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Abstract. Recent algorithms allow decentralised agents, possibly con-
nected via a communication network, to learn equilibria in mean-field
games from a non-episodic run of the empirical system. However, these
algorithms are for tabular settings: this computationally limits the size
of agents’ observation space, meaning the algorithms cannot handle any-
thing but small state spaces, nor generalise beyond policies depending
only on the agent’s local state to so-called ‘population-dependent’ poli-
cies. We address this limitation by introducing function approximation
to the existing setting, drawing on the Munchausen Online Mirror De-
scent method that has previously been employed only in finite-horizon,
episodic, centralised settings. While this permits us to include the mean
field in the observation for players’ policies, it is unrealistic to assume
decentralised agents have access to this global information: we therefore
also provide new algorithms allowing agents to locally estimate the global
empirical distribution, and to improve this estimate via inter-agent com-
munication. We prove theoretically that exchanging policy information
helps networked agents learn faster than both independent and even
centralised agents in function-approximation settings. Our experiments
demonstrate this happening empirically, and show that the communica-
tion network allows decentralised agents to estimate the mean field for
population-dependent policies.

Keywords: Mean-field games · Decentralised learning · Deep reinforce-
ment learning · Networked communication.

1 Introduction

The mean-field game (MFG) framework [24,25] can be used to circumvent diffi-
culties faced by learning paradigms, such as multi-agent reinforcement learning,
regarding computational scalability as the number of agents grows [59, 63]. It
models a representative agent as interacting not with other individual agents in
the population on a per-agent basis, but instead with a distribution over the
other agents, called the mean field. The MFG framework analyses the limit-
ing case when the population consists of an infinite number of symmetric and
anonymous agents, that is, they have identical reward and transition functions
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which depend on the mean-field distribution rather than on the actions of spe-
cific other players. The solution to this game is the mean-field Nash equilibrium
(MFNE), which can be used as an approximation for the Nash equilibrium (NE)
in a large but finite population game (which is harder to solve in itself), with
the error in the solution reducing as the number of agents N tends to infin-
ity [3,9,21,40,45,58]. MFGs have thus been used as an engineering approach for a
wide variety of real-world systems, including autonomous vehicles [23,33]; traffic
signal control [22]; crowdsensing [56]; electric vehicle charging [13, 20]; commu-
nication networks [48, 49, 54, 61, 65]; swarms [29]; data collection by UAVs [14];
edge computing [1, 31, 41]; cloud resource management [30]; smart grids, and
other large-scale cyber-physical systems [4, 5, 17,32,47,50,53].

Recent works argue that classical algorithms for solving MFGs rely on as-
sumptions and methods that are likely to be undesirable in real-world engineering
applications, emphasising that desirable qualities for practical MFG algorithms
include: learning from the empirical distribution of N agents (i.e. this distribu-
tion is generated only by the policies of the agents, rather than being updated
by the algorithm itself or an external oracle/simulator); learning online from
a single, non-episodic system run (i.e. similar to above, the population cannot
be arbitrarily reset by an external controller); model-free learning; decentrali-
sation; and fast practical convergence [6, 57]. While these works address these
desiderata, they do so only in settings in which the state and action spaces are
small enough that the Q-function can be represented by a table, limiting their
approaches’ scalability.

Moreover, in those works, as in many others on MFGs, agents only observe
their local state as input to their Q-function (which defines their policy). This
is sufficient when the solved MFG is expected to have a stationary distribution
(‘stationary MFGs’) [3, 6, 27, 52, 57, 62]. However, in reality there are numer-
ous reasons why agents may benefit from being able to respond to the current
distribution. Recent work has thus increasingly focused on these more general
settings where it is necessary for agents to have so-called ‘master policies’ (a.k.a.
population-dependent policies) which depend on both the mean-field distribution
and their local state [7, 8, 27,28,37,51].

The distribution is a large, high-dimensional observation object, taking a
continuum of values. Therefore a population-dependent Q-function cannot be
represented exactly in a table and must be approximated. To address these
limitations while maintaining the desiderata for real-world applications given
in recent works, we introduce function approximation to the MFG setting of
decentralised agents learning online from a single, non-episodic run of the em-
pirical system, allowing this setting to handle larger state spaces and to accept
the mean-field distribution as an observation input. To overcome the difficulties
of training non-linear approximators in this context, we use the so-called ‘Mun-
chausen’ trick, introduced by [46] for single-agent RL, and extended to MFGs
by [28], and to MFGs with population-dependent policies by [51].

We particularly explore this in the context of networked communication be-
tween decentralised agents [6]. We demonstrate that communication brings two
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specific benefits over the purely independent setting (while also removing the
undesirable assumption of a centralised learner, which in the real world may be
unrealistic, a computational bottleneck and a vulnerable single point of failure).
Firstly, when the Q-function is approximated rather than exact, some updates
lead to better performing policies than others. Allowing networked agents to
propagate better performing policies through the population leads to faster learn-
ing than in the purely independent case and often even than in the centralised
case, as we show both theoretically and empirically. Secondly, we argue that in
the real world it is unrealistic to assume that decentralised agents, endowed with
local state observations and limited (if any) communication radius, would be
able to observe the global mean-field distribution and use it as input to their Q-
functions/policies. We therefore additionally contribute two setting-dependent
algorithms by which decentralised agents can estimate the global distribution
from local observations, and further improve their estimates by communication
with neighbours.

We focus on coordination games, where agents can increase their individual
returns by following the same strategy as others and so have an incentive to com-
municate policies, even if the MFG setting itself is technically non-cooperative.
Thus our work can be applied to real-world engineering problems in e.g. traffic
signal control, formation control in swarm robotics, and consensus and synchro-
nisation e.g. for sensor networks [42].1 In summary, our contributions are:

– We introduce, for the first time, function approximation to MFG settings
with decentralised agents. To do this:
• We use Munchausen RL for the first time in an infinite-horizon MFG

context (for finite-horizon see [28,51]).
• This constitutes the first use of function approximation for solving MFGs

from a single, non-episodic run of the empirical system (for tabular set-
tings see [6, 57]).

– Function approximation allows us to explore larger state spaces, and also
settings where agents’ policies depend on the mean-field distribution as well
as their local state.

– Rather than assuming that agents have access to this global knowledge as
in prior works, we present two additional novel algorithms allowing decen-
tralised agents to locally estimate the empirical distribution and to improve
these estimates by inter-agent communication.

– We prove theoretically that networked agents may learn faster than both
centralised and independent agents in the function-approximation setting.

– We support this with extensive experiments, where our results showcase the
two benefits of the decentralised communication scheme, which significantly
outperforms both the independent and centralised settings.

1 We further preempt concerns about the appropriateness of communication in com-
petitive settings by wondering whether self-interested agents would be any more
likely to want to obey a central learner as has usually been assumed. Moreover we
show that self-interested communicating agents can obtain higher returns than in-
dependent agents even in non-coordination games (Fig. 5), indicating that they do
have incentive to communicate.
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The paper structure is as follows. We give preliminaries in Sec. 2 and our core
learning and policy-improvement algorithm in Sec. 3. We present our mean-field
estimation and communication algorithms in Sec. 4, theoretical results in Sec. 5
and experiments in Sec. 6. Appx. C has an extended ‘related work’ section.

