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Abstract. Despite much progress on engineering multiagent systems
(MAS), current approaches do not tackle scalability. Indeed, popular
MAS frameworks and programming models implicitly limit an agent to
running on a single physical computer. Without addressing scalability,
MAS engineering approaches stand little chance of being widely adopted.

Interaction protocols model multiagent systems. Recent years have wit-
nessed significant advances in programming models based on protocols.
Actors is an influential model of shared-nothing concurrency. A major
benefit of actors is scalability. In this contribution, we outline a vision for
realizing scalable MAS that synthesizes ideas from information protocols
and actors. Specifically, we outline an approach and attendant challenges
in realizing a protocol-based agent as a MAS of actors, each handling an
independent computation and executing somewhere in a cluster of ma-
chines.

1 Introduction

Virtually every application domain for information technology, e.g., business,
health, and smart cities, involves interactions between autonomous real-world
principals. Therefore, a natural approach to addressing such applications is to
represent each principal by an agent who encodes the principal’s decision mak-
ing and interacts with other agents on its behalf. To promote loose coupling, the
interactions between the agents are realized via asynchronous messaging. This
multiagent systems (MAS) conception contrasts with traditional approaches such
as Web services by respecting the autonomy of their member agents and decou-
pling their implementations [12].

Scalability is the idea that an operational software system can cope with
unbounded growth in its usage. Scalability is ultimately bounded by the com-
puting hardware (cores, memory, storage, etc.) that the software system runs on.
Being able to cope with unbounded growth therefore requires a software system
to run on ever larger computers (possibly virtual, such as clusters) and utilize
them effectively. Moreover, scalability mechanisms should be transparent to ap-
plication programmers, enabling them to focus on the business logic. Scalability
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is obviously a crucial practical concern and a motivation for modern paradigms
such as cloud computing, including innovations such as serverless [22].

Distribution makes scalability challenging. Programmers rely on application
state to write the application’s business logic. A distributed architecture implies
that the state would be distributed, which may produce unintended application-
level consequences. In the context of a Web service that is replicated for purposes
of scalablity, a classic example is the double booking of a resource such as a ho-
tel room. The crux of the challenge is to devise programming abstractions that
hide the distribution but give correctness guarantees. Additionally, the abstrac-
tions must not unduly hit performance. Distributed transactions [5] is one such
classic abstraction; however, it is also known to not be suitable to settings of
autonomous principals [26, 17]. Current serverless platforms support stateless
applications; abstractions for stateful applications are of considerable interest
[13].

Research on software abstractions for engineering MAS has paid little at-
tention to scalability. Over the years diverse agent programming models and
frameworks have emerged. JADE [3], Jason [7], JaCaMo [6], and Kiko [15], and
Orpheus [9] reflect this diversity. None addresses scalability. Although each agent
in a MAS can run on a separate physical computer, current approaches limit an
agent to running on a single computer. Most MAS engineering methodologies
entertain the idea that an agent could itself be implemented as a MAS. As each
agent can run on a separate machine, such an recursive architecture would in
principle be conducive to scalability. However, current approaches (most notably
[24], whose raison d’être is to exploit this architectural possibility) are geared
toward explicitly modeling the internal structure of agents, not automated, trans-
parent scalability mechanisms.

In recent years, actors [19, 1, 32] has come to be widely appreciated as a basis
for building highly scalable, concurrent systems. Akka is a popular, mainstream
actor-based programming model and platform (http://akka.io). Erlang [2], which
embodies the spirit of the actor model, has witnessed a resurgence in interest.
Microsoft Orleans [8, 4] introduces virtual actors with the aim of making actor-
based programming native to the cloud.

Notably though, despite conceptual affinities, especially in their emphasis on
building systems out of asynchronously communicating components, the actor
model has not seen much uptake in MAS research. Although some claim inspira-
tion, e.g., [23, 15], none of the aforementioned MAS programming models apply
the actor model.

To address the challenge of MAS scalability, we propose a novel synthesis
of declarative information-based protocols [28, 30, 29, 31] and the actor model.
An information protocol models a MAS by specifying the communication be-
tween agents. Agents enact information protocols in a decentralized manner by
sending and receiving messages. Our synthesis rests on the discovery of a com-
plementarity between information protocols and the actor. Exploiting scalability
via actors rests on identifying logically independent computations. Specifically,
an actor could be assigned to each such computation. The enactments of an
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information protocol are logically independent computations. This suggests the
possibility of realizing an agent as a set of actors, one for each enactment it is
engaged in.

