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Abstract. The rapid growth of the language agent field, driven by ad-
vances in Large Language Models (LLMs), has led to agent designs that
often rely on ad hoc methods. This lack of structure makes it challeng-
ing to understand, compare, reuse, and evolve these agents effectively,
highlighting the need for a standardized framework to describe their
architectures. This paper introduces FALAA (Framework for the Abstrac-
tion of Language Agent Architectures), a dual-level specification frame-
work aimed at addressing these challenges by proposing a standardized
structure and a description methodology that abstracts and describe
LLM-based agent architectures using six essential components: Planner,
Executor, Evaluator, Reflector, Memory, and Environment. Using this
proposed structure, FALAA leverages UML (Unified Modeling Language)
and OCL (Object Constraint Language) to provide a description method-
ology composed by two levels: a (1) conceptual description level, which
visually represents the standardized components and behaviors of lan-
guage agents through UML class and sequence diagrams, and a (2) formal
specification level, which employs OCL to define invariants, conditions,
and complex behaviors beyond UML’s expressive capacity. By establish-
ing a clear convention for the structure and responsibilities of essential
agent’s components hence along with a standardized description method-
ology, FALAA aims to eliminate ambiguity and ensure a reusable, unified
standard for agent architectures. This framework pursue the goal of im-
proved clarity, consistency, and precision in describing language agents,
thereby supporting better comparison, evaluation, and development of
LLM-based agents. The proposed approach is exemplified through a prac-
tical example and case studies, demonstrating its effectiveness in repre-
senting agent behaviors and architectures.

Keywords: Language Agents · Large Language Models · Framework ·
UML · OCL · Agent Architecture · Formal Specification.

1 Introduction

Language agents constitute a category of autonomous intelligent agents built
upon large language models (LLMs), and are defined by their capacity to per-
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ceive, act, reason, learn, and memorize [1,3,8]. The development of advanced
models such as GPT-4 [6] and LLaMA [12] has positioned these agents as ef-
fective solutions for complex tasks, offering a viable alternative to traditional
task-specific fine-tuned models [2]. By exploiting the reasoning capabilities and
general knowledge embedded in LLMs, they achieve robust performance in di-
verse tasks through mechanisms such as in-context learning and instruction tun-
ing, which enable generalization without parameter adjustment. As a result, the
field is rapidly evolving, with new architectures emerging continuously to har-
ness the growing potential of these models [2].

The recent emergence of the LLM field, combined with the accelerated de-
velopment of new language agent architectures, has resulted in their design and
implementation being largely ad hoc, without adherence to any general or stan-
dardized methodology [2]. Consequently, each researcher typically defines an
agent’s behavior using a mixture of natural language, mathematical notation,
pseudocode, explicit code, and diagrams [10,17,13].

However, the use of natural language to describe constraints and behaviors
often introduces ambiguities, hindering a precise understanding of a language
agent’s internal mechanisms [5,18]. This lack of clarity becomes particularly
critical when selecting or comparing agents for specific tasks, as each archi-
tecture exhibits unique strengths and limitations. In the absence of a standard
framework, users are forced to interpret and re-implement agent behaviors from
scratch, increasing development time and reducing component reusability [2].

Ultimately, the core issue lies in the absence of a standardized structure
and shared terminology for describing language agent architectures. This gap
restricts comprehension, complicates development and scalability, and hinders
effective comparison and reuse of agent designs.

Fig. 1: Glimpse of the essential components and
levels of the methodology proposed by FALAA.

To address this prob-
lem, several works [1,11,2,14]
have proposed frameworks for
describing language model-
based agents, often focus-
ing on internal functionali-
ties or formal specifications.
However, these efforts still
fall short in fully resolving
ambiguities related to termi-
nology, component organiza-
tion, and structural represen-
tation—gaps that motivate the framework proposed in this work.
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As a result, we introduce FALAA: a Framework for the Abstraction of Lan-
guage Agent Architectures. As illustrated in Figure 1, FALAA establishes a stan-
dardized structure that abstracts LLM-based agent architectures into six es-
sential components: Planner, Executor, Evaluator, Reflector, Memory, and
Environment. Following the approach of [11], the memory component is further
subdivided into four types: Short-term memory and the long-term memories
Semantic, Episodic, and Procedural.

