentions. Their behavioral and psychological intuition is clear, and their
computational counterpart is even clearer: a plan is a sequence of actions, and
planning is a process that considers actions and their sequential interdependence
in terms of the desirability of their outcomes. However, planning remains one
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of the most elusive cognitive processes at the neural level [63]. Major anatom-
ical structures involved: Prefrontal cortex. Feasible implementation in
Jason: Jason agents – coherently with AgentSpeak(L) – consist of a belief set
and a plan set; when relevant (namely, triggered by the current event selected by
the event selection function) and applicable (namely, characterized by a context
that is a logical consequence of the current beliefs) plans are selected for execu-
tion, they become intentions. Intentions are data structures used at runtime by
the Jason interpreter, and correspond to stacks of partially instantiated plans.
While structures named plans and intentions are already integrated in Jason,
no dynamic, first-principles planning is supported by design. However, both old
[32,99,91] and recent [65,104] proposals for extending the basic BDI model with
dynamic planning exist. Some of them target Jason or its JaCaMo extension [11]
as their implementation framework [20].

3 From Neuroscience to MEDiTATe

In this section, we focus on the “from neuroscience to MEDiTATe” direction by
looking at brain science outcomes that do not fit the original BDI architecture,
but that might be integrated into its MEDiTATe extension. The MEDiTATe
components, as well as a rough sketch of the input, output, and working inter-
preter, are shown in Figure 1. For all the MEDiTATe components we highlighted
their cognitive function (top), the brain areas involved (medium), and feasible
implementations in Jason (bottom), if available.

Fig. 1. MEDiTATe architecture.

3.1 Theory of Mind

Function: Theory of Mind (ToM) is the ability to reason about mental states,
such as beliefs, desires, and intentions, in order to explain and predict people’s
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behavior [3], and to plan how to behave in social situations [48].Neuroimaging
findings suggest that there are several core regions in the brain, including parts
of the prefrontal cortex and superior temporal sulcus, that contribute to ToM
reasoning [21]. Major anatomical structures involved: Prefrontal cortex,
superior temporal sulcus. Feasible implementation in Jason: The idea that
autonomous agents and robots need a ToM to engage into social interactions
with humans and among themselves is as old as the idea of agent itself [30,31],
and it is still objective of active research [90]. Many works explore how intelli-
gent agents may exhibit a ToM [81] and the BDI architecture is a very natural
framework for this investigation [46,14]. Various proofs of concept have been
developed in Jason or JaCaMo [87,71,19,28,67,89,105], often by annotating ex-
tensional beliefs or exploiting the Prolog intensional definition of beliefs with
abduction and other ToM-related rules. This suggests that an implementation
(or better, an approximation) of ToM in Jason is feasible.

3.2 Emotions

Function: Emotions play a myriad of roles at intrapersonal, interpersonal, and
social and cultural levels [82,49]. At the intrapersonal level, they prepare us for
behavior with minimal thinking [27] and associate memories with the emotions
experienced at those times the facts occurred, allowing us to create “emotional
connections” among disparate facts [101]. At the interpersonal level, they send
non verbal signals to others and influence others and our social interactions
[35]. Finally, the development and transmission of attitudes, values, beliefs, and
norms related to emotions, is part of cultural transmission and operates then
at the cultural level [62]. The brain areas devoted to managing emotions have
been studied for more than thirty years [57,58,82], with the amygdala playing a
major role in processing emotions and linking them to memories, learning, and
sensing, and – due to the complexity of emotions and of their relation with cogni-
tive processes – with many other central and peripherical areas involved. Major
anatomical structures involved: Amygdala, prefrontal cortex, orbitofrontal
cortex. Feasible implementation in Jason: Various extensions of the BDI
architecture and of its underpinning formal model have been proposed over the
last years, aimed at integrating emotions [73,75,93,4]. Sánchez and Cerezo’s sur-
vey is a good starting point for overviewing the literature on the topic [85]. Not
surprisingly, Jason is often used as a handy and flexible tool to experiment with
BDI emotional agents [96,2,25].

3.3 Deep and Small Talk

In this section we put forward the most visionary and unexplored component
on MEDiTATe, namely the one related with language, and we differentiate be-
tween talking deep, and talking small. We keep the distinction because it is very
relevant from a computational point of view, although – to the best of our knowl-
edge – no neurological studies have been specifically performed on localization
of these two functions. According to the Cambridge Dictionary, small talk is a
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conversation about things that are not important, often between people who do
not know each other well4. This is often used in contrasts with deep talk, meaning
a conversation involving increasingly greater self-disclosure5. The language area
involved in turning thoughts into words is Broca’s area, while Wernicke’s areas
is involved in language understanding and processing. The angular gyrus pro-
cesses concrete and abstract concepts and plays a role in verbal working memory
during retrieval of verbal information. While not all the scientists agree on the
localization of language functions [98], the Broca-Wernicke’s theory still holds a
dominant position in neurosciences [84].