2 Preliminaries

2.1 Mean-Field Games

We use the following notation. N is the number of agents in a population, with
S and A representing the finite state and common action spaces. The set of
probability measures on a finite set X is denoted ∆X , and ex ∈ ∆X for x ∈ X is
a one-hot vector with only the entry corresponding to x set to 1, and all others
set to 0. For time t ≥ 0, µ̂t = 1

N

∑N
i=1

∑
s∈S1lsit=ses ∈ ∆S is a vector of length

|S| denoting the empirical categorical state distribution of the N agents at time
t. For agent i ∈ 1 . . . N , i’s policy at time t depends on its observation oit. We
explore three different forms that this observation object can take:

– In the conventional setting, the observation is simply i’s current local state
sit, such that πi(a|oit) = πi(a|sit).

– When the policy is population-dependent, if we assume perfect observability
of the global mean-field distribution then we have oit = (sit, µ̂t).

– It is unrealistic to assume that decentralised agents with a possibly limited
communication radius can observe the global mean field, so we allow agents
to form a local estimate ˜̂µi

t which can be improved by communication with
neighbours. Here we have oit = (sit,

˜̂µi
t).

In the following definitions we focus on the population-dependent case when
oit = (sit, µ̂t), and clarify afterwards the connection to the other observation cases.
Thus the set of policies is Π = {π : S ×∆S → ∆A}, and the set of Q-functions
is denoted Q = {q : S ×∆S ×A → R}.

Definition 1 (N -player symmetric anonymous games). An N-player stochas-
tic game with symmetric, anonymous agents is given by the tuple ⟨N , S, A, P ,
R, γ⟩, where A is the action space, identical for each agent; S is the identical
state space of each agent, such that their initial states are {si0}Ni=1 ∈ SN and their
policies are {πi}Ni=1 ∈ ΠN . P : S × A × ∆S → ∆S is the transition function
and R : S × A × ∆S → [0,1] is the reward function, which map each agent’s
local state and action and the population’s empirical distribution to transition
probabilities and bounded rewards, respectively, i.e. ∀i = 1, . . . , N :

sit+1 ∼ P (·|sit, ait, µ̂t), rit = R(sit, a
i
t, µ̂t).

At the limit as N → ∞, the infinite population of agents can be characterised
as a limit distribution µ ∈ ∆S ; the infinite-agent game is termed an MFG.
The so-called ‘mean-field flow’ µ is given by the infinite sequence of mean-field
distributions s.t. µ =(µt)t≥0.
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Definition 2 (Induced mean-field flow). We denote by I(π) the mean-field
flow µ induced when all the agents follow π, where this is generated from π by:

µt+1(s
′) =

∑
s,a

µt(s)π(a|s, µt)P (s′|s, a, µt).

When the mean-field flow is stationary such that the distribution is the
same for all t, i.e. µt = µt+1 ∀t ≥ 0, the policy πi(a|sit, µt) need not depend
on the distribution, such that πi(a|sit, µt) = πi(a|sit), i.e. we recover the classi-
cal population-independent policy. However, for such a population-independent
policy the initial distribution µ0 must be known and fixed in advance, whereas
otherwise it need not be. We also give the following definitions.

Definition 3 (Mean-field discounted return). In a MFG where all agents
follow policy π giving a mean-field flow µ =(µt)t≥0, the expected discounted
return of the representative agent is given by

V (π,µ) = E

[ ∞∑
t=0

γt(R(st, at, µt))

∣∣∣∣ s0∼µ0

at∼π(·|st,µt)
st+1∼P (·|st,at,µt)

]
.

Definition 4 (Best-response (BR) policy). A policy π∗ is a best response
(BR) against the mean-field flow µ if it maximises the discounted return V (·,µ);
the set of these policies is denoted BR(µ), i.e.

π∗ ∈ BR(µ) := argmax
π

V (π,µ).

Definition 5 (Mean-field Nash equilibrium (MFNE)). A pair (π∗,µ∗) is
a mean-field Nash equilibrium (MFNE) if the following two conditions hold:

– π∗ is a best response to µ∗, i.e. π∗ ∈ BR(µ∗);
– µ∗ is induced by π∗, i.e. µ∗ = I(π∗).

π∗ is thus a fixed point of the map BR ◦ I, i.e. π∗ ∈ BR(I(π∗)). If a
population-dependent policy is a MFNE policy for any initial distribution µ0, it
is a ‘master policy’.

Previous works have shown that, in tabular settings, it is possible for a finite
population of decentralised agents (each of which is permitted to have a distinct
population-independent policy πi) to learn the MFNE using only the empirical
distribution µ̂t, rather than the exactly calculated infinite flow µ [6, 57]. This
MFNE may be the goal in itself, or it can in turn serve as an approximate
NE for the harder-to-solve game involving the finite population. In this work
we provide algorithms to perform this process in non-tabular and population-
dependent settings, and demonstrate them empirically.

2.2 (Munchausen) Online Mirror Descent

Instead of performing the computationally expensive process of finding a BR
at each iteration, we can use a form of policy iteration for MFGs called On-
line Mirror Descent (OMD). This involves beginning with an initial policy π0,
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and then at each iteration k, evaluating the current policy πk with respect
to its induced mean-field flow µ = I(πk) to compute its Q-function Qk+1.
To stabilise the learning process, we then use a weighted sum over this and
past Q-functions, and set πk+1 to be the softmax over this weighted sum, i.e.
πk+1(·|s, µ) = softmax

(
1
τq

∑k
κ=0 Qκ(s, µ, ·)

)
. τq is a temperature parameter

that scales the entropy in Munchausen RL [46]; note that this is a different tem-
perature to the one agents use when selecting which communicated parameters
to adopt, denoted τ comm

k (Sec. 3.2).
If the Q-function is approximated non-linearly using neural networks, it is

difficult to compute this weighted sum. The so-called ‘Munchausen trick’ ad-
dresses this by computing a single Q-function that mimics the weighted sum
using implicit regularisation based on the Kullback-Leibler (KL) divergence be-
tween πk and πk+1 [46]. Using this reparametrisation gives Munchausen OMD
(MOMD), detailed further in Sec. 3.1 [28,51]. MOMD does not bias the MFNE,
and has the same convergence guarantees as OMD [19,35,51].

2.3 Networks

We conceive of the finite population as exhibiting two time-varying networks.
The basic definition of such a network is:

Definition 6 (Time-varying network). The time-varying network (Gt)t≥0 is
given by Gt = (N , Et), where N is the set of vertices each representing an agent
i = 1, . . . , N , and the edge set Et ⊆ {(i,j) : i,j ∈ N} is the set of undirected links
present at time t. A network’s diameter dGt

is the maximum of the shortest path
length between any pair of nodes.