Furthermore, to classify the actions performed by the internal components
of a language agent, FALAA decomposes the action space into three categories
of internal actions—Learning, Reasoning, and Retrieval—and one category of
external actions, referred to as Grounding actions.

In order to provide a guide, FALAA gives a methodology to describe the archi-
tecture and behavior of a language agent, which is composed of two description
levels: a visual-conceptual abstraction level where the components and behavior
of the agent are described using UML class and sequence diagrams, and a for-
mal specification level which employs OCL to define invariants, conditions, and
complex behaviors beyond UML’s expressive capacity, aimed to avoid, as far as
possible, the dependency to a natural language description.

Our Contributions are summarized as follows: We present a new, general
structure and terminology for describing language agents in a clear and unam-
biguous way, based on a set of components aligned with the capabilities these
agents should possess. Furthermore, we propose a methodology for describing
language agents using our proposed convention, aiming to avoid ambiguities and
clearly outline their behavior and structure by leveraging two well-established
tools: UML and OCL.

This paper is structured as follows. Section 2 presents frameworks that pro-
pose approaches that address current difficulties in characterizing language agents.
Section 3 describes FALAA, explaining each essential component and present the
proposed methodology for describing agents at a visual-conceptual and formal
specification. In section 4, we use Reflexion [10] and Retroformer [17] as case
studies because of their similarities and differences between their architectures.
Each language agent is briefly described, followed by some ambiguities addressed
by describing them using FALAA. Then, a brief comparison between these formal-
ized architectures is presented. Finally, section 5 summarizes the performance of
FALAA and presents possible improvements and future work.

2 Related Work

The idea of having a standard framework for the formalization and explanation of
the behavior of language agents is not new. In the literature, various approaches
have been proposed, ranging from the abstraction of agent’s components based
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on their internal functionalities to representing language agents as finite state
machines.

2.1 Frameworks for Agent-based Language Models Based on
Internal Functionalities

Given the proliferation of new language agent architectures, several studies have
proposed frameworks that describe their composition based on internal function-
alities. For instance, [1] identifies essential components such as planning, mem-
ory, rethinking, execution, tool usage, and different interaction environments. In
a similar vein, [14] introduces a modular model with specific roles: the profile
module, memory module, planning module, and action module.

Other approaches adopt cognitive architecture principles, incorporating el-
ements inspired by human reasoning. The CoALA framework [11], for example,
organizes agents around three axes: a memory system (with short-term and var-
ious long-term memories), an internal and external action space, and a decision-
making process encompassing planning and execution. Likewise, [16] presents a
framework based on three functional areas: the Brain (which includes the LLM
and manages reasoning, memory, and actions), the Perception module (which
translates sensory input into LLM-interpretable data), and the Action module
(which performs decisions via text generation, tool usage, or physical interac-
tion).

These frameworks contribute significantly to defining a standard structure
for language agents by identifying core functionalities and modular divisions.
However, despite these advances, previous frameworks do not fully address the
ambiguities that arise when describing agent architectures. Their focus remains
on functional decomposition rather than on providing an unambiguous, intu-
itive, and visual representation that facilitates the comparison and evaluation of
different agents. In contrast, FALAA aims to fill this gap by offering not only a
standardized structure and terminology, but a formal, visual, and standardized
way to describe and analyze language agent architectures.

2.2 Linear Temporal Logic (LTL) for Agent-based Language Models
Descriptions

To address the lack of standardization in the structure of language agents, [2]
proposes a declarative framework that formally specifies high-level agent behav-
ior. The authors point out that many architectures are designed in an ad hoc
manner, which complicates performance comparison across tasks. They also note
that describing agents directly through code often leads to rigid behavior, lim-
iting the flexibility of LLMs in selecting optimal actions.