Talk Deep – Function: While it is not always possible to engage into deep,
intimate and self-disclosing talk, recent experimental studies show that people
feel more connected to deep conversation partners than shallow conversation
partners [56,66]. Deep talk may strengthen social connections, besides leaving
lasting memories [26]. Major anatomical structure involved. Not explored;
we name it “TalkDeep area”. Feasible implementation in Jason: The liter-
ature on BDI implementations of conversational agents and dialogue systems is
almost rich [103,68,34,50], but just a few recent papers use Jason as implementa-
tion language. In a set of papers published between 2021 and 2023 [38,37,36,39],
Engelmann et al. present Dial4JaCa. Dial4JaCa integrates JaCaMo and Di-
alogflow [44], an intent-based chatbot platform developed by Google. VEsNA
[42] exploits Dial4JaCa to bridge a human user speaking in natural language,
and a Virtual Reality (VR) environment. We mention these works here, because
they exploit a chatbot platform driven by the recognition of “intents” of the user,
and keep the control of the conversation on the Jason side: “what to say, why,
and when” is the result of a Jason-driven rational process based on the users
intentions, that we associate with deep thinking. Our AAMAS 2025 work on
ChatBDI [43] provides an integration of BDI agents and LLMs that may serve
as talk deep in its default implemented setting, where sentences by the human
user are sent to agents for reasoning, and answers are sent to LLMs for being
properly expressed in natural language. The reasoning stage might be however
bypassed, for a talk small conversation. The current version of ChatBDI available
at https://github.com/VEsNA-ToolKit/chatbdi is implemented using Jason,
JaCaMo, Nomic-embed-text [70], and CodeGemma [106]. KQML [40], is used
as intermediate language between agents and LLMs. ChatBDI ‘chattifies’ BDI
agents by equipping them with LLM-based ‘language actuators’. The work by
Frering et al. [41] is similar to ChatBDI, but lacks its generality.

Talk Small – Function: Experiments from psychologists, sociologists and neu-
roscientists show that small talk with “weak ties” generates well-being [5,88,86].
Major anatomical structure involved. Not explored; we name it “TalkSmall
area”. Feasible implementation in Jason: In the Generative AI and Large

4 https://dictionary.cambridge.org/dictionary/english/small-talk.
5 https://www.linkedin.com/pulse/why-deep-meaningful-conversations-impor-
tant-ray-williams-mpjbc/.

https://github.com/VEsNA-ToolKit/chatbdi
https://dictionary.cambridge.org/dictionary/english/small-talk
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Language Models era, our vision of talking small is “talking as an LLM would
talk”. While this does not mean that an interaction with an LLM always looks
like being shallow, or “chit-chat”, LLMs are not reasoners [55], and are not even
speakers because they lack goals and intentions [45,74,83]. We claim that not
being intention-driven speakers prevents LLMs from talking deep. Still, they
generate very fluent and believable sentences, making them suitable for talk-
ing small. Hence, a feasible Jason implementation would integrate LLM-based
generation of sentences as actions that agents may perform without needing to
“reason on what to say” and, most importantly, without needing to recall the
contents of the conversation. A restricted version of ChatBDI, let us name it
ChatBDI−, may serve this purpose, if we just suppress the delivery of user mes-
sages to the BDI brain, and we only use the BDI infrastructure to interface
users and LLMs, inside a MAS. It can be however used for a double purpose,
switching between talking deep and talking small depending on the classifica-
tion of the user’s sentence as ‘serious’ or ‘chit-chat’. Besides ChatBDI, in [51],
Ichida et al. exploit LLMs and reinforcement learning to bootstrap the reasoning
capabilities of NatBDI agents, which is not what we need. In [80], Ricci et al.
envision generative BDI architectures, namely architectures based on the BDI
model integrating generative AI technologies, but no implemented integration in
Jason is available.

4 Conclusions

Albeit just sketched, all the MEDiTATe modules shown in Figure 1 are rooted
on neuro-scientific or agent-oriented literature; however, the main challenge in
implementing MEDiTATe is not in the implementation of its components, but
in fully understanding their connections (on the neuro-scientific side) and in
seamlessly integrating them (from the agent-oriented software engineering side).
As the title of the paper says, this is a first step in the journey of bridging
neuroscience outcomes and achievements in the BDI research field. A first – even
small – step is always needed to start a journey and, to the best of our knowledge,
no systematic analysis of the BDI and neuro-scientific literature had been carried
out so far. While accommodating results from neuroscience into the MEDiTATe
conceptual framework, we aimed at achieving two different goals: making the
MEDiTATe vision more coherent, and looking for gaps in the neuro-scientific
literature, where some implemented tools exist that have no counter-part in the
brain. This is what happened with deep and small talk.

Despite the many open challenges, we believe that MEDiTATe may repre-
sent a framework where achievements from experts in different disciplins can
find a natural positioning, and may offer a more controllable, explainable, and
transparent approach for testing those hypotheses than emerging in silico exper-
imentation using deep learning-based encoding models [53].
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