One of these networks Gcomm
t defines which agents can communicate informa-

tion to each other at time t. The second network Gobs
t is a graph defining which

agents can observe each other’s states, which we use in general settings for esti-
mating the mean-field distribution from local information. The structure of the
two networks may be identical (e.g. if embodied agents can both observe the
position (state) of, and exchange information with, other agents within a certain
physical distance from themselves), or different (e.g. if agents can observe the
positions of nearby agents, but only exchange information with agents by which
they are linked via satellite, which may connect agents over long distances).

We also define an alternative version of the observation graph that is useful
in a specific subclass of environments, which can most intuitively be thought of
as those where agents’ states are positions in physical space. When this is the
case, we usually think of agents’ ability to observe each other as depending more
abstractly on whether states are visible to each other. We define this visibility
graph as follows:

Definition 7 (Time-varying state-visibility graph). The time-varying state
visibility graph (Gvis

t )t≥0 is given by Gvis
t = (S ′, Evis

t ), where S ′ is the set of ver-
tices representing the environment states S, and the edge set Evis

t ⊆ {(m,n) :
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m,n ∈ S ′} is the set of undirected links present at time t, indicating which states
are visible to each other.

We view an agent in s as able to obtain a count of the number of agents in s′

if s′ is visible to s. The benefit of this graph Gvis
t over Gobs

t is that there is mutual
exclusivity: either an agent in state s is able to obtain a total count of all of the
agents in state s′ (if s′ is visible to s), or it cannot obtain information about any
agent in state s′ (if those states are not visible to each other). Additionally, this
graph permits an agent in state s to observe that there are no agents in state s′ as
long as s′ is visible to s. These benefits are not available if the observability graph
is defined strictly between agents as in Gobs

t , such that using Gvis
t facilitates more

efficient estimation of the global mean-field distribution from local information
in settings where Gvis

t is applicable (see Sec. 4).

3 Learning and Policy Improvement

3.1 Q-Network and Update

Lines 1-14 of our novel Alg. 1 contain the core Q-function/policy update
method. Agent i has a neural network parametrised by θik to approximate its
Q-function: Q̌θi

k
(o, ·). The agent’s policy is given by

πθi
k
(a|o) = softmax

(
1

τq
Q̌θi

k
(o, ·)

)
(a).

We denote the policy πi
k(a|o) for simplicity when appropriate. Each agent main-

tains a buffer (of size M) of collected transitions of the form
(
oit, a

i
t, r

i
t, o

i
t+1

)
.

At each iteration k, they empty their buffer (Line 3) before collecting M new
transitions (Lines 4-7); each decentralised agent i then trains its Q-network Q̌θi

k

via L training updates as follows (Lines 8-12). For training purposes, i also
maintains a target network Q̌

θi,′
k,l

with the same architecture but parameters θi,
′

k,l

copied from θik,l less regularly than θik,l themselves are updated, i.e. only every
ν learning iterations (Line 11). At each iteration l, the agent samples a random
batch Bi

k,l of |B| transitions from its buffer (Line 9), and trains its neural net-
work via stochastic gradient descent to minimise the empirical loss (Def. 8, Line
10). For cl < 0, [·]0cl is a clipping function used in Munchausen RL to prevent
numerical issues if the policy is too close to deterministic, as the log-policy term
is otherwise unbounded [46,51]:

Definition 8 (Empirical loss for Q-network). This is given by

L̂(θ, θ′) = 1

|B|
∑

transition∈Bi
k,l

∣∣∣Q̌θi
k,l
(ot, at)− T

∣∣∣2 ,
where the target T is

T = rt +

[
τq lnπθi,′

k,l

(at|ot)
]0
cl

+ γ
∑

a∈A π
θi,′
k,l

(a|ot+1)

(
Q̌

θi,′
k,l

(ot+1, a)− τq lnπθi,′
k,l

(a|ot+1)

)
.
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Algorithm 1 Networked learning with non-linear function approximation
Require: loop parameters K,M,L,E,Cp, learning parameters γ, τq, |B|, cl, ν,
{τ comm

k }k∈{0,...,K−1}
Require: initial states {si0}N

i=1; t← 0
1: ∀i : Randomly initialise parameters θi0 of Q-networks Q̌θi0

(o, ·), and set πi
0(a|o) =

softmax
(

1
τq
Q̌θi0

(o, ·)
)
(a)

2: for k = 0, . . . ,K − 1 do
3: ∀i: Empty i’s buffer
4: for m = 0, . . . ,M − 1 do
5: Take step ∀i : ai

t ∼ πi
k(·|oit), rit = R(sit, a

i
t, µ̂t), s

i
t+1 ∼ P (·|sit, ai

t, µ̂t); t← t+ 1
6: ∀i: Add ζit to i’s buffer
7: end for
8: for l = 0, . . . , L− 1 do
9: ∀i : Sample batch Bi

k,l from i’s buffer
10: Update θ to minimise L̂(θ, θ′) as in Def. 8
11: If l mod ν = 0, set θ′ ← θ
12: end for
13: Q̌θi

k+1
(o, ·)← Q̌θi

k,L
(o, ·)

14: ∀i : πi
k+1(a|o)← softmax

(
1
τq
Q̌θi

k+1
(o, ·)

)
(a)

15: ∀i : σi
k+1 ← 0

16: for e = 0, . . . , E − 1 evaluation steps do
17: Take step ∀i : ai

t ∼ πi
k(·|oit), rit = R(sit, a

i
t, µ̂t), s

i
t+1 ∼ P (·|sit, ai

t, µ̂t)
18: ∀i : σi

k+1 = σi
k+1 + γe · rit

19: t← t+ 1
20: end for
21: for Cp rounds do
22: ∀i : Broadcast σi

k+1, π
i
k+1

23: ∀i : J i
t ← {j ∈ N : (i, j) ∈ Ecomm

t }

24: ∀i : Select adoptedi ∼ Pr
(
adoptedi = j

)
=

exp (σ
j
k+1

/τcomm
k )∑

x∈Ji
t
exp (σx

k+1
/τcomm

k
)
∀j ∈ J i

t

25: ∀i : σi
k+1 ← σadoptedi

k+1 , πi
k+1 ← πadoptedi

k+1

26: Take step ∀i : ai
t ∼ πi

k(·|oit), rit = R(sit, a
i
t, µ̂t), s

i
t+1 ∼ P (·|sit, ai

t, µ̂t); t← t+ 1
27: end for
28: end for
29: return policies {πi

K}N
i=1

3.2 Communication and Adoption of Parameters

We use the communication network Gcomm
t to share two types of information at

different points in Alg 1. One is used to improve local estimates of the mean-
field distribution (see Sec. 4). The other, described here, is used to privilege
the spread of better performing policy updates through the population, allowing
faster convergence in this networked case than in the independent and even
centralised cases.