Their framework is structured around three modules: a text generator, a de-
coding monitor, and a correction module. The agent begins in an initial state s0,
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which is passed to the text generator. This module produces outputs either from
the LLM or its environment, which are then validated by the decoding monitor.
The monitor verifies whether the generated output satisfies a logical specification
expressed in Linear Temporal Logic (LTL) and Lisp-style S-expressions. If the
expected state send is reached, the process concludes; otherwise, the correction
module modifies the output to align it with the specification and reintroduces it
into the generation cycle.

While this proposal contributes to reducing ambiguity through formal spec-
ification, its generality limits its ability to represent key architectural features
of certain agents. For instance, elements like long-term memory in agents such
as Reflexion, which plays a central role in storing internal reflections, are not
explicitly modeled when using this framework. In contrast, the approach pro-
posed in this thesis seeks to offer a visual and structural formalization capable
of capturing such architectural distinctions.

In summary, FALAA aims to address these problems by proposing not only a
standard terminology and responsibilities for the components of a language agent
but also offering a guide for describing these agent’s components and behavior
through the explicit use of UML Class and Sequence diagrams, accompanied by
formal specifications using OCL to avoid ambiguities in critical areas.

3 FALAA: Framework for the abstraction of language
agents architectures

In the current section, we first define the essential components of a language
agent´s architecture proposed by FALAA, including the classification of the both
internal and external action space of the agent, which will established a common
structure for the description of LLM-based agents. Finally, we will characterize
the methodology given by FALAA to describe the architecture and behavior of
a language agent under the standard proposed, which is composed by two de-
scription levels: a conceptual and visual description level using UML Class and
Sequence diagrams, and a formal specification level throw OCL.

3.1 Essential components of a language agent

FALAA defines a set of essential components inspired by the work of [1], which
characterizes language agents as entities composed of planning, memory, reflec-
tion, execution, tool usage, and interaction environments. Building on this char-
acterization, the proposed framework encapsulates the structure of LLM-based
agents into six core components: Planner, Executor, Evaluator, Environment,
Reflector, and Memory. Both the action space and the agent’s memory are inter-
nally classified following the structure proposed in [11], which distinguishes four
memory types—short-term, episodic, semantic, and procedural—as well as
four action categories: grounding, reasoning, retrieval, and learning. While the
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framework allows for the inclusion of additional components when necessary to
model specific behaviors, these should not override the core responsibilities as-
signed to the essential components.

The selection of these components is grounded in both common patterns
observed across existing language agent architectures and the broader definition
of LLM-based agents as autonomous entities that interact with and act upon an
environment, make decisions, learn, reason, and maintain memory [9,4,15].

Action space. It is defined as the set of actions a language agent can execute
both externally in an environment and internally within the agent itself. Drawing
inspiration from the work of [11], the actions in this space are classified as:

– Grounding: External actions to interact with the environment.
– Reasoning: Internal actions to reason and generate new information from

short-term memory.
– Retrieval: Internal actions to retrieve relevant information from long-term

memories into short-term memory.
– Learning: Internal actions to learn from past experiences, updating long-

term memories.

Memory. Stores and provides access to information relevant to the agent. Ref-
erencing the proposal by [11], it is divided into:

– Short-term memory: Stores immediate-use information (current state,
problem, proposed action). In implementations, this abstraction is some-
times represented as local variables in the code.

– Episodic memory: Records past experiences (actions, completed/failed
tasks).

– Semantic memory: Contains knowledge and reflections for decision-making
(summaries, learnings).

