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Abstract. The rapid expansion of sensor-based networks introduces
major challenges in scalability, adaptability, and knowledge transfer, es-
pecially in open environments where new subsystems can dynamically
join or leave. In this work, we propose a Holonic Active Distillation archi-
tecture within a Holonic Multi-Agent System (HMAS) to address these
issues. Our approach integrates Clustered Stream-Based Active Distilla-
tion (CSBAD), a framework in which specialized student models collect
local data, query pseudo-labels from teacher models, and cluster into
groups of similar sensors.
Results show that the holonic organization balances local specialization
with global generalization, while efficiently adapting to sensor depar-
tures and re-integrations. We also analyzed trade-offs among incremental
model updates, system reorganization, and scalability limits.
Our findings highlight the advantages of holonic learning for multi-sensor
systems while identifying key challenges related to model drift and long-
term adaptation.

Keywords: Holonic Multi-Agent Systems · Distributed Learning · Col-
laborative Learning · Scalable Model Adaptation

1 Introduction

In recent years, sensor systems have evolved from isolated and manageable units
to expansive and interconnected networks [38]. This transformation, while en-
abling broader coverage, challenges the traditional approach of deploying a sin-
gle, universal Deep Neural Network (DNN) across all sensors [31]. The dynamic
nature of real-world deployments, characterized by stochastic changes and the
continuous addition of new sensors, introduces diverse contexts that demand
ever larger training datasets and models [26]. This upscaling not only incurs
significant costs, but also accumulates hidden technical debt, complicating the
maintenance required to adapt to distribution shifts in sensor data [2, 42].

Traditional methods have relied on centralized, monolithic DNNs that strug-
gle to scale with the increasing complexity and diversity of sensor networks.
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Fig. 1: A large-scale distributed training system where DNN nodes are trained on
datasets built from a specificity-diversity trade-off for effective learning. Lower
nodes are typically tailored to their task (i.e., analytics on a sensor) and op-
erationally more efficient. Higher nodes, trained over vaster and more diverse
data, provide generalization ability. This system can scale up or down, causing
challenges in integration and adaptability.

These approaches often lead to inefficiencies and increased maintenance chal-
lenges. Recent advances, such as the Holonic Learning (HoL) framework, offer
a promising alternative by embracing the agent paradigm to improve scalabil-
ity and flexibility [13]. HoL leverages self-nested structures of agents, known
as holons, to integrate local and global perspectives, facilitating easier subsys-
tem integration and preventing the propagation of disturbances [9, 27, 41]. This
hierarchical learning approach improves the efficiency of data and algorithm
handling, particularly for large distributed datasets [11]. A question remains re-
lated to the design of a scalable distributed learning framework that supports
continuous DNN refinement with minimal refactoring, while allowing each unit
to update itself online, self-organize with its peers, and transfer knowledge as the
system scales.

This work builds upon the HoL framework to introduce strategies for aggre-
gation, communication, and commitment between learning holons. The contri-
butions are twofold:

– We augment HoL with standardized organizations and roles, allowing new-
comers to integrate knowing only their role and the associated protocol,
inspired by active learning and distillation of knowledge [1, 4, 24, 41].

– We propose holonification mechanisms in which agents cluster horizontally
and vertically based on the similarity of their sensor streams, preserving
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confidentiality and balancing specificity and diversity. This recursive pro-
cess improves the accuracy and resilience of the system, allowing seamless
expansion or contraction without disruption [7, 14, 15, 18, 28, 32].

The remainder of this paper is structured as follows. Section 2 discusses the
current landscape of learning in Multi-Agent System (MAS). Section 3 presents
the high-level formulation of the organizations for the Holonic Active Distillation
(HAD) architecture and the relationships between super- and subholons. Section
4 introduces a distributed, multi-tiered, self-nested structure for DNNs and the
self-organization mechanisms that realize the specificity–diversity trade-off. Sec-
tion 5 describes the materials used in the experiment, while Section 6 reports the
results on sensor addition and removal, comparing partial reorganizations with
complete retraining and measuring knowledge-transfer speed. Finally, Section
7 discusses the insights, limitations, and perspectives, followed by the conclu-
sion in Section 8. This research advances the adaptability of multisensor holonic
systems, materializing continuous learning in dynamic environments [23, 33, 45].

2 Related Works

Adaptive MAS networks leverage online learning strategies to dynamically re-
spond to environmental changes, highlighting the importance of distributed and
collaborative learning [35].

Wolpert and Macready [48] introduce a system utilizing reinforcement learn-
ing to align agent actions with collective goals, minimizing human oversight.
Agents are organized into “sub-worlds” for focused collaboration, yet the appli-
cation of reinforcement learning in complex scenarios with varied sensors and
methods encounters obstacles such as unclear rewards and limited exploration,
which hinders the required diversity of learning [39, 48, 51].

Organizational learning considers agents evolving through both personal and
collective learning efforts, enhancing agents’ abilities in MAS through man-
agement mediated interactions and task alignment to boost system efficiency
[19, 44]. This model emphasizes the role of knowledge sharing in improving work-
flows and establishing structural knowledge, crucial for system resilience. Social
science research [10] reflects on the applicability of this framework to under-
stand the impact of staff turnover on management, analogous to agent dynamics
in open MAS.

Hierarchical learning [12] uses hierarchical MAS to streamline Machine Learn-
ing (ML) training in various geographical locations. By modeling challenges as a
hypergraph, the system organizes agents, each with unique skills and knowledge,
into a structured multitiered network. This design not only facilitates the de-
centralized handling of ML algorithms and data, but also significantly improves
the efficiency and scalability of processing large distributed datasets.