We adapt the work in [6] for the function-approximation case, where in our
work agents broadcast the parameters of the Q-network that defines their pol-
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Algorithm 2 Mean-field estimation and communication in general settings
Require: Time-dependent observation graph Gobst , time-dependent communication

graph Gcomm
t , states {sit}Ni=1, number of communication rounds Ce

1: ∀i, s : Initialise count vector υ̂i
t[s] with ∅

2: ∀i : υ̂i
t[s

j
t ] ← {IDj}j∈N :(i,j)∈Eobs

t

3: for ce in 1, . . . , Ce do
4: ∀i : Broadcast υ̂i

t,ce

5: ∀i : J i
t ← {j ∈ N : (i, j) ∈ Ecomm

t }
6: ∀i, s : υ̂i

t,(ce+1)[s]← υ̂i
t,ce [s] ∪ {υ̂

j
t,ce

[s]}j∈Ji
t

7: end for
8: ∀i : counted_agentsit ←

∑
s∈S:υ̂i

t[s] ̸=∅ |υ̂
i
t[s]|

9: ∀i : uncounted_agentsit ← N − counted_agentsit

10: ∀i, s : ˜̂µi
t[s]←

uncounted_agentsit
N×|S|

11: ∀i, s where υ̂i
t[s] is not ∅ : ˜̂µi

t[s]← ˜̂µi
t[s] +

|υ̂i
t[s]|
N

12: return mean-field estimates { ˜̂µi
t}Ni=1

icy, rather than the Q-function table. At each iteration k, after independently
updating their Q-network and policy (Lines 3-14), agents approximate the in-
finite discounted return (Def. 3) of their new policies by collecting rewards for
E steps, and assign the finite-step discounted sum to σi

k+1 (Lines 15-20). They
then broadcast their Q-network parameters along with σi

k+1 (Line 22). Receiving
these from neighbours on the network, agents select which set of parameters to
adopt by taking a softmax over their own and the received estimate values σj

k+1

(Lines 23-25). They repeat the process for Cp rounds. This allows decentralised
agents to adopt policy parameters estimated to perform better than their own,
accelerating learning as shown in Sec. 5.

4 Mean-Field Estimation and Communication

We first describe the most general version of our algorithm for decentralised es-
timation of the empirical categorical mean-field distribution, assuming the more
general setting where Gobs

t applies (see discussion in Sec. 2.3). We subsequently
detail how the algorithm can be made more efficient in environments where the
more abstract visibility graph Gvis

t applies, as in our experimental settings. In
both cases, the algorithm runs to generate the observation object when a step is
taken in the main Alg. 1, i.e. to produce oit = (sit,

˜̂µi
t) for the steps ait ∼ πi

k(·|oit)
in Lines 5, 17 and 26. Both versions of the algorithm are subject to implicit
assumptions, which we discuss methods for addressing in Appx. D.

Algorithm for the General Setting In this setting, our method Alg. 2 as-
sumes each agent is associated with a unique ID to avoid the same agents being
counted multiple times. Each agent maintains a ‘count’ vector υ̂i

t of length |S| i.e.
of the same shape as the vector denoting the true empirical categorical distribu-
tion of agents. Each state position in the vector can hold a list of IDs. Before any
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Algorithm 3 Mean-field estimation and communication for environments with
Gvis
t

Require: Time-dependent visibility graph Gvist , time-dependent communication graph
Gcomm
t , states {sit}Ni=1, number of communication rounds Ce

1: ∀i, s : Initialise count vector υ̂i
t[s] with ∅

2: ∀i and ∀s′ ∈ S ′ : (sit, s
′) ∈ Evist : υ̂i

t[s
′] ←

∑
j∈1,...,N :s

j
t=s′ 1

3: for ce in 1, . . . , Ce do
4: ∀i : Broadcast υ̂i

t,ce

5: ∀i : J i
t = i ∪ {j ∈ N : (i, j) ∈ Ecomm

t }
6: ∀i, s and ∀j ∈ J i

t : υ̂i
t,(ce+1)[s]← υ̂j

t,ce
[s] if υ̂j

t,ce
[s] ̸= ∅

7: end for
8: ∀i : counted_agentsit ←

∑
s∈S:υ̂i

t[s] ̸=∅ υ̂
i
t[s]

9: ∀i : uncounted_agentsit ← N − counted_agentsit
10: ∀i : unseen_statesit ←

∑
s∈S:υ̂i

t[s]=∅ 1

11: ∀i, s where υ̂i
t[s] is not ∅ : ˜̂µi

t[s]←
υ̂i
t[s]

N

12: ∀i, s where υ̂i
t[s] is ∅ : ˜̂µi

t[s]←
uncounted_agentsit

N×unobserved_statesit

13: return mean-field estimates { ˜̂µi
t}Ni=1

actions are taken at each time step t, each agent’s count vector υ̂i
t is initialised

as full of ∅ (‘no count’) markers for each state (Line 1). Then, for each agent j
with which agent i is connected via the observation graph, i places j’s unique ID
in its count vector in the correct state position (Line 2). Next, for Ce ≥ 0 com-
munication rounds, agents exchange their local counts with neighbours on the
communication network (Line 4), and merge these counts with their own count
vector, filtering out the unique IDs of those that have already been counted
(Line 6). If Ce = 0 then the local count will remain purely independent. By
exchanging these partially filled vectors, agents are able to improve their local
counts by adding the states of agents that they have not been able to observe
directly themselves.

After the Ce communication rounds, each state position υ̂i
t[s] either still

maintains the ∅ marker if no agents have been counted in this state, or contains
xs > 0 unique IDs. The local mean-field estimate ˜̂µi

t is then obtained from υ̂i
t

as follows. All states that have a count xs have this count converted into the
categorical probability xs/N (we assume that agents know the total number of
agents in the finite population, even if they cannot observe them all at each t)
(Line 11). The total number of agents counted in υ̂i

t is given by counted_agents
=

∑
s∈S xs, and the agents that have not been observed are uncounted_agents =

N - counted_agents. In this general setting, the unobserved agents are assumed
to be uniformly distributed across all the states, so uncounted_agents/(N×|S|)
is added to all the values in ˜̂µi

t, replacing the ∅ marker for states for which no
agents have been observed (Line 10).
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Algorithm for Visibility-Based Environments We give now the differences
in our estimation algorithm Alg. 3 for the subclass of environments where Gvis

t

applies in place of Gobs
t , i.e. the mutual observability of agents depends in turn on

the mutual visibility of states. The benefit of Gvis
t over Gobs

t is that the former
allows an agent in state s to obtain a correct, complete count xs′ ≥ 0 of all
the agents in state s′, for any state s′ that is visible to s (note the count may
be zero). Unique IDs are thus not required as there is no risk of counting the
same agent twice when receiving communicated counts: either all agents in s′

have been counted, or no count has yet been obtained for s′. This simplifies the
algorithm and helps preserve agent anonymity and privacy.

Secondly, uncounted agents cannot be in states for which a count has already
been obtained, since the count is complete and correct, even if the count is
xs′ = 0. Therefore after the Ce communication rounds, the uncounted_agents
proportion needs to be uniformly distributed only across the positions in the
vector that still have the ∅ marker (Line 12), and not across all states as in the
general setting. This makes the estimation more accurate in this special setting.