In this paper, we elaborate upon our proposition. Section 2 explains informa-
tion protocols and their value as a general-purpose abstraction for engineering
multiagent systems. Section 3 explains the value proposition of the actor model
and recent advances such as virtual actors. Section 4 explains our proposed MAS
architecture, highlighting how an agent could potentially be realized as a dis-
tributed entity using virtual actors. It also poses some research challenges in
realizing this vision. Section 5 discusses some related work and summarizes key
points.

2 Information Protocols

Several approaches for specifying interaction protocols exist in the literature.
None matches the information protocols approach when it comes to specify-
ing flexible, decentralized enactments [10]. Below, we highlight the novelty and
expressiveness of this approach.

2.1 Specifying Protocols

The listing below gives a protocol Ebusiness. It specifies messages, with their
senders, receivers, and information parameters. Parameter ID is key: it identifies
enactments; messages with the same binding for ID belong to the same enact-
ment. Think of an enactment as a business transaction (as opposed to a database
transaction). Adornments ⌜in⌝, ⌜out⌝, and ⌜nil⌝ specify causality and are inter-
preted relative to enactments. A message instance has bindings for the ⌜in⌝ and
⌜out⌝ but not the ⌜nil⌝ parameters. An agent may emit a message (instance)
if it knows all ⌜in⌝ parameters (that is, their bindings exist in the agent’s local
state, its communication history) and does not know any ⌜out⌝ or ⌜nil⌝ param-
eter (that is, their bindings do not exist in its local state). Sending the message
adds it to the agent’s history (making its ⌜out⌝ parameters known). Receiving
a message adds it to the receiver’s history (making all its parameters known).
Notably, messages can be received in any order.

Listing 1: A three-party protocol for conducting e-business transactions.

Ebu s i n e s s {

r o l e s Buyer , S e l l e r , Bank
parameters out ID key , out i tem , out p r i c e , out amount , out

s t a t u s

//Messages
S e l l e r −> Buyer : Of f e r [ out ID key , out i tem , out p r i c e ]
Buyer −> S e l l e r : Accept [ i n ID key , i n i tem , i n p r i c e , out

d e c i s i o n ]
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Buyer −> Bank : I n s t r u c t [ i n ID key , i n p r i c e , out d e t a i l s ]
Bank −> S e l l e r : Tran s f e r [ i n ID key , i n p r i c e , i n d e t a i l s ,

out amount ]
S e l l e r −> Buyer : Shipment [ i n ID key , i n i tem , i n p r i c e , out

s t a t u s ]
}

Buyer Seller Bank

Offer

Accept

Instruct

Transf
er

Fig. 1: A flexible enactment of Ebusiness in which messages are reordered in the
communication infrastructure.

Applying the above reasoning to Ebusiness, after sending Offer, seller
knows ID, item, and price, and therefore may send Shipment anytime there-
after. By analogous reasoning, Bank may send Transfer anytime after receiving
Instruct. Figure 1 shows an Ebusiness enactment that traditional approaches
cannot handle: Transfer is received by seller before Accept. To get a sense of
Ebusiness’s “exponential” flexibility, consider that any enactment can progress
to completion via 630 distinct operational paths of sends and receives.

2.2 Programming Protocol-Based Agents

Given an information protocol, Kiko enables implementing Python agents that
play roles in the protocol. To make agent development easy, Kiko includes an
adapter (middleware) that can sit directly atop the Internet and exposes an
event-driven, information-based interface for implementing agents.

An agent’s Kiko adapter maintains its local state and based on that and the
protocol specification keeps track of information-enabled forms. The forms are
necessarily partial message instances that would be legal to send if completed.
Specifically, a form’s ⌜in⌝ parameters are bound (from the local state) and the
⌜out⌝ parameters are unbound (because they don’t exist in the local state).

Table 1 gives a possible local state for a seller agent and the forms available
to it in that state.

To write a Kiko agent, an agent writes a set of decision makers. A decision
maker is an event-triggered piece of code that gets the set of enabled forms and
completes some subset via some logic. The completed forms are emitted by the
adapter as messages and added to the local state. Listing 2 shows a decision
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Offer(1, fig, 10)
Offer(2, jam, 100)
Accept(2, jam, 100, thanks)
Transfer(1, fig, urgent, 10)

Local state

Shipment(1, fig, 10, status)
Shipment(2, jam, 100, status)

Enabled forms

Table 1: A possible local state for a seller agent and the enabled forms in that
state.

maker for a seller agent. Its logic is to complete Shipment in those enactments
for which Accept has been received, regardless of whether Transfer has been
received. The completed Shipment forms are sent by the adapter as messages.
The decision maker is triggered at 1700 hours every day; other trigger specifica-
tions are possible. Throw in a decision maker for completing Offer messages and
that is all the messaging-related code a programmer need write to implement a
seller. Notably, the programmer never writes code to receive messages.