In the context of distributed ML, Gupta and Raskar [22] pioneered Feder-
ated Learning (FL) to train neural networks in distributed datasets, prioritizing
data privacy and computational efficiency. However, FL faces hurdles in com-
munication and training reliability. Hierarchical FL addresses these by grouping
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users to improve FL security and efficiency through group-specific updates [50].
Personalized FL [30] methods aim to produce personalized models for different
users or groups of users [20] to keep track of their individualized requirements.
Hierarchy has also been instrumental in Fog Learning. Unlike FL, which is based
on a star topology of device-server interactions, Fog Learning explicitly consid-
ers the network and topology structures among devices and enables intelligent
device collaborations through data and parameter offloading [25].

Esmaeili et al. [13] abstract FL with HoL, applying holonic principles to a
collaborative learning framework. In that sense, FL can be seen as a first-order
HoL. HoL enhances model cooperation with specific strategies for aggregation,
communication, and commitment within holons, facilitating complex yet intu-
itive collaboration of nodes compared to Fog Learning. In this balance between
local autonomy and coordinated decision making, holonic systems are better
equipped to tackle challenges such as adaptability, and scalability.

HoL does not specify how learning agents should (re)organize, nor
how a system can seamlessly expand to new domains or safely unlearn obsolete
ones—shortcomings that become acute in applications requiring auto-scaling and
auto-tuning [13, 47].

We address these limitations by enriching the holonic-agent paradigm with
organizations and roles. These concepts provide an abstract interaction pat-
tern that improves the architecture’s robustness and flexibility [1]. Furthermore,
our Teacher–Student distillation scheme supplies pseudo-labels that swiftly cali-
brate incoming Students, thereby enabling auto-tuning. Finally, self-organization
emerges from a specificity–diversity trade-off among Students, while integration
and deletion protocols dynamically scale sensor subsystems. Collectively, these
mechanisms yield the first HoL variant that supports self-organization and auto-
scaling.

3 Holonic Active Distillation (HAD) Architecture

We seek a design that minimizes refactoring and supports isolated updates, sim-
plifying the integration of a new sensor, model, or more generally a subsystem
of sensors and models [17, 42]. From the literature, we derived five main recom-
mendations to design scalable, multimethod learning systems:

1. Establish standardized interaction protocols, aggregation strategies, commit-
ment, and communication patterns within components. This facilitates the
integration of new units, as they only need to understand their role and com-
munication methods within the system, regardless of their operating mode
[1, 41].

2. Render a method, a sensor, or by construction a subsystem as independent
and self-contained as possible to limit the complexity between units. This
aims to simplify a local update or maintenance [1, 21, 46].

3. Recursively divide a system into subsystems based on a key criterion. This
prevents the propagation of disturbances [41]. Furthermore, integration of a
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new component requires less communication as it requires only coordination
with the upper layers of the system instead of with each subsystem [9].

4. Place units at certain levels of the hierarchy and provide representations
of how other levels can contribute “information” or “models”. This division
simplifies the complexity of programming, allowing designers to focus on
each module and facilitating reuse between different systems [9].

5. Exploit Active Distillation, where each Student unit collects data on the fly
from its streams to train on them. Training is performed by querying a model
Teacher [31].

Many agent-oriented organizational methodologies have been developed such
as ADELFE [3, 21], ASPECS [8], Gaia [49], INGENIAS [37], SODA [36], or Tro-
pos [6]. Each has its own focus: ADELFE on adaptive systems and cooperative
agents, ASPECS on holonic multi-agent systems, Gaia on static organization
and roles, and SODA on the environment.

Given our choice of the organizational holonic paradigm, we adopt the AS-
PECS methodology [8]. The latter starts by defining an Organization , which
denotes a subsystem in which components play a role and interact to achieve
a shared goal in the context of this organization. Next, the Roles which are
both expected behaviors to fulfill (part of) requirements, and status to the role’s
agent in the organization (Section 3.1). The subsequent activity (Section 3.2)
is the definition of relationships between superholons (higher-level entities) and
subholons (lower-level entities). As a reference later, a holarchy denotes the
hierarchy of self-regulating holons.

3.1 Teacher-Specialized Student (TSS)

Building on the Active Distillation framework and the specificity-diversity trade-
off from [32], we developed an organizational model that incorporates the roles
of Specialized Student and Teacher , as illustrated in Fig. 2.

The Specialized Student role is designed to continuously collect data on
subparts of the system’s deployment environment. Under the oversight of a
higher-order Teacher entity, these Students learn from these data, adapting
their models’ weights accordingly.

3.2 Holarchy

The section begins with introducing a new notation. Then we present an exam-
ple of a three-tiered holarchy structure. Each level of this holarchy is a possible
instance of an organization defined in Section 3.1. To provide a more holistic
perspective, we depict the Cyber-Physical Platform (CPP) data processing or-
ganization (see our previous work [33]) alongside the TSS but CPP is not the
main focus of this paper3.
3 As a more detailed context, CPP is designed to respond to external requests with

perceptions and to manage its finite resources to ensure fair access across multiple



6 D. Manjah et al.

Active
Distillation

<<role>>
Specialized 

Student1,...,N

Supervise level n

Provide
Local

Knowledge

<<role>>
Teacher

level n+1
1,...,N

Elicit

Fig. 2: Organizational model of the Teacher-Student , using the ASPECS no-
tation [8]. The Specialized Student role involves a component tasked with
building expertise over a delineated sub-domain in the system, i.e., a regional
distribution. The Teacher role supervises the learning processes of the Students.

Notations A holarchy HL
O includes up to L vertical layers instantiating an

organization O . A holon i in layer l, where l ranges from 0 to L, is denoted by
h̄l
i and comprises:

– Xl
i: Set of operating data streams of a holon h̄l

i.
– T l

i : Training set of a holon h̄l
i.

– V l
i : Validation set of a holon h̄l

i.
– θh̄

l
i : Processing model of a holon h̄l

i.
– SUBl

i: Inner members corresponding to layer l − 1 of a holon h̄l
i.

– SUPl
i: Superior holon of a holon h̄l

i.