– Procedural memory: It abstracts the information used to execute actions
or guide the agent’s behavior. It stores two types of information: implicit and
explicit. The implicit information stored in procedural memory refers to
data such as that stored in the parameters of a large language model, which
are not explicitly presented. Explicit information ranges from instructions for
a given LLM, the external action space allowed by the environment, or even
new skills acquired by the agent over time. A difference from the definition
by [11] is that codes and functions that produce actions (described in the
action space) are not considered part of procedural memory in this work;
instead, these methods themselves are considered part of the agent’s internal
action space.

Both semantic, episodic and procedural memory must contain methods
that allow for as many retrieval actions as necessary to provide their stored
information.
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Planner. Uses an LLM to reason about a problem and generate an action
plan. It employs prompting techniques —such as Chain of Thought or ReAct—
and reads instructions from long-term and short-term memories to contextualize
its LLM, proposing grounding actions that are stored in the trajectory from
short-term memory. It must contain at least a method that executes a reasoning
action aim to generate the action that will be returned.

Executor. Executes the grounding actions suggested by the Planner, interact-
ing with the environment and receiving observations from it, storing them in the
trajectory in the short-term memory, all by its own grounding action method.

Environment. An external component that allows the execution of actions and
the reception of observations or rewards. It can be as simple as a QA environment
or as complex as the one designed by [13] based on MINEFLYER, focused on
interaction with Minecraft.

Reflector. Performs reasoning actions after the execution of the action pro-
posed by the Planner, generating feedback about what happened. Using its in-
stantiated LLM, it produces reflections or critiques that can be stored as knowl-
edge or used to improve future actions proposed by the Planner. Occasionally,
the Reflector is also used as an evaluator of the executed action, providing, in
addition to feedback, a signal indicating the quality of the action executed by
the Executor.

Evaluator. Behavior related to evaluating actions and behaviors performed by
the agent, or validating outputs generated by other components, can be encapsu-
lated in an Evaluator component. This component is responsible for evaluating
and providing a signal indicating the quality of the generated action or behavior
by its reasoning action methods.

3.2 Description methodology

The description methodology given by FALAA, which proposes a structured way
to describe and specify an LLM-based agent´s architecture, is composed by two
complementary levels:
(1) Conceptual Description Level.

The main objective at this level is to offer a high-level understanding of the
agent´s architecture without ambiguity or excessive detail, clarifying relation-
ships and behaviors in a visual-structured way. The conceptual description level
should provide a concise, visual overview of the system in the standard structure
proposed.

At this level, we defined the principal components and their interactions using
UML Class and Sequence diagrams. By examining both diagrams, designers can
quickly grasp the agent’s architecture, its primary interactions, and the way in
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which its data and operations are logically grouped. On the other hand, following
the standard structure proposed by FALAA, designers will be able to compare
sections of their agents with other agents described in the literature, facilitating
the understanding and comparison of behaviors and architectures of LLM-based
agents.
Here is a general guideline for applying this level:

– Identify core components: Determine the essential building blocks of the
agent (e.g. Planner, Reflector, Executor, Evaluator, various memories,
and any external environment). Each essential component (proposed by
FALAA) should mantain the original name, to ensure a convention is fol-
lowed. Each component should be assigned a specific responsibility. Addi-
tional components can be defined if necessary to fulfill specific behaviors,
but they should not replace the responsibilities of the essential components.

– Class Diagram Abstraction: Represent each component as a class, identify-
ing attributes and methods that show the component’s functionalities. In-
dicate relationships such as composition, aggregation, and associations to
clarify how components depend on one another or store references to one
another. This diagram also indicates the nature of each method (e.g., rea-
soning, grounding, retrieval, learning), making explicit what type of action
or process is being performed. It is not necessary to assign an action type to
each method, but it is encouraged to do so at least for the main functional-
ities.

– Sequence Diagram Abstraction: Model the behavior among components. Show
how the agent initializes, receives tasks, proposes actions, interacts with the
environment, evaluates potential results, updates memory structures and ev-
ery behavior that is crucial for the agent’s operation. Emphasize repeated
processes (e.g., work cycles or loops) and decision points (e.g. whether a re-
flection it has to be generated). This helps to reveal how the system behaves
step by step and how information flows among components. It is encouraged
to use the various sequence interaction fragments given by UML, such as
loop, alt, opt, par to represent the agent’s behavior more clearly and pre-
cisely. It is also encouraged to use the ref fragment to avoid extensive and
repetitive sequence diagrams.