5 Theoretical Results

To demonstrate the benefits of the networked architecture by comparison, we
also consider the results of modified versions of our algorithm for centralised
and independent learners. In the centralised setting, the Q-network updates of
arbitrary agent i = 1 are automatically pushed to all other agents, and the
true global mean-field distribution is always used in place of the local estimate
i.e. ˜̂µi

t = µ̂t. In the independent case, there are no links in Gcomm
t or Gvis

t , i.e.
Ecomm
t = Evis

t = ∅.
Networked agents often learn faster than centralised ones in our experiments;

we justify theoretically this possibly counterintuitive result here. We first make
two strong assumptions that give conditions under which networked agents do
outperform centralised ones. The fact that these strong assumptions do not
always hold in reality explains why networked agents may not always outperform
centralised ones.

Recall that at each iteration k of Alg. 1, after independently updating their
policies in Line 14, the population has the policies {πi

k+1}
N
i=1. There is random-

ness in these independent policy updates, stemming from the random sampling of
each agent’s independently collected buffer. In Lines 15-20, agents approximate
the infinite discounted returns {V (πi

k+1, I(π
i
k+1))}Ni=1 (Def. 3) of their updated

policies by computing {σi
k+1}

N
i=1: the E-step discounted return with respect to

the empirical mean field generated when agents follow policies {πi
k+1}

N
i=1 (i.e.

they do not at this stage all follow a single identical policy). We can characterise
the approximation as {σi

k+1}
N
i=1 = {V̂ (πi

k+1, I(π
i
k+1);E)}Ni=1.

Assumption 1. Assume that {σi
k+1}

N
i=1 are sufficiently good approximations so

as to respect the ordering of the true values {V (πi
k+1, I(π

i
k+1))}Ni=1, i.e. ∀i, j ∈
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{1, . . . , N}:

σi
k+1 > σj

k+1 ⇐⇒ V (πi
k+1, I(π

i
k+1)) > V (πj

k+1, I(π
j
k+1)).

Assumption 2. Assume that after the Cp rounds in Lines 21-27 in which agents
exchange and adopt policies from neighbours, the population is left with a single
policy such that ∀i, j ∈ {1, . . . , N} πi

k+1 = πj
k+1.

2

Call the network consensus policy πnet
k+1, and its associated finitely approx-

imated return σnet
k+1. Recall that the centralised case is where the Q-network

update of arbitrary agent i = 1 is automatically pushed to all the others instead
of the policy evaluation and exchange in Lines 15-27; this is equivalent to a net-
worked case where policy consensus is reached on a random one of the policies
{πi

k+1}
N
i=1. Call this policy arbitrarily given to the whole population πcent

k+1, and
its associated finitely approximated return σcent

k+1.

Theorem 1. Given Ass. 1 and 2, E[V (πnet
k+1, I(π

net
k+1))] > E[V (πcent

k+1, I(π
cent
k+1))].

Thus in expectation networked agents will increase their returns faster than cen-
tralised ones.

Proof. Recall that before the communication rounds in Line 21 (Alg. 1), the ran-
domly updated policies {πi

k+1}
N
i=1 have associated approximated returns {σi

k+1}
N
i=1.

Denote the mean and maximum of this set σmean
k+1 and σmax

k+1 respectively. Since
πcent
k+1 is chosen arbitrarily from {πi

k+1}
N
i=1, it will obey E[σcent

k+1] = σmean
k+1 ∀k,

though there will be high variance. Conversely, the softmax adoption probabil-
ity (Line 24, Alg. 1) for the networked case means by definition that policies
with higher σi

k+1 are more likely to be adopted at each communication round.
Thus the πnet

k+1 that gets adopted by the whole networked population will obey
E[σnet

k+1] > σmean
k+1 (if τ comm

k+1 → 0, it will obey E[σnet
k+1] = σmax

k+1 ∀k). As such,
E[σnet

k+1] > E[σcent
k+1], which by Ass. 1 implies the result.

The adoption scheme in Line 24 biases the spread of policies towards those
estimated to be better, which, given sufficiently good approximations (Ass. 1),
results in higher discounted returns in practice. By choosing updates in a more
principled way, networked agents learn faster than the centralised case that
adopts updates regardless of quality. This intuition applies even if we loosen Ass.
2 that the networked population converges on a single consensus policy within
2 Most simply we can think of Ass. 2 holding if 1) τ comm

k → 0 ∀k such that the
softmax essentially becomes a max function, and 2) the communication network
Gcomm
t is static and connected during the Cp communication rounds, where Cp is

larger than the network diameter dGcomm
t

. Under these conditions, previous results
on max-consensus algorithms show that all agents in the network will converge on
the highest σmax

k+1 value (and hence the unique associated πmax
k+1 within a number

of rounds equal to the diameter dGcomm
t

[6, 34]. However, policy consensus as in
Ass. 2 might be achieved even outside of these conditions, including if the network
is dynamic and not connected at every step, given appropriate values for Cp and
τ comm
k+1 ∈ R>0.



Engineering Practical Mean-Field Games 13

the Cp communication rounds. Similar logic can also be applied to understand
why networked agents outperform entirely independent ones, combined with the
fact that divergence between policies in the independent case worsens sample
complexity over the networked and centralised cases by biasing approximations
of the Q-function [6, 57].

Significantly, the communication scheme not only allows us to avoid the un-
desirable assumption of a central learner, but even to outperform it. Moreover,
the benefit of networked communication over centralised learning is even greater
in our function approximation setting than in the tabular case of [6], perhaps
due to greater variance in the quality of Q-function estimates in our case.

6 Experiments

We provide two sets of experiments. The first set showcases that our function-
approximation algorithm (Alg. 1) can scale to large state spaces for population-
independent policies, and that in such settings networked, communicating agents
can outperform purely-independent and even centralised agents. The second set
demonstrates that Alg. 1 can handle population-dependent policies, as well as
the ability of Alg. 3 to practically estimate the mean-field distribution locally.

For the types of game used in our experiments we follow the gold standard
in prior MFG works, i.e. grid-world environments where agents can move in the
four cardinal directions or remain in place [2, 6, 10, 26, 28, 51, 62]. We present
results from four tasks defined by the agents’ reward/transition functions, all of
which are coordination tasks - see Appx. B.1 for a full technical description, as
well as for a fifth, non-coordination task. The first two tasks are those used with
population-independent policies in [6], but while they show results for an 8x8
and a ‘larger’ 16x16 grid, our results are for 100x100 and 50x50 grids:

– Cluster. Agents are rewarded for gathering but given no indication where
to do so, agreeing it over time.

– Target agreement. Agents are rewarded for visiting any of a given number
of targets, but the reward is proportional to the number of other agents co-
located at the target. Agents must coordinate on which single target they
will all meet at to maximise their individual rewards.

We also showcase the ability of our algorithms to handle two more complex
tasks, using population-dependent policies and estimated mean-field observa-
tions:

– Evade shark in shoal. At each t, a ‘shark’ in the environment takes a
step towards the grid point containing the most agents according to the
empirical mean-field distribution. The shark’s position forms part of agents’
local states in addition to their own position. Agents are rewarded more for
being further from the shark, and also for clustering with other agents. As
well as featuring a non-stationary distribution, we add ‘common noise’ to
the environment, with the shark taking a random step with probability 0.01.
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Such noise that affects the local states of all agents in the same way, making
the evolution of the distribution stochastic, makes population-independent
policies sub-optimal [27].