Multi-Scale Hierarchical Architecture The system architecture, shown in
Fig. 3, includes two holarchies: H3

CPP that processes data on three levels and
H2

TSS managing knowledge on two levels.

– At level 0: agents are the primary functional layer. They employ models
designed for specific data streams. Proximity to other agents, geographically
or related to the task, allows them to merge outputs and reduce errors. For
example, h̄0

1 and h̄0
2 form Group G1 to fuse their outputs to feed the data

request of a higher-order holon h̄1
1.

However, agents monitoring the same area may employ different models if
their functions require learning different features. Consequently, h̄0

2 and h̄0
3,

as Specialized Students, form Group G4 to learn a shared model under
the supervision of a Teacher holon via Group G5.

– At levels 1 and 2: higher levels above the agents integrate and synthe-
size data from specific areas of the system (e.g., data streams that share

surveillance operations. The Resource Provider role ensures a fair distribution
of the resources among all parties. The Observer role has the ability to produce
perceptions thanks to the data acquired by the Sensor role. The data acquisition
could be based on another CPP.
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Fig. 3: Holonic architecture inspired by the “cheese board” notation [8, 16]. Each
level represents a different hierarchical position, defining both the semantic level
of data and the degree of knowledge specialization. On the left, the H3

CPP in-
stantiates the CPP organization, and on the right, the H2

TS is responsible for
active learning. Agents may assume multiple roles and participate in multiple
holarchies simultaneously.

attributes). The holons in the role Observer , such as h̄1
1 and h̄2

1, elevate the
collected data to a new semantic level.
Holon h̄1

2, a higher order Specialized Student , aggregates validation sets
from h̄0

2 and h̄0
3 (i.e., T 1

2 = V0
2 ∪ V0

3 ), to create a broader and generalized
model.

Generally, each semantic level consolidates knowledge across broader areas
of the system, fostering a holistic view, such as city-scale tracking.
Meanwhile, intermediate layers consisting of Specialized Students synthesize
knowledge from lower levels, to deepen collective task understanding and
increase holons’ universality.

4 Holonic Learning Framework

This section presents mechanisms to create a multilevel learning framework.
Next, it introduces a mechanism to incorporate new nodes by coordinating with
the top layers and assigning each new node to the group whose DNN model is
most accurate in its data stream.

4.1 Holonification

In the holonic terminology, holonification is the process of grouping agents
into a holarchy, resembling complex clustering based on criteria like capabilities
and resource access [14, 15].
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In this Section, we propose a multi-tiered learning structure (illustrated in
Fig. 1), comprising a portfolio of models that range from sensor-specific to uni-
versal, deployable across the entire network. Specifically, upper-layer models
are trained on larger datasets for broader coverage, while lower-layer models
use smaller, more similar datasets for increased specificity. Having intermediate
models at various levels of granularity not only ensures adaptability, but also
supports robust knowledge organization. For example, city-wide vehicle
detection may require multiple models specializing in certain domain represen-
tations [32]. However, these domain-specific models benefit from interactions
with peer models or a more fundamental model that develops a funda-
mental understanding of object detection tasks [52]. Our agent-based modeling
offers this flexibility to develop these vertical and horizontal interactions.

Formally, each holon in a layer l > 0 is allocated a budget Bl = B0 · 10l,
where B0 represents the number of images used for model fine-tuning. This
budget limits the training of each layer to at most 10l from the preceding levels,
ensuring that the size of the data set of any holon h̄l

i does not exceed Bl, i.e.,
|T l

i | ≤ Bl.
To merge holons, we adopt the premise from Manjah et al. [32] that models

with similar performance have learned from comparable data.
The remainder of this section describes the holonification process.

STEP 1 – Cross-Performance Vector. Assuming holons can transfer their model
weights to each other within the same layer. Each holon h̄l

i computes a perfor-
mance vector Pi by evaluating the effectiveness of models from other holons and
itself in the same layer on its own validation data V l

i , according to Equation 1.

P l
i :=

[
f
(
θl1,V l

i

)
; · · · ; f

(
θlN l ,V l

i

) ]T (1)

Where θj denotes the model parameters of the j-th holon h̄l
j , j ∈ 1, · · · , N l and

f(θ,V) the score of a model performance θ against a validation set V.

STEP 2 – Pair-Wise Distance Computation. To quantify the differences be-
tween models trained in different domains, holons broadcast their cross-perfor-
mance vectors P l

i defined in Equation 1 and compute a pairwise distance between
their performance in the datasets and the performance of the other holons. Gen-
erally, for a holon h̄l

i, the distance to a holon h̄l
j is given by Equation 2.

Di(h̄
l
j) =

√√√√ N l∑
k=1

(P l
ik − P l

jk)
2 (2)

STEP 3 – Agglomerative Merging using Single Linkage. The merging of the
holons is an iterative process. The set of holons {h̄l

1, · · · , h̄
l
N l} creates a higher-

order holarchy Hl+1 to which they belong.
At each iteration, the set of holons h̄l transmits their smallest linkage dis-

tance. This is defined as the minimal distance between the inner members of the
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holons. Formally, for two holons h̄l
A and h̄l

B , the single link distance L(h̄l
A, h̄

l
B)

is given by Equation 3.

L(h̄l
A, h̄

l
B) = min{Dij : h̄

l−1
i ∈ SUB(h̄l

A), h̄
l−1
j ∈ SUB(h̄l

B)} (3)

After all linkages are evaluated, the pair with the smallest distance merges,
involving a combination of their datasets. After merging, the set of holons has
decreased, {h̄l

1, · · · , h̄
l
N l−1}, and the linkage distances are updated for all agents.

The process ends if there remains only one holon or if the previous merge
leads to a holon with a dataset size that exceeds Bl+1. In the second scenario,
the process goes back to STEP 1 for the set {h̄l+1

1 , · · · , h̄l
N l+1}.