(2) Formal Specification Level. While UML diagrams capture the main
structure and dynamics, some behaviors require a precise and unambiguous
definition. The formal specification level complements the conceptual one by
providing a rigorous means of describing and verifying behaviors that diagrams
alone cannot capture. Designers choose which behaviors to formalize based on
the system’s complexity and the potential for misunderstandings. Commonly,
behaviors that are pivotal to the agent’s operation—such as memory handling
or task verification—are prime candidates for OCL specifications. For such sce-
narios, this methodology incorporates the use of OCL constraints to formalize
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critical invariants, preconditions, and postconditions5. This level in FALAA is a
complement and shouldn’t be seen as a alternative to the conceptual description
level.

Below is a guideline for this level:

– Identify critical behaviors: Determine which aspects of the agent’s logic could
lead to ambiguity, could´nt be described in UML diagrams or are crucial for
correctness (e.g., ensuring a specific sequence of actions and observations,
conditions that define when an answer is considered complete, or methods
that reset internal states).

– Define invariants: State the conditions that must always remain true for
the system (e.g., the order in which actions and observations must alternate
within a trajectory).

– Express preconditions and postconditions: For each significant operation,
specify the required inputs or states (preconditions) and the resulting modifi-
cations (postconditions). This clarifies the exact responsibilities of a method
and prevents unintended side effects, something important because, not al-
ways the functionalities assigned to a component are obvious, and can be
interpreted erroneously.

– Maintain consistency with UML: OCL integrates naturally with the UML
model. Each constraint refers to elements from the Class Diagram (attributes,
methods, relationships), so its necessary to ensure that the constraints are
consistent with the elements shown in the UML diagrams.

In summary, by combining the conceptual description level (UML diagrams) with
the formal specification level (OCL), this methodology provides a comprehensive
guide to accurately describe and implement LLM-based agents. The designer
ultimately decides how extensively to specify each behavior, ensuring that critical
aspects are addressed without overcomplicating the model.

4 Analysis of Language Agents using FALAA

In this section, we analyzed two architectures of agents based on large language
models: Reflexion and Retroformer. These agents were selected due to their
relevance in the field of language agents, as well as the similarities and differ-
ences they exhibit. Both—Reflexion, and Retroformer—are designed to tackle
reasoning and decision-making tasks, and have been evaluated in the same set of
environments. Notably, Retroformer builds upon the Reflexion architecture,
inheriting several components and behaviors. This makes them particularly well-
suited for comparison under a unified descriptive framework.

5Each OCL constraint could be named. Naming invariants or pre/postconditions is
not mandatory in OCL, but it is considered good practice to facilitate the understand-
ing of the specification.
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The objective is to demonstrate how the standard proposed by FALAA can
be used to describe each of these architectures clearly and uniformly, identifying
ambiguous points, gaps, or inconsistencies in the original documentation.

Throughout the following sections, the key aspects of each agent will be re-
viewed, both in terms of structure and behavior (execution cycle, action and
reflection generation, reward evaluations, among others). It will be illustrated
how descriptions in natural language often lead to different or incomplete inter-
pretations, and how formalization under FALAA helps to clarify and unify these
aspects.

Finally, a brief comparative analysis of the two agents will be provided, high-
lighting their similarities and differences both conceptually and operationally6.
This approach aims to demonstrate the versatility of FALAA and its potential
to facilitate the understanding and design of architectures for agents based on
language models.

4.1 Reflexion

Fig. 2: UML class diagram of the reflector compo-
nent of the Reflexion agent.