– Push object to edge. Agents are rewarded for how close they are to an
‘object’ in the environment, and for how close this object is to the grid’s
edge. The object’s position forms part of agents’ local states in addition
to their own position. The object moves in a direction with a probability
proportional to the number of agents on its opposite side, i.e. agents must
coordinate on which side of the object from which to ‘push’ it, to ensure it
moves toward the edge of the grid.

In these spatial environments, both the communication network Gcomm
t and

the visibility graph Gvis
t are determined by the physical distance from agent i;

we show plots for various radii, expressed as fractions of the maximum possible
distance (the grid’s diagonal length). We discuss hyperparameters in Appx. B.3.

We evaluate our experiments via two metrics. Exploitability is the most com-
mon metric in works on MFGs, and is a measure of proximity to the MFNE.
It quantifies how much a best-responding agent can benefit by deviating from
the set of policies that generate the current mean-field distribution, with a de-
creasing exploitability meaning the population is closer to the MFNE. However,
there are several issues with this metric in our setting, particularly for our coor-
dination tasks where competitive agents benefit from aligning behaviours, such
that it may give limited or noisy information (discussed further in Appx. B.2).
We thus also give a second metric, as in [6]: the population’s average discounted
return. This allows us to compare how quickly agents are learning to increase
their returns, even when ‘exploitability’ gives us limited ability to distinguish
between the desirability of the MFNEs to which populations converge.

6.1 Results and Discussion

Population-independent policies in large state-spaces Figs. 1 and 2 il-
lustrate that introducing function approximation to algorithms in this setting
allows them to converge within a practical number of iterations (k ≪ 100), even
for large state spaces (100x100 grids). By contrast, the tabular algorithms in [6]
appear only just to converge by k = 200 for the same tasks for the larger of their
two grids, which is only 16x16.

In Figs. 1 and 2, networked agents all significantly outperform both cen-
tralised and independent agents in term of average return, despite the centralised
agents appearing to have similar exploitability, and the independent agents hav-
ing similar or slightly lower exploitability. This is because independent agents
(and also the centralised ones in Fig. 1) hardly improve their policies at all,
such that there is little a deviating agent can do to increase its return in these
coordination games, meaning exploitability appears low, despite this being an
undesirable equilibrium (see Appx. B.2 for further discussion on the limited in-
formation provided by the exploitation metric). The fact that the networked
agents nevertheless significantly outperform the other architectures in terms of
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Fig. 1. ‘Target agreement’, pop.-independent, 100x100 grid.

average return indicates that communication helps agents to find substantially
‘preferable’ equilibria. Moreover, the margin by which the networked agents can
outperform the centralised agents is much greater than in [6], showing that the
benefits of the communication scheme are even greater in non-tabular settings,
possibly due to the worse approximations in this setting. See Appx. B.4 for
further experiments with large state spaces.

Population-Dependent Policies in Complex Environments Figs. 6 and
7 (Appx. B), where agents estimate the mean-field distribution via Alg. 3, differ
minimally from Figs. 8 and 9, where agents directly receive the global mean-field
distribution. This shows that our estimation algorithm allows agents to appro-
priately estimate the distribution, even with only one round of communication
for agents to help each other improve their local counts. Only in the ‘push object’
task in Fig. 6, and there only with the smaller broadcast radii, do agents slightly
underperform the returns of agents in the global observability case in Fig. 8, as
is reasonable.

For the reasons given in Appx. B.2, the exploitability metric gives limited
information in the ‘push object’ task in Fig. 6. In the ‘evade’ task in Fig. 7, ex-
ploitability suggests that centralised learners outperform the other cases. How-
ever, all of the networked cases significantly outperform the independent learners
in terms of the average return to which they converge in both tasks. In the ‘push
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Fig. 2. ‘Cluster’, pop.-independent, 100x100 grid.

object’ task networked learners also significantly outperform centralised learners
in all but the case with the smallest broad communication radius, while in the
‘evade’ task all networked cases perform similarly to the centralised case. Recall
though that in the real world a centralised architecture is a strong assumption,
a computational bottleneck and single point of failure.

7 Conclusion

We novelly contributed function approximation to the online-learning setting
for empirical MFGs, and also contributed two novel algorithms for locally esti-
mating the empirical mean field for population-dependent policies. We proved
theoretically that our networked communication algorithm is able to learn faster
than both centralised and independent agents in this function approximation
setting, and we demonstrated empirically the ability of our algorithms to handle
large state spaces and estimate the mean field. Limitations and ways to extend
our algorithms are in Appx. D.
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Supplementary material to ‘Engineering Practical Mean-Field Games
with Networked Communication, Function Approximation and Pop-
ulation Estimation’

A Additional Remarks on Mean-Field Estimation
Algorithms

In our Algs. 2 and 3, agents share their local counts with neighbours on the
communication network Gcomm

t , and only after the Ce communication rounds do
they complete their estimated distribution by distributing the uncounted agents
along their vectors. An alternative would be for each agent to immediately form
a local estimate from their local count obtained via Gobs

t or Gvis
t , which is only

then communicated and updated via the communication network. However, we
take the former approach to avoid poor local estimations spreading through the
network and leading to widespread inaccuracies. Information that is certain (the
count) is spread as widely as possible, before being locally converted into an
estimate of the total mean field. The same would be the case in our extension
proposed in Sec. D for averaging noisy counts, i.e. only the counts would be
averaged, with the estimates completed by distributing the remaining agents
after the Ce communication rounds.

B Experiments

Experiments were conducted on a Linux-based machine with 2 x Intel Xeon Gold
6248 CPUs (40 physical cores, 80 threads total, 55 MiB L3 cache). We use the
JAX framework to accelerate and vectorise our code. Random seeds are set in
our code in a fixed way dependent on the trial number to allow easy replication
of experiments.

B.1 Games

We conduct numerical tests with five games. All are defined by the agents’
reward/transition functions, and chosen for being particularly amenable to in-
tuitive and visualisable understanding of whether the agents are learning be-
haviours that are appropriate and explainable for the respective objective func-
tions. In all cases, rewards are normalised in [0,1] after they are computed.

Cluster. This is used in [6], and is the inverse of the ‘exploration’ game in
[28], where in our case agents are encouraged to gather together by the reward
function R(sit, a

i
t, µ̂t) = log(µ̂t(s

i
t)). That is, agent i receives a reward that is

logarithmically proportional to the fraction of the population that is co-located
with it at time t. We give the population no indication where they should cluster,
agreeing this themselves over time.
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Agree on a single target. This is used in [6]. Unlike in the above ‘cluster’ game,
the agents are given options of locations at which to gather, and they must reach
consensus among themselves. If the agents are co-located with one of a number
of specified targets ϕ ∈ Φ (in our experiments we place one target in each of
the four corners of the grid), and other agents are also at that target, they get
a reward proportional to the fraction of the population found there; otherwise
they receive a penalty of -1. In other words, the agents must coordinate on which
of a number of mutually beneficial points will be their single gathering place.
Define the magnitude of the distances between x, y at t as distt(x, y). The reward
function is given by R(sit, a

i
t, µ̂t) = rtarg(rcollab(µ̂t(s

i
t))), where

rtarg(x) =

{
x if ∃ϕ ∈ Φ s.t. distt(sit, ϕ) = 0

−1 otherwise
,

rcollab(x) =

{
x if µ̂t(s

i
t) > 1/N

−1 otherwise.