Listing 2: A seller agent’s decision maker that sends Shipment only in those
enactments (as identified by ID) in which Accept has been received.

@adapter . s chedu l e dec i s i on (00 17 ∗ ∗ ∗)
de f sh ipment ( enabled , s ta te ) :

sh ipment s = enabled .messages ( Shipment )
f o r s i n sh ipment s :

i f ( nex t ( s ta te .messages ( Accept , system=s . system ,
ID=s [ ” ID ” ] ) ) )
s . bind ( s t a t u s=” f i r s t c l a s s ’ ’ )

3 Actors

The actor model is notable for standing in contrast to shared-something mod-
els of concurrency such as threads (which share memory) and communicating
sequential processes (which, being synchronous, share clocks).

3.1 The Model

The actor model is a model of shared-nothing, concurrent computation. In this
model, the computation is performed by logically distributed entities called ac-
tors and they may communicate only via asynchronous messaging.

Briefly, an actor is an addressable, stateful unit of computation. The actor
encapsulates its state: Instead of other actors modifying its state directly, they
send messages to it reflecting the operations they want performed. Each actor
has a mailbox into which messages addressed to it arrive nondeterministically.
The actor runs an infinite loop in each iteration of which it picks up a message
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from its mailbox for processing. In processing the message, the actor may change
its state, spawn new actors, and send messages to other actors. In this manner,
the actor serializes the operations on its state and supports correctness.

3.2 Scalability

To see how the actor model can support scalability, imagine a system’s resources
to be sharded, that is, divvied up, such that each is managed by a unique actor.
The actor represents its state and serializes operations on it. We make these
ideas concrete via an ebusiness example inspired from the classic bank account
example. Let’s say a seller has several warehouses. Items may be deposited or
withdrawn from a warehouse. We could represent each warehouse by an actor
with operations deposit and withdrawal. Such a system model would guarantee
that withdrawal operations on a warehouse do not violate the (classic) integrity
constraint that the number of available items in a warehouse never becomes
negative. Moreover, as many operations can run concurrently as the number
of actors in the system. Depending on the numbers of cores in the system, the
operations may even run in parallel. Scalability is supported in principle because
as the number of warehouses (actors) grow, the system can scale by simply
adding more cores. In a nutshell, actors accommodate true concurrency and
resource sharding enables exploiting it.

Deposits and withdrawals are single-actor operations. However, often opera-
tions span actors, e.g., transfers between two warehouses. Again, following the
classic example of transfers in banking, we might wish to impose the integrity
constraint that the sum of the items in the involved warehouses before the op-
eration must equal that after the operation. To accommodate this constraint,
following traditional approaches, we would model a transfer as an atomic op-
eration. Database (not business) transactions guarantee atomicity in a shared-
memory setting. Since actors are distributed, work has specifically looked at how
to extend actors-based programming models with distributed transactions [25,
16]. We have more to say on multiactor operations in Section 4.2.

3.3 Implementation in Orleans

Actor-based programming models such as Akka and Orleans are supported by
middleware (platform) that abstracts over the underlying cluster of computers
and offers services such as actor supervision and (state) persistence. We focus
here on Orleans because it automates more of the actor management (at least
for our present purposes).

The Orleans middleware abstracts over a cluster of machines. Actors have
unique identifiers, which also double as their addresses. In Orleans, program-
mers don’t create or destroy actors. An actor is spun up whenever a message
is addressed it and it is spun down whenever it has been inactive for a while.
An actor’s state is saved to persistent storage, so when it is spun up, it is res-
urrected with its state. Orleans keeps track of where in a cluster an actor lives
and does the message routing. Such a model supports fault tolerance and load
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balancing. If an actor dies, when a message is addressed to it, it spins it up
on some relatively lighted-loaded machine in the cluster. Orleans supports both
request-response and one-way messages. Computers can be dynamically added
or removed from the underlying cluster.

4 Mapping Agent Computations to Actors

4.1 Insight

An agent implements information protocols and may participate in several enact-
ments of these protocols with other agents. Every enactment is identified by the
bindings of the relevant key parameters and represents a distinct social object
[31]. For example, in Table 1, the seller’s local state maps to two social objects
with identifiers ID=1 and 2, respectively, as shown in Figure 2. Enactments are
independent computations; they may therefore proceed in parallel.

Actor with Identifier 1 Actor with Identifier 2

Enabled :
Shipment(1, fig, 10, status)

Enabled :
Shipment(2, jam, 100, status)

Local state:
Offer(1, fig, 10)

Transfer(1, fig, urgent, 10)

Local state:
Offer(2, jam, 100)

Accept(2, jam, 100, thanks)

Fig. 2: Proposed agent architecture. Each Agent is realized via virtual actors,
each of whom handles a protocol enactment. We refer to such actors as e-actors.
Basically, an e-actor sends and receives messages in its enactment, maintains
and persists the local state as its state, and offers a messaging-based interface
for computing enabled messages and sending completed forms.