Reflexion [10] is an agent
designed to enhance LLM-
based systems through lin-
guistic feedback after task
failures. Upon failure, the
trajectory of actions and
observations generated dur-
ing task solving is sum-
marized into textual reflec-
tions that guide future at-
tempts. Its structure defines three main components: an Actor, responsible for
action generation; an Evaluator, which assesses trajectories by assigning rewards
or ratings; and a Self-reflection module, which generates corrective feedback. Ad-
ditionally, short-term memory (referred to as trajectory) and long-term memory
(Mem) are defined to store recent experiences and accumulated reflections, re-
spectively.

A key element of Reflexion is the Self-reflection module. Originally de-
scribed mainly in natural language, this component relies on a dedicated LLM
instance that, when the actor module failed in solve the current task, is prompted
and generates new reflections. The prompt includes the current task, the agent’s
trajectory, previous reflections, instructions, examples, and a reward signal pro-
duced by the Evaluator. New reflections are stored in long-term memory, with a

6It is worth noting that, to avoid overloading the paper, the full specification of
Retroformer architecture under FALAA—including detailed diagrams and formal con-
straints—is presented for those interested in https://dccuchile.github.io/FALAA/

https://dccuchile.github.io/FALAA/
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constraint that limits the total number to three, addressing the context window
limitations of LLMs.

Fig. 3: UML sequence diagram of the reflec-
tion process of the Reflexion agent.

Under FALAA, the self-reflexion
module is formally modeled which
is associated to the Reflector
component, as shown in the UML
class diagram in Figure 2. The
class Reflector includes an LLM
instance and is associated with
the ReflectorPrompt, which en-
capsulates the structure of the in-
put prompt listed above. The re-
flection process is captured by the
Reflect() method, whose execu-
tion is detailed in the sequence di-
agram of Figure 3. The method’s
behavior is formally specified in
OCL: the precondition 2 formally
enforces that a new reflection can
only be added if fewer than three
are currently stored, while the in-
variant 1 ensures that the memory
never exceeds this limit.

context SemanticMemory inv MaxThreeReflections :
self.reflections → size() ≤ 3 (1)

context SemanticMemory :: addReflection(newReflection : Reflection): OclVoid
pre :

self.reflections → size() < 3 (2)

4.1.1. Ambiguities

Reflexion is described by the authors using both natural language, dia-
grams, and pseudocode which provide a high-level overview of their proposal.
However, due to the lack of a standardized structure, ambiguities arise in its
definition, which are addressed by describing Reflexion using FALAA as shown
below with two examples.

1) Scope of the Actor Component. A key challenge lies in interpreting
the concept of an Actor. According to [10], the Actor uses an LLM to produce
text and actions, interacts with an environment, and forms a trajectory over
multiple steps in a work cycle. Since it generates actions, reasons about them,
and accesses a memory (though that memory belongs to the broader Reflexion
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agent rather than the Actor itself), it is not fully accurate to label this com-
ponent as a standalone “agent”, because, under the language-agent structure
established by FALAA, an agent must include its own memory.

By describing Reflexion within FALAA, the Actor component is defined as
an additional composite component which encompasses both the Planner and
Executor components, managing the entire process of attempting to solve a
given task.

Using the above, when Reflexion mentions that other agents can be used as
the Actor [10], it implies that certain elements—such as the prompting technique
used by the Planner or the evaluation method implemented by the Evaluator—can
be replaced with their respective counterparts from other agents.

This perspective helps clarify the confusion noted in [2], which treated Reflexion
as an extension of ReAct—another agent arquitecture which Reflection´s authors
uses as the actor in their experiments—.

2) Semantic Memory and Learning Limitations. A notable insight
gained from applying FALAA is rely to Reflexion retains only the last three
reflections in its long-term memory (see figure 3). Although [10] briefly men-
tions this limitation, formalizing the agent’s behavior highlights how this stor-
age constraint—described in the FALAA´s formal specification level, specifica-
tion 1 and 2— prevents more extensive accumulation of knowledge. In other
words, Reflexion cannot effectively learn from older tasks once it exceeds three
stored reflections. This underscores a potential enhancement for future LLM-
based agents aiming to incorporate deeper, more persistent learning.