STEP 4 – Model Training. The final steps consist in training the cluster models
on the aggregated data sets.

4.2 Domain Integration Process

A new holon h̄+ joins a holarchy HL of L levels. Its integration starts at the
highest hierarchical level, L, and progresses downward to the level 1. At each
level, h̄+ is associated with the holon h̄1

∗ that shows the highest performance in
the new set of unit validations, V+, subject to meeting budget constraints, i.e.,
|T l

∗ ∪ T+| ≤ Bl. Once integrated, h̄+’s dataset merges with that of the selected
holon, h̄l

∗, necessitating a retraining of the aggregated dataset. If no appropriate
holons are available at a required level, the system can initiate reholonification,
integrating h̄+ with the set {h̄l

1, · · · , h̄
l
N l}. A pseudocode is provided in Algo-

rithm 1.

Algorithm 1 Integration of a New Holon into a Holarchy

Require: HL: L-level learning holarchy
Require: h̄+: A holon
1: for l = L downto 1 do

▷ Identify sub-holons whose training sets do not exceed budget
constraints

2: FreeHolons← h̄l : |T l ∪ T+| ≤ Bl

3: if FreeHolons = ∅ then
4: Reholonification with the set {h̄l

1, · · · , h̄l
Nl} ∪ h̄+.

5: break
6: end if

▷ Select the optimal sub-holon for integration
7: FreeModels← FreeHolons’s models
8: θl∗ ← argmax θl∈FreeModels f

(
θl,V+

)
9: Update model parameters θl∗ using T l

∗ ∪ T+.
▷ Integrate h̄+ into holon of θl∗

10: SUB(h̄l
∗)← SUB(h̄l

∗) ∪ h̄+

11: end for



10 D. Manjah et al.

Remark 1. The cost of holonification is compared to integration on-the-fly on the
basis of the amount of communication between the holons. It is built on a single
linkage-Hierarchical Clustering, with a complexity of O

(
N2

)
[43]. On the other

hand, the on-the-fly mechanism has a O(N + L) complexity. This corresponds
to the worst-case scenario in which the new agent is compared to all holons
from the upper layer L to layer 0. This mechanism thus offers a cost-effective
integration in comparison with a reholonification.

4.3 Research Questions

From the setup and challenges described above, we formulate the following re-
search questions:

1. Given a new data stream, how can we determine the most suitable existing
model for fine-tuning?

2. Assume an effective integration of new sensors based on similarity with a
group of sensors from the system:
(a) What are the consequences on model accuracy upon the integration of

a new agent?
(b) How does the accuracy of the model scale when incrementally integrating

N+ new agents versus performing a full system reorganization?
3. What are the long-term accuracy trade-offs between retaining versus dis-

carding data from removed sensors?

5 Materials and Methods

The datasets, the training procedure, and the evaluation protocol are presented
in this Section.

5.1 Datasets

We used two city-focused video datasets for a total of 16 cameras.

WALT [40] Features footage from nine static cameras over 1–4 weeks. Sampling
rates vary (5,000–40,000 frames/week), with temporal bursts and diverse weather
conditions (snow, rain, day/night).

AI-City [34]. Seven annotated videos, each approximately five minutes at 10 FPS.
Camera angles and sensor types vary (vertical, dome, PTZ), ensuring coverage
of multiple representation contexts.

5.2 Model Training

We follow Stream-Based Active Distillation (SBAD) [32] sampling 256 images
per camera. A large YOLOv8x6 Teacher (261.1 GFLOPs) pseudolabels these
samples. Each Student model is a YOLOv8n (8.7 GFLOPs), initialized with
COCO weights [29], then fine-tuned at a learning rate of 0.01 (unless otherwise
indicated).
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5.3 Evaluation

We report the mean Average Precision (mAP) across various Intersection over
Union (IoU) thresholds, spanning from 0.50 to 0.95 in increments of 0.05 (mAP50-
95). We evaluated the holon’s performance on its associated datasets.

6 Results

We begin by evaluating our holonification approach under different budgets and
then proceed with incremental integration, departure handling, and knowledge-
transfer experiments.

6.1 Holonification Baseline Performance

We conducted a holonification, as proposed in Section 4.1, on a dataset com-
prising sixteen cameras. We set a multilayer budget framework Bl = 256 · 10l,
implying that layer 0 holons do not exceed 256 training samples, and successive
layers cannot exceed 10l sub-holons for a holon h̄l. Table 1 confirms that the

Table 1: Holonification with varying budgets. Shown are the final groupings and
average mAP50-95 for the 16-camera dataset.
Layer Bl mAP50-95 Holonic Structure

2 25600 0.65 H2 : {h̄1
1, h̄

1
2, h̄

1
3}

1 2560 0.66

H1
1 : {h̄0

1, h̄
0
2, h̄

0
3, h̄

0
9}

H1
2 : {h̄0

4, h̄
0
5, h̄

0
6, h̄

0
7, h̄

0
8}

H1
3 : {h̄0

16, h̄
0
17, h̄

0
18, h̄

0
19, h̄

0
20, h̄

0
22, h̄

0
24}

0 256 0.67 H1 : {h̄0
1, . . . , h̄

0
16}

YOLOv8nCOCO N.A 0.498 N.A

models require specificity to achieve maximum performance.

6.2 Transfer, Integration and Departure

Model Transfer Upon Increment The transferability of holons across new,
although similar, domains is investigated. Table 2 details the performance results
for models trained in an all-but-one combination of domains as well as across all
domains.