Each social object corresponds to an Orleans actor whose identifier is the
object’s identifier. This opens up the possibility, as shown in Figure 2, of realizing
the seller agent via a set of Orleans virtual actors, one for each enactment. We
refer to such actors as e-actors (for enactment actors).

4.2 Challenges

The challenges relate to figuring out the details of the agent architecture with the
aim of supporting a simple agent programming interface and high performance.
We list some below.

Programming Model. From the point of view that agents implement proto-
cols, agent programmers need to be aware of the use of Orleans. A Kiko-
inspired programming model that lets programmers query for enabled forms
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and complete them based on whatever the relevant business logic happens to
be is appealing if we want to let programmers focus on the business logic. How
can we achieve this goal of a programming model that supports scalability
via e-actors but abstracts it away from the programmer?

Nested Enactments. In general, protocols may feature composite keys to cap-
ture the fact that a business transaction may have subtransactions. For ex-
ample, in an alternative ebusiness protocol, an enactment, identified by tID,
may support multiple shipments, each identified by sID. How we do relate
the e-actors in a manner that captures these relationships?

Reasoning about Resources. An agent may reason about internal resources,
e.g., items available in its warehouse (as discussed above, actors enable main-
taining the states of such resources). In reasoning about whether it should
make an Offer, a seller may reason check availability in the warehouse and
modify it. Such reasoning is commonplace, e.g., in making hotel and flight
bookings. What kind of software abstractions facilitate such reasoning?

Meaning. Communications between agents has normative meaning [27], which
is critical to business reasoning. For example, Offer may mean a commitment
from the seller agent to the buyer agent to perform Shipment upon Transfer.
Meaning relates to reasoning about resources. For example, a prudent seller
may not want to make more Offer commitments than it can reasonably
expect to fulfill, given the stock in its warehouses. How can we represent
meaning and use it to inform decision making by agents?

Multienactment Reasoning. Agents often engage reasoning that spans mul-
tiple e-actors. For example, a buyer agent may want to determine the best
Offer before accepting any. To capture the meaning of protocols involving
composite keys, the relevant norms would normally involve aggregate condi-
tions [11], for example, that multiple shipments cover the promised quantity
of items. How can the programming model support such aggregate reason-
ing?

Fault Tolerance. Addressing the challenges outlined above will require orga-
nizing the e-actors themselves as MAS. For example, to get the set of all
enabled Shipments, the seller’s business logic must send a query message to
each Ebusiness e-actor. In other words, what were synchronous, local proce-
dure calls in Kiko have to be realized via asynchronous messaging. Moreover,
the messages may be arbitrarily delayed. Recent work has studied failure
handling for protocol-based MAS [14]. Can we apply similar techniques to
handle failures in e-actor MAS?

Performance. Given the foregoing, could the e-actors be so chatty that per-
formance will be severely impacted? What optimizations could reduce the
chattiness? What hardware innovations does actor-based computation mo-
tivate?

Consistency. What consistency guarantees can the programming model offer?
We can rely on Orleans to (more or less) guarantee that for any enactment,
there exists at most one e-actor in the cluster at any time. This will guar-
antee consistency of an e-actor’s state. However, multienactment reasoning
raises some challenges. For example, if by the time an agent’s instruction
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to send a completed enabled form reaches the relevant e-actor, the form
may no longer be legal for emission (maybe because the e-actor received a
conflicting message in the meantime). It would be tempting to introduce dis-
tributed transactions, as discussed above, to avoid such scenarios; however,
distributed transactions are incompatible with scalability [17].

Formalization. Can we formalize the theoretical ideas behind the program-
ming model with the aim of introducing higher-level abstractions than ac-
tors and connecting both with the distributed systems and the programming
languages community?

5 Summary

Information protocols represent a foundational abstraction for MAS. Our pro-
posed approach is a middleware-supported programming model that enables
automatically realizing an agent as a multiagent system of actors that is dis-
tributed over a cluster of machines. Our proposal automatically realizes an agent
as a multiagent system of actors for purposes of scalability. We discussed some
of the challenges that must be addressed to realize this vision, but the overarch-
ing one is a programming model that accords with flexibility, performance, and
scalability.

Our approach addresses a perceived limitation of actors—that they are low-
level. The reason for this perception is that “actors comes in systems” [20].
Modeling systems requires a focus on modeling the interactions between its
components. We think information protocols and actors fit hand in glove due to
their shared emphasis on loose coupling, asynchronous messaging, and reliance
on higher-level social abstractions [18, 21].
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