4.2 Retroformer

Retroformer [17] extends the Reflexion architecture by incorporating rein-
forcement learning techniques to enhance the quality of its reflections. Its main
contribution lies in the use of RLHF [7] to train an auxiliary neural network,
responsible for evaluating the quality of the reflections generated by the agent’s
retrospective model. After training, this reward model is used to guide the reflec-
tion process: during each iteration, multiple candidate reflections are generated
using a best-of-n sampling strategy, and the reward model selects the best re-
flection, aiming to maximize the agent’s overall performance.

Retroformer was originally described by [17] through three main compo-
nents: the Actor, the Retrospective Model, and the Memory, which includes a
replay buffer for storing training data. Under the FALAA standard, these ele-
ments are mapped more precisely: the Actor integrates both the Planner and
the Executor, as in the case of Reflexion; the Retrospective Model is associated
with the Reflector, responsible for generating reflections; and the Memory is
divided into FALAA´s short-term and long-term memories with the replay buffer
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specifically categorized under episodic memory.

4.2.1. Ambiguities

Despite this more structured mapping, Retroformer exhibits greater archi-
tectural complexity than Reflexion, incorporating new components and pro-
cesses. However, the absence of a standard descriptive framework led to an ad
hoc presentation that mixes mathematical formalism with natural language ex-
planations. As a result, ambiguities arise in key concepts—such as the reflection
generation process—allowing for multiple interpretations of the original pro-
posal.
1) Reflection Process in Retroformer.

Fig. 4: UML sequence diagram of the best reflection selection process for the
Reflector component of a Retroformer agent.
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The essential innovative aspect of Retroformer lies in its reflection process,
which is based on generating multiple reflections when the agent fails a task
and then selecting the best one using a pre-trained reward model. Although [17]
provides more detail in describing the training of the reward and retrospective
models, it does not comprehensively specify how the reflection process unfolds
during the agent’s normal execution.

In the description of Retroformer using FALAA, this mechanism is explicitly
defined (as seen in figure 4), reducing the likelihood of misinterpretations and
facilitating an understanding of how reflections are generated and selected dur-
ing a typical work cycle. In the FALAA description, it can be observed that, after
detecting a failed task, the Reflector iterates a number of times defined by the
developer, generating a reflection in each iteration (process similar to Reflex-
ion’s, presented in figure 3), which the Evaluator evaluates using the reward
model.

The score obtained is compared with the score of the best prior reflection, and
if it is higher, the candidate reflection and its score overwrite the current best
reflection in the short-term memory. This process repeats until the specified
iterations are exhausted, after which the best resulting reflection is stored in the
semantic memory, following the same logic of a maximum of three reflections
as proposed by Reflexion. In summary, describing Retroformer under FALAA
clarifies its reflection process—based on the best-of-n sampler using a formal
description mechanism instead of natural language.

4.3 Comparison

To better illustrate the differences and similarities between Reflexion and Retroformer,
this section compares key aspects of their architectures, focusing specifically on
their reflection generation processes and reward assignment strategies.

Reflection Process Both Reflexion and Retroformer generate reflections
only after failing to solve the assigned task. However, the mechanisms under-
lying the reflection process differ significantly. Reflexion generates a single re-
flection by constructing a prompt and using its LLM to produce feedback (see
Figure 3). Retroformer, on the other hand, extends this process by introducing
the best-of-n-sampler method (see Figure 4). Retroformer: multiple candidate
reflections are generated through a similar prompting mechanism, and a trained
reward model is then used to select the best reflection for subsequent use. This
enhancement shows how Retroformer builds upon Reflexion by introducing a
more complex reflection cycle that involves additional components and a selec-
tion phase.