The results indicate that models struggle to transfer, even across similar
camera domains, reinforcing the need to integrate the newcomer in a cluster,
and the local retraining the cluster.
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Table 2: mAP50-95 scores for models trained under an all-but-one camera to
assess the transferability of those models on the remaining camera. A baseline
is also provided where the model is trained across all cameras. Each model is
trained for 10000 iterations.

f(θ,Vi)

Cluster V0
1 V0

2 V0
3 V0

9

θH
1
1 \ {h̄0

1} 0.38 0.65 0.65 0.47
θH

1
1 \ {h̄0

2} 0.46 0.57 0.66 0.46
θH

1
1 \ {h̄0

3} 0.49 0.66 0.65 0.48
θH

1
1 \ {h̄0

9} 0.47 0.64 0.66 0.42

θH
1
1 0.46 0.65 0.66 0.47

Incremental Integration We evaluated the impact of integrating N+ new
units into a holonified system, structured with budget limits of Bl = 256 · 10l.
Using our integration mechanism described in Algorithm 1, we evaluated two
scenarios: integrating one (N+ = 1) and three (N+ = 3) additional agents.

In 16 agent configurations, the incremental integration maintained an average
mAP50-95 of 0.66 ± 0.003 (N+ = 1) and 0.66 ± 0.006 (N+ = 3), showing no
degradation compared to the baseline in Table 1.

Agent Departure When a sensor h̄0
i leaves, its data Ti may be retained or

discarded. We successively simulate the exit of each agent and track the accuracy
of the global model on (i) remaining and (ii) left sensors. As Fig. 4 shows,
removing a sensor’s data yields small gains for the remaining sensors, but severely
reduces performance if that sensor later re-enters the system. Note that, upon
the departure of an agent, their data set T 0

i is removed from the collective data
set T 2, and the model is re-trained for 10,000 iterations at a learning rate of
0.005.

6.3 Inter-Holonic Knowledge Transfer

We test how effectively a holon trained on existing cameras can accelerate train-
ing and improve the peak accuracy of a newcomer domain. Specifically, we con-
ducted 16 trials, each excluding one camera from the data set to simulate a
“newcomer”. The following pre-trained models serve as initial weights:

– θ2: Global holon (trained on 15 cameras),
– θ1∗: Group-specific holon,
– YOLOv8nCOCO: General-purpose off-the-shelf model.

Fig. 5 shows that θ2 or θ1∗ consistently outperform the generic COCO base-
line when fine-tuning the newcomer camera. Training spanned 5 epochs with a
learning rate of 0.005.
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Fig. 4: Difference in h̄2 model performance between retaining and discarding
each departed sensor’s data. Blue: remaining sensors; yellow: departed sensors.
Results show marginal gains for remaining sensors but a marked degradation on
departed sensors.
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Fig. 5: mAP50-95 per epoch for a new model starting from universal model θ2,
group-specific θ1∗, and general-purpose θCOCO. The superiority of θ2 highlights
the efficiency of selecting a pretrained model closer to the source.
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7 Discussion

7.1 Insights

Our experiments confirm that a certain level of domain specificity improves ac-
curacy (Section 6.1), though it also increases the number of models to maintain.
Budget constraints help contain this growth but can reduce performance gains
from specialized holons. Meanwhile, leveraging broader universal models accel-
erates learning for new domains (Section 6.3).

In the context of open systems (Section 6.2), our sanity check shows that
a straightforward model transfer performs under, even when the model comes
from similar domains. The observed performance gap motivated the development
of integration mechanisms, which proved effective, but the experiments do not
provide conclusive evidence regarding the maximum number of agents that can
be integrated without a performance decline. Finally, agent departure highlights
a trade-off between short-term gains and relearning costs if the environment
reappears. In other words, discarding data should be considered in terms of
agents’ turnover rate.

7.2 Limitations

Machine Learning Lifecycle Machine learning based models are also subject to
feedback loops, where data and interactions with the external world influence
their behavior in unintentional ways [42]. The subsequent design of machine
learning systems should account for the fact that their behavior evolves with
environmental data and user interactions. This includes providing control mech-
anisms to avoid the accumulation of errors due to the self-supervised nature of
the system.

Stress-tests We need to further stress test the system; that is, starting with a
system of size N , stress tests can evaluate how many new components (N+) can
be integrated without compromising the quality of service.

7.3 Perspectives

Modern systems integrate heterogeneous approaches (e.g., physics-based model-
ing vs. deep learning) and diverse sensing modalities (e.g., cameras, radar), pro-
ducing richer analytics [5, 33]. Our architecture abstracts the holonic paradigm
sufficiently to accommodate such heterogeneity. However, specialized coordina-
tion modules could further optimize collaborative performance among different
modalities.

8 Conclusions

We present an organizational holonic learning design coupled with active learn-
ing to address the challenges of scaling learning in multisensor networks. Our
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self-organization mechanism, grounded in the specificity-diversity trade-off, al-
lows for the establishment of various granularity levels and handles sensor addi-
tion and removal while maintaining strong predictive performance. Experimental
results highlight the benefits of vertical and horizontal knowledge transfer, al-
though more stress testing is needed to refine the upper limits on system growth.
We also note that self-supervised processes risk model drift without robust mon-
itoring, which may cause issues in autoscaling and autotuning. Future work aims
to design colearning mechanisms for heterogeneous methods.