Evade shark in shoal. Define the magnitude of the horizontal and vertical dis-
tances between x, y at t as distht (x, y) and distvt (x, y) respectively. The state sit
now consists of agent i’s position xi

t and a ‘shark’s’ position ϕt. At each time
step, the shark steps towards the most populated grid point according to the
empirical mean-field distribution i.e. x∗

t = argmaxx∈S µ̂t(x). A horizontal step
is taken if distht (ϕt, x

∗
t ) ≥ distvt (ϕt, x

∗
t ), otherwise a vertical step is taken. As

well as featuring a non-stationary distribution, we add ‘common noise’ to the
environment, with the shark in a random direction with probability 0.01. Such
noise that affects the local states of all agents in the same way, making the
evolution of the distribution stochastic, makes population-independent policies
sub-optimal [27]. Agents are rewarded more for being further from the shark,
and also for clustering with other agents. The reward function is given by

R(sit, a
i
t, µ̂t) = distht (ϕt, x

i
t) + distvt (ϕt, x

i
t) + normdist(log(µ̂t(x

i
t))),

where normdist(·) indicates that the final term is normalised to have the same
maximum and minimum values as the total combined vertical and horizontal
distance.

Push object to edge. This is similar to the task presented in [12]. As before,
define the magnitude of the horizontal and vertical distances between x, y at
t as distht (x, y) and distvt (x, y) respectively. The state sit consists of agent i’s
position xi

t and the object’s position ϕt. The number of agents in the positions
surrounding the object at time t generates a probability field around the object,
such that the object is most likely to move in the direction away from the side
with the most agents. As such, if agents are equally distributed around the
object, it will be equally likely to move in any direction, but if they coordinate
on choosing the same side, they can ‘push’ it in a certain direction. If Edges
= {edge1, . . . ,edge4} are the grid edges, the closest edge to the object at time
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t is given by edge∗t = argminedge∈Edges
(
min(distht (ϕt, edge), distht (ϕt, edge)

)
.

Agents are rewarded for how close they are to the object, and for how close the
object is to the edge of the grid, i.e. they must coordinate on which side of the
object from which to ‘push’ it, to ensure it moves to the grid’s edge. The reward
function is given by

R(sit, a
i
t, µ̂t) = distht (ϕt, x

i
t) + distvt (ϕt, x

i
t) + distht (ϕt, edge∗t ) + distvt (ϕt, edge∗t ).

Disperse. This is similar to the ‘exploration’ tasks in [28, 51] and other MFG
works. In our version agents are rewarded for being located in more sparsely
populated areas but only if they are stationary. The reward function is given by
R(sit, a

i
t, µ̂t) = rstationary(−µ̂t(s

i
t)), where

rstationary(x) =

{
x if ait is ‘remain stationary’
−1 otherwise.

B.2 Experimental Metrics

To give as informative results as possible about both performance and proximity
to the MFNE, we provide two metrics for each experiment. Both metrics are
plotted with mean and standard deviation, computed over the ten trials (each
with a random seed) of the system evolution in each setting.

Exploitability Works on MFGs most commonly use the exploitability metric
to evaluate how close a given policy π is to a NE policy π∗ [2,6,27,28,36,39,51].
The metric usually assumes that all agents are following the same policy π, and
quantifies how much an agent can benefit by deviating from π by measuring the
difference between the return given by π and that of a BR policy with respect
to the distribution generated by π:

Definition 9 (Exploitability of π). The exploitability Ex of policy π is given
by:

Ex(π) = V (BR(I(π)), I(π))− V (π, I(π)).

If π has a large exploitability then an agent can significantly improve its
return by deviating from π, meaning that π is far from π∗, whereas an ex-
ploitability of 0 implies that π = π∗. Prior works conducting empirical testing
have generally focused on the centralised setting, so this classical definition, as
well as most evaluations, only consider exploitability when all agents are fol-
lowing a single policy πk. However, [6] notes that purely independent agents, as
well as networked agents, may have divergent policies πi

k ̸= πj
k ∀i, k ∈ 1, . . . , N ,

as in our own setting. We therefore are interested in the ‘exploitability’ of the
population’s joint policy π := (π1, . . . , πN ) ∈ ΠN .

Since we do not have access to the exact BR policy as in some related
works [28,51], we must instead approximate the exploitability, similarly to [6,38].
We freeze the policy of all agents apart from a deviating agent, for which we store
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its current policy and then conduct 50 k loops of policy improvement. To approx-
imate the expectations in Def. 9, we take the best return of the deviating agent
across 10 additional k loops, as well as the mean of all the other agents’ returns
across these same 10 loops. (While the policies of all non-deviating agents is πk

in the centralised case, if the non-deviating agents do not share a single policy,
then this method is in fact approximating the exploitability of their joint policy
π−d

k , where d is the deviating agent.) We then revert the agent back to its stored
policy, before learning continues for all agents as per the main algorithm. Due to
the expensive computations required for this metric, we evaluate it every second
k iteration of the main algorithm for Figs. 1, 2, 3, 4 and 5, and every fourth
iteration for the population-dependent experiments.

The exploitability metric has a number of limitations in our setting. Our
approximation takes place via MOMD policy improvement steps (as in the main
algorithm) for an independent, deviating agent while the policies of the rest of
the population are frozen. As such, the quality of our approximation is limited
by the number of policy improvement/expectation rounds, which must be re-
stricted for the sake of running speed of the experiments. Moreover, since one
of the findings of our paper is that networked agents can improve their policies
faster than independent or centralised agents, especially when non-linear func-
tion approximation is used, it is arguably unsurprising that approximating the
BR by an independently deviating agent sometimes gives an unclear and noisy
metric. This includes the exploitability going below zero, which should not be
possible if the policies and distributions are computed exactly.

Moreover, in coordination games (the setting for all tasks apart from the
‘disperse’ game), agents benefit by following the same behaviour as others, and
so a deviating agent generally stands to gain less from a BR policy than it might
in the non-coordination games on which many other works focus. For example,
the return of a best-responding agent in the ‘push object’ game still depends on
the extent to which other agents coordinate on which direction in which to push
the box, meaning it cannot significantly increase its return by deviating. This
means that the downward trajectory of the exploitability metric is less clear in
our plots than in other works. This is likely why the approximated exploitability
gets lower in the non-coordination ‘disperse’ task in Fig. 5 than in the other
tasks. Given the limitations presented by approximating exploitability, we also
provide the second metric to indicate the progress of learning.

Average Discounted Return We record the average discounted return of
the agents’ policies πi

k during the M iterations - this allows us to observe that
settings that converge to similar exploitability values may not have similar av-
erage agent returns, suggesting that some algorithms are better than others at
finding not just NE, but preferable NE. See for example Figs. 3 and 1, where
the networked agents converge to similar exploitability as the independent and
centralised agents, but receive higher average returns.
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Fig. 3. ‘Target agreement’ task, population-independent policies, 50x50 grid.