Reward Assignment In Reflexion, rewards are assigned by the Evaluator
based on the overall outcome of the agent’s final trajectory. In contrast, Retroformer
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assigns rewards incrementally after each action-observation pair generated by
the agent. This difference highlights that Retroformer implements a more fine-
grained evaluation strategy, assessing the agent’s performance at each step rather
than only at the end of the task, as in Reflexion.

5 Conclusion

In this paper, we addressed the lack of a standardized structure and a method-
ology for describing the architectures of LLM-based agents. Although numer-
ous works have introduced new agent designs and paradigms, these often focus
primarily on high-level concepts without exhaustively detailing essential com-
ponents or behaviors, thus causing ambiguities and making comprehensive un-
derstanding, implementation, and comparison difficult. Such challenges lead to
agents that do not necessarily meet every aspect required for an unambiguous
definition, as seen in Reflexion or Retroformer, where certain roles and mem-
ory structures remain insufficiently specified.

FALAA (Framework for the Abstraction of Language Agent Architectures) was
proposed to mitigate these limitations by offering a general structure belong
with a dual-level specification approach. At its core, FALAA defines a minimal set
of key components (Planner, Executor, Evaluator, Reflector, Memory, and
Environment) and a concise action taxonomy, ensuring that every relevant as-
pect of LLM-based agents can be modeled consistently. On a conceptual level,
UML class and sequence diagrams clarify the principal relationships and inter-
actions among these components, while the formal specification level employs
OCL to eliminate ambiguities around behaviors, invariants, preconditions, and
postconditions.

From the application of this framework, several insights were noted:

– Unnecessary ambiguities revealed and resolved: By describing agents such as
Reflexion and Retroformer under FALAA, it became clear how ambiguities
in natural language descriptions (e.g., mixed terminologies, composition of
memories or step by step reflection process) can be systematically resolved.
This clarity ensures that future agent designs are easier to interpret, com-
pare, and extend.

– Identification of overlooked design aspects: The formal specification process
highlighted design questions not originally addressed in the literature, such
as how many and which past reflections to preserve (Reflexion imposes a
limit of three).

– Natural integration across diverse agent paradigms: FALAA does not forcibly
restructure existing architectures but instead maps their essential compo-
nents into a shared nomenclature (e.g. the integration of Actor component
on Reflexion and Retroformer architectures). This shows that many of the
behaviors in LLM-based agents are fundamentally similar, allowing for more
coherent cross-agent comparisons.
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Additionally, using FALAA facilitates the development and documentation
process of LLM-based agents. By providing a clear set of responsibilities for each
component and specifying how they interact, authors are steered toward more
precise and transparent explanations of their systems. This enables researchers to
systematically analyze which part of an agent’s performance could be improved
or replaced, as well as to compare existing architectures on a like-for-like basis,
thus imposing a more consistent convention in the terminology of this emerging
domain.

After analyzing some agents under FALAA, we have identified various oppor-
tunities for future work :

– Multi-Agent Systems (MAS): Extending this framework to scenarios
where multiple LLM-based agents interact could yield significant benefits,
particularly in tasks requiring collaboration or negotiation. Future work
could include defining additional FALAA components and interaction pro-
tocols specific to MAS.

– Improved Reflection Mechanisms: Both Reflexion and Retroformer
highlight reflection processes but do not reuse older reflections in subsequent
task attempts. Enhancing the storage and retrieval of such knowledge in
Semantic memory (or other new memory abstractions) could allow agents
to leverage insights gained from past tasks more effectively.

Overall, the proposal of FALAA aims to streamline the design, specification,
and understanding of language-agent architectures by introducing a clear struc-
ture and methodology. The framework not only provide a higher degree of clarity
and consistency but also leaves room for further innovation in agent design. We
anticipate that FALAA, by fostering uniformity and comparability across het-
erogeneous research efforts, could help shape the next generation of LLM-based
agents, promoting both incremental improvements and further innovation in this
rapidly evolving field.
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