Bibliography

[1] Abbas, H.A.: Organization of multi-agent systems: An overview. Interna-
tional Journal of Intelligent Information Systems 4(3), 46 (2015), https:
//doi.org/10.11648/j.ijiis.20150403.11

[2] Beal, J., Viroli, M., Pianini, D., Damiani, F.: Self-adaptation to device dis-
tribution changes. In: 2016 IEEE 10th International Conference on Self-
Adaptive and Self-Organizing Systems (SASO), pp. 60–69 (2016), https:
//doi.org/10.1109/SASO.2016.12

[3] Bernon, C., Gleizes, M.P., Peyruqueou, S., Picard, G.: Adelfe: A methodol-
ogy for adaptive multi-agent systems engineering. In: Petta, P., Tolksdorf,
R., Zambonelli, F. (eds.) Engineering Societies in the Agents World III,
pp. 156–169, Springer Berlin Heidelberg, Berlin, Heidelberg (2003), ISBN
978-3-540-39173-9, https://doi.org/10.1007/3-540-39173-8_12

[4] Cacciarelli, D., Kulahci, M.: Active learning for data streams: a survey. Ma-
chine Learning (2023), https://doi.org/10.1007/s10994-023-06454-2

[5] Campagner, A., Ciucci, D., Cabitza, F.: Aggregation models in ensem-
ble learning: A large-scale comparison. Information Fusion 90, 241–252
(2023), ISSN 1566-2535, https://doi.org/https://doi.org/10.1016/j.
inffus.2022.09.015

[6] Castro, J., Kolp, M., Mylopoulos, J.: Towards requirements-driven in-
formation systems engineering: the tropos project. Information Sys-
tems 27(6), 365–389 (2002), ISSN 0306-4379, https://doi.org/10.1016/
S0306-4379(02)00012-1

[7] Chen, J., Gao, C., Sun, L., Sang, N.: Ccsd: cross-camera self-distillation for
unsupervised person re-identification. Visual Intelligence 1(1), 27 (2023)

[8] Cossentino, M., Gaud, N., Hilaire, V., Galland, S., Koukam, A.: Aspecs:
an agent-oriented software process for engineering complex systems. Au-
tonomous Agents and Multi-Agent Systems 20(2), 260–304 (2010), https:
//doi.org/10.1007/s10458-009-9099-4

[9] Diaconescu, A., Frey, S., Müller-Schloer, C., Pitt, J., Tomforde, S.: Goal-
oriented holonics for complex system (self-)integration: Concepts and case
studies. In: 2016 IEEE 10th International Conference on Self-Adaptive and
Self-Organizing Systems (SASO), pp. 100–109 (2016), https://doi.org/
10.1109/SASO.2016.16

[10] Dong, J., Liu, R., Qiu, Y., Crossan, M.: Should knowledge be distorted?
managers’ knowledge distortion strategies and organizational learning in
different environments. The Leadership Quarterly 32(3), 101477 (2021),
ISSN 1048-9843

[11] Esmaeili, A., Gallagher, J.C., Springer, J.A., Matson, E.T.: Hamlet: A hier-
archical agent-based machine learning platform. ACM Trans. Auton. Adapt.
Syst. 16(3–4) (jul 2022), ISSN 1556-4665

[12] Esmaeili, A., Gallagher, J.C., Springer, J.A., Matson, E.T.: Hamlet: A
hierarchical agent-based machine learning platform. ACM Trans. Auton.

https://doi.org/10.11648/j.ijiis.20150403.11
https://doi.org/10.11648/j.ijiis.20150403.11
https://doi.org/10.11648/j.ijiis.20150403.11
https://doi.org/10.11648/j.ijiis.20150403.11
https://doi.org/10.1109/SASO.2016.12
https://doi.org/10.1109/SASO.2016.12
https://doi.org/10.1109/SASO.2016.12
https://doi.org/10.1109/SASO.2016.12
https://doi.org/10.1007/3-540-39173-8_12
https://doi.org/10.1007/3-540-39173-8_12
https://doi.org/10.1007/s10994-023-06454-2
https://doi.org/10.1007/s10994-023-06454-2
https://doi.org/https://doi.org/10.1016/j.inffus.2022.09.015
https://doi.org/https://doi.org/10.1016/j.inffus.2022.09.015
https://doi.org/https://doi.org/10.1016/j.inffus.2022.09.015
https://doi.org/https://doi.org/10.1016/j.inffus.2022.09.015
https://doi.org/10.1016/S0306-4379(02)00012-1
https://doi.org/10.1016/S0306-4379(02)00012-1
https://doi.org/10.1016/S0306-4379(02)00012-1
https://doi.org/10.1016/S0306-4379(02)00012-1
https://doi.org/10.1007/s10458-009-9099-4
https://doi.org/10.1007/s10458-009-9099-4
https://doi.org/10.1007/s10458-009-9099-4
https://doi.org/10.1007/s10458-009-9099-4
https://doi.org/10.1109/SASO.2016.16
https://doi.org/10.1109/SASO.2016.16
https://doi.org/10.1109/SASO.2016.16
https://doi.org/10.1109/SASO.2016.16


HAD for Scalable Multi-Agent Learning 17

Adapt. Syst. 16(3–4) (Jul 2022), ISSN 1556-4665, https://doi.org/10.
1145/3530191

[13] Esmaeili, A., Ghorrati, Z., Matson, E.T.: Holonic learning: A flexible agent-
based distributed machine learning framework. In: Proceedings of the 23rd
International Conference on Autonomous Agents and Multiagent Systems,
p. 525–533, AAMAS ’24, International Foundation for Autonomous Agents
and Multiagent Systems, Richland, SC (2024), ISBN 9798400704864

[14] Esmaeili, A., Mozayani, N., Jahed-Motlagh, M.R., Matson, E.T.: Towards
topological analysis of networked holonic multi-agent systems. In: Ad-
vances in Practical Applications of Survivable Agents and Multi-Agent Sys-
tems: The PAAMS Collection, pp. 42–54, Springer International Publishing,
Cham (2019), ISBN 978-3-030-24209-1

[15] Esmaeili, A., Mozayani, N., Motlagh, M.R.J., Matson, E.T.: The impact
of diversity on performance of holonic multi-agent systems. Engineering
Applications of Artificial Intelligence 55, 186–201 (2016), ISSN 0952-1976

[16] Feraud, M., Galland, S.: First comparison of sarl to other agent-
programming languages and frameworks. Procedia Computer Science 109,
1080 – 1085 (2017), ISSN 1877-0509, https://doi.org/https://doi.org/
10.1016/j.procs.2017.05.389

[17] Fowler, M.: Refactoring: improving the design of existing code. Addison-
Wesley Professional (2018)

[18] French, R.M.: Catastrophic forgetting in connectionist networks. Trends in
Cognitive Sciences 3(4), 128–135 (1999), ISSN 1364-6613, https://doi.
org/10.1016/S1364-6613(99)01294-2

[19] Gherardi, S.: Learning: Organizational. In: International Encyclopedia of
the Social & Behavioral Sciences (Second Edition), pp. 695–698, Elsevier,
Oxford, second edition edn. (2015), ISBN 978-0-08-097087-5

[20] Ghosh, A., Chung, J., Yin, D., Ramchandran, K.: An efficient framework for
clustered federated learning. In: Advances in Neural Information Processing
Systems, vol. 33, pp. 19586–19597, Curran Associates, Inc. (2020)

[21] Gleizes, M.P.: Self-adaptive complex systems. In: Multi-Agent Systems, pp.
114–128, Springer, Berlin, Heidelberg (2012), ISBN 978-3-642-34799-3

[22] Gupta, O., Raskar, R.: Distributed learning of deep neural network over
multiple agents. Journal of Network and Computer Applications 116, 1–8
(2018), ISSN 1084-8045, https://doi.org/10.1016/j.jnca.2018.05.003

[23] Hilal, A.R., Basir, O.A.: A scalable sensor management architecture using
BDI model for pervasive surveillance. IEEE Systems Journal 9(2), 529–541
(2015), ISSN 19379234, https://doi.org/10.1109/JSYST.2014.2334071

[24] Hinton, G., Vinyals, O., Dean, J.: Distilling the knowledge in a neural net-
work. NIPS 2014 Deep Learning Workshop (2015)

[25] Hosseinalipour, S., Brinton, C.G., Aggarwal, V., Dai, H., Chiang, M.: From
federated to fog learning: Distributed machine learning over heterogeneous
wireless networks. IEEE Communications Magazine 58(12), 41–47 (2020)

[26] Jocher, G., Chaurasia, A., Qiu, J.: Ultralytics YOLO (2023), URL https:
//github.com/ultralytics/ultralytics

[27] Koestler, A.: The ghost in the machine. Hutchinson, London, UK (1967)

https://doi.org/10.1145/3530191
https://doi.org/10.1145/3530191
https://doi.org/10.1145/3530191
https://doi.org/10.1145/3530191
https://doi.org/https://doi.org/10.1016/j.procs.2017.05.389
https://doi.org/https://doi.org/10.1016/j.procs.2017.05.389
https://doi.org/https://doi.org/10.1016/j.procs.2017.05.389
https://doi.org/https://doi.org/10.1016/j.procs.2017.05.389
https://doi.org/10.1016/S1364-6613(99)01294-2
https://doi.org/10.1016/S1364-6613(99)01294-2
https://doi.org/10.1016/S1364-6613(99)01294-2
https://doi.org/10.1016/S1364-6613(99)01294-2
https://doi.org/10.1016/j.jnca.2018.05.003
https://doi.org/10.1016/j.jnca.2018.05.003
https://doi.org/10.1109/JSYST.2014.2334071
https://doi.org/10.1109/JSYST.2014.2334071
https://github.com/ultralytics/ultralytics
https://github.com/ultralytics/ultralytics


18 D. Manjah et al.

[28] Le, J., Lei, X., Mu, N., Zhang, H., Zeng, K., Liao, X.: Federated continuous
learning with broad network architecture. IEEE Transactions on Cybernet-
ics 51(8), 3874–3888 (2021), ISSN 2168-2275, https://doi.org/10.1109/
TCYB.2021.3090260

[29] Lin, T., Maire, M., Belongie, S.J., Bourdev, L.D., Girshick, R.B., Hays,
J., Perona, P., Ramanan, D., Dollár, P., Zitnick, C.L.: Microsoft COCO:
common objects in context. CoRR abs/1405.0312 (2014)

[30] Ma, Z., Xu, Y., Xu, H., Liu, J., Xue, Y.: Like attracts like: Personalized
federated learning in decentralized edge computing. IEEE Transactions on
Mobile Computing 23(2), 1080–1096 (2024), ISSN 1558-0660

[31] Manjah, D., Cacciarelli, D., Standaert, B., Benkedadra, M., de Hertaing,
G.R., Macq, B., Galland, S., De Vleeschouwer, C.: Stream-based active dis-
tillation for scalable model deployment. In: Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition (CVPR) Work-
shops, pp. 4998–5006 (2023)

[32] Manjah, D., Cacciarelli, D., Vleeschouwer, C.D., Macq, B.: Camera cluster-
ing for scalable stream-based active distillation (2024)

[33] Manjah, D., Galland, S., Vleeschouwer, C.D., Macq, B.: Autonomous meth-
ods in multisensor architecture for smart surveillance. In: Proceedings of the
16th International Conference on Agents and Artificial Intelligence, vol. 3,
pp. 824–832 (2024), ISBN 978-989-758-680-4, ISSN 2184-433X

[34] Naphade, M., Wang, S., Anastasiu, D.C., Tang, Z., Chang, M.C., Yang, X.,
Yao, Y., Zheng, L., Chakraborty, P., Lopez, C.E., Sharma, A., Feng, Q.,
Ablavsky, V., Sclaroff, S.: The 5th ai city challenge. In: The IEEE Con-
ference on Computer Vision and Pattern Recognition (CVPR) Workshops
(2021)

[35] Nezamoddini, N., Gholami, A.: A survey of adaptive multi-agent networks
and their applications in smart cities. Smart Cities 5(1), 318–347 (2022),
ISSN 2624-6511

[36] Omicini, A.: Soda: Societies and infrastructures in the analysis and design
of agent-based systems. In: Agent-Oriented Software Engineering, pp. 185–
193, Springer Berlin Heidelberg (2001), ISBN 978-3-540-44564-7

[37] Pavón, J., Gómez-Sanz, J.: Agent oriented software engineering with inge-
nias. In: Multi-Agent Systems and Applications III, pp. 394–403, Springer,
Berlin, Heidelberg (2003), ISBN 978-3-540-45023-8

[38] Perera, C., Zaslavsky, A., Christen, P., Georgakopoulos, D.: Sensing as a
service model for smart cities supported by Internet of Things. Transactions
on Emerging Telecommunications Technologies 25(1), 81–93 (2014), ISSN
2161-3915

[39] Porter, B., Rodrigues Filho, R.: Distributed emergent software: Assembling,
perceiving and learning systems at scale. In: 2019 IEEE 13th International
Conference on Self-Adaptive and Self-Organizing Systems (SASO), pp. 127–
136 (2019)

[40] Reddy, N.D., Tamburo, R., Narasimhan, S.G.: Walt: Watch and learn
2d amodal representation from time-lapse imagery. In: Proceedings of

https://doi.org/10.1109/TCYB.2021.3090260
https://doi.org/10.1109/TCYB.2021.3090260
https://doi.org/10.1109/TCYB.2021.3090260
https://doi.org/10.1109/TCYB.2021.3090260


HAD for Scalable Multi-Agent Learning 19

the IEEE/CVF Conference on Computer Vision and Pattern Recognition
(CVPR), pp. 9356–9366 (2022)

[41] Rodriguez, S., Hilaire, V., Gaud, N., Galland, S., Koukam, A.: Holonic
Multi-Agent Systems. Natural Computing Series 37, 251–279 (2011),
https://doi.org/10.1007/978-3-642-17348-6_11

[42] Sculley, D., Holt, G., Golovin, D., Davydov, E., Phillips, T., Ebner, D.,
Chaudhary, V., Young, M., Crespo, J.F., Dennison, D.: Hidden technical
debt in machine learning systems. In: Advances in Neural Information Pro-
cessing Systems, vol. 28, Curran Associates, Inc. (2015)

[43] Sibson, R.: SLINK: An optimally efficient algorithm for the single-link clus-
ter method. The Computer Journal 16(1), 30–34 (1973), ISSN 0010-4620

[44] Terabe, M., Washio, T., Katai, O., Sawaragi, T.: A study of organiza-
tional learning in multiagents systems. In: Distributed Artificial Intelligence
Meets Machine Learning Learning in Multi-Agent Environments, pp. 168–
179, Springer Berlin Heidelberg, Berlin, Heidelberg (1997), ISBN 978-3-540-
69050-4

[45] Valencia-Jiménez, J.J., Fernández-Caballero, A.: Holonic multi-agent sys-
tems to integrate independent multi-sensor platforms in complex surveil-
lance. Proceedings - IEEE International Conference on Video and Signal
Based Surveillance 2006, AVSS 2006 pp. 49–54 (2006), https://doi.org/
10.1109/AVSS.2006.58

[46] Wautelet, Y., Schinckus, C., Kolp, M.: Agent-based software engineering,
paradigm shift, or research program evolution. In: Research Anthology on
Recent Trends, Tools, and Implications of Computer Programming, pp.
1642–1654, IGI Global (2021)

[47] Weyns, D., Gerostathopoulos, I., Abbas, N., Andersson, J., Biffl, S., Brada,
P., Bures, T., Di Salle, A., Galster, M., Lago, P., Lewis, G., Litoiu, M.,
Musil, A., Musil, J., Patros, P., Pelliccione, P.: Self-adaptation in industry:
A survey. ACM Trans. Auton. Adapt. Syst. 18(2) (2023), ISSN 1556-4665

[48] Wolpert, D.H., Macready, W.G.: No free lunch theorems for optimization.
IEEE Transactions on Evolutionary Computation 1(1), 67–82 (1997), ISSN
1089778X, https://doi.org/10.1109/4235.585893

[49] Wooldridge, M., Jennings, N.R., Kinny, D.: The gaia methodology for agent-
oriented analysis and design. Autonomous Agents and Multi-Agent Systems
3(3), 285–312 (2000), https://doi.org/10.1023/A:1010071910869

[50] Xu, B., Xia, W., Wen, W., Liu, P., Zhao, H., Zhu, H.: Adaptive hierarchical
federated learning over wireless networks. IEEE Transactions on Vehicular
Technology 71(2), 2070–2083 (2021)

[51] Yang, Y., Luo, J., Wen, Y., Slumbers, O., Graves, D., Bou Ammar, H.,
Wang, J., Taylor, M.E.: Diverse auto-curriculum is critical for successful
real-world multiagent learning systems. In: Proceedings of the 20th Inter-
national Conference on Autonomous Agents and MultiAgent Systems, p.
51–56, AAMAS ’21, International Foundation for Autonomous Agents and
Multiagent Systems, Richland, SC (2021), ISBN 9781450383073

[52] Yin, D., Pananjady, A., Lam, M., Papailiopoulos, D., Ramchandran, K.,
Bartlett, P.: Gradient diversity: a key ingredient for scalable distributed

https://doi.org/10.1007/978-3-642-17348-6_11
https://doi.org/10.1007/978-3-642-17348-6_11
https://doi.org/10.1109/AVSS.2006.58
https://doi.org/10.1109/AVSS.2006.58
https://doi.org/10.1109/AVSS.2006.58
https://doi.org/10.1109/AVSS.2006.58
https://doi.org/10.1109/4235.585893
https://doi.org/10.1109/4235.585893
https://doi.org/10.1023/A:1010071910869
https://doi.org/10.1023/A:1010071910869


20 D. Manjah et al.

learning. In: Proceedings of the Twenty-First International Conference on
Artificial Intelligence and Statistics, Proceedings of Machine Learning Re-
search, vol. 84, pp. 1998–2007, PMLR (2018)


	Holonic Active Distillation for Scalable Multi-Agent Learning in Multi-Sensor Systems