B.3 Hyperparameters

See Table 1 for our hyperparameter choices. We can group our hyperparameters
into those controlling the size of the experiment, those controlling the size of
the Q-network, those controlling the number of iterations of each loop in the
algorithms and those affecting the learning/policy updates or policy adoption.

In our experiments we generally want to demonstrate that our communication-
based algorithms outperform the centralised and independent architectures by al-
lowing policies that are estimated to be better performing to proliferate through
the population, such that convergence occurs within fewer iterations and com-
putationally faster, even when the Q-function is poorly approximated and/or
the mean-field is poorly estimated, as is likely to be the case in real-world sce-
narios. Moreover we want to show that there is a benefit even to a small amount
of communication, so that communication rounds themselves do not excessively
add to time complexity. As such, we generally select hyperparameters at the low-
est end of those we tested during development, to show that our algorithms are
particularly successful given what might otherwise be considered ‘undesirable’
hyperparameter choices.

B.4 Additional Experiments

We provide additional experiments on large grids in Figs. 3, 4 and 5.
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Fig. 4. ‘Cluster’ task, population-independent policies, 50x50 grid.

In the ‘target agreement’ task in Fig. 3, the networked agents generally have
lower exploitability than both centralised and independent agents, and signifi-
cantly outperform the other architectures in terms of average return. As before,
the margin by which the networked agents can outperform the centralised agents
is much greater than in [6], showing that the benefits of the communication
scheme are even greater in non-tabular settings.

In the ‘cluster’ task in Fig. 4, the networked agents obtain significantly higher
return than the independent agents. While centralised agents have the lowest
exploitability, networked agents of almost all communication radii outperform
them in terms of average return, indicating that the communication scheme helps
populations reach better performing equilibria.

In the ‘disperse’ task in Fig. 5, networked agents significantly outperform
independent and centralised agents in terms of average return. They also out-
perform centralised agents in terms of exploitability, and significantly outperform
independent agents in terms of exploitability. The fact that this happens in this
non-coordination, competitive game shows that agents do have an incentive to
communicate with each other even if they are self-interested.
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Fig. 5. ‘Disperse’ task, population-independent policies, 100x100 grid.

C Extended Related Work

MFGs are a quickly growing research area, so we only discuss the works most
closely related to this present work, and instead refer the reader to [6] for detailed
discussion around the setting of networked communication for MFGs, and to
[27] for a broader survey of MFGs. Our work is most closely related to [6],
which introduced networked communication to the infinite-horizon MFG setting.
However, this work focuses only on tabular settings rather than using function
approximation as in ours, and only addresses population-independent policies.

[28] uses Munchausen Online Mirror Descent (MOMD), similar to our method
for learning with neural networks, but there are numerous differences to our set-
ting: most relevantly, they study a finite-horizon episodic setting, where the
mean-field distribution is updated in an exact way and an oracle supplies a
centralised learner with rewards and transitions for it to learn a population-
independent policy. [51] uses MOMD to learn population-dependent policies,
albeit also with a centralised method that exactly updates the mean-field dis-
tribution in a finite-horizon episodic setting. [37] learns population-dependent
policies with function approximation in infinite-horizon settings like our own,
but does so in a centralised, two-timescale manner without using the empiri-
cal mean-field distribution. [64] also uses function approximation along a non-
episodic path, but involves a generic central agent learning an estimate of the
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Fig. 6. ‘Push object’ task, population-dependent policies with estimated mean-field
distribution, 10x10 grid.

mean field rather than using an empirical population. Approaches that directly
update an estimate of the mean field must be able to generate rewards from
this arbitrary mean field, even if they otherwise claim to be oracle-free. They
are thus inherently centralised algorithms and rely on strong assumptions that
may not apply in real-world problems. Conversely, we are interested in practical
convergence in online, deployed settings, where the reward is computed from the
empirical finite population.

[60] addresses decentralised learning from a continuous, non-episodic run of
the empirical system using either full or compressed information about the mean-
field distribution, but agents are assumed to receive this information directly,
rather than estimating it locally as in the algorithm we now present. They also
do not consider function approximation or inter-agent communication in their
algorithms. In the closely related but distinct area of Mean-Field RL, [16] does
estimate the empirical mean-field distribution from the local neighbourhood,
however agents are seeking to estimate the mean action rather than the mean-
field distribution over states as in our MFG setting. Their agents also do not have
access to a communication network by which they can improve their estimates.
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Fig. 7. ‘Evade’ task, population-dependent policies with estimated mean-field distri-
bution, 10x10 grid.

D Limitations and Future Work

Our work follows the gold standard in MFGs by presenting experiments on grid
world toy environments, albeit we show our algorithms are able to handle much
larger and more complex games than prior work. Nevertheless future work lies
in moving from these environments to real-world settings. In Sec. 5 we give
theoretical results showing that our networked algorithm can outperform a cen-
tralised alternative. We leave more general analysis, such proof of convergence
and sample guarantees in the function approximation setting, for future work.

Alg. 3 assumes that if a state s′ is connected to s on the visibility graph Gvis
t ,

an agent in s is able to accurately count all the agents in s′, i.e. it either counts
the exact total or cannot observe the state at all. We assume this for simplicity
but it is not inherently the case, since a real-world agent may have only noisy
observations even of others located nearby, due to imperfect sensors. We suggest
two ways to deal with this. Firstly, if agents share unique IDs as in Alg. 2, then
when communicating their vectors of collected IDs with each other via Gcomm

t ,
agents would gain the most accurate picture possible of all the agents that have
been observed in a given state. However, as we note above, there are various rea-
sons why sharing IDs might be undesirable, including privacy and scalability. If
instead only counts are taken, and if the noise on each agents’ count is assumed
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Fig. 8. ‘Push object’ task, population-dependent policies with global observability of
mean field, 10x10 grid.

to be independent and, for example, subject to a Gaussian distribution, the algo-
rithm can easily be updated such that communicating agents compute averages
of their local and received counts to improve their accuracy, rather than simply
using communication to fill in counts for previously unobserved states. (Note
that we can also consider the original case without noise to involve averaging,
since averaging identical values equates to using the original value). Since the
algorithm is intended to aid in local estimation of the mean-field distribution,
which is inherently approximate due to the uniform method for distributing the
uncounted agents, we are not concerned with reaching exact consensus between
agents on the communicated counts, so we do not require repeated averaging to
ensure asymptotic convergence.

We may wish to consider more sophisticated methods for distributing the
uncounted agents across states, in place of the current uniform distribution. Such
choices may be domain-specific based on knowledge of a particular environment.
For example, one might use the counts to perform Bayesian updates on a specific
prior, where this prior may relate to the estimated mean-field distribution at the
previous time step t − 1. If agents seek to learn to predict the evolution of
the mean field based on their own policy or by learning a model, the Bayesian
prior may also be based on forward prediction from the estimated mean-field
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Fig. 9. ‘Evade’ task, population-dependent policies with global observability of mean
field, 10x10 grid.

distribution at t− 1. Future work lies in conducting experiments in all of these
more general settings.

[37] notes that in grid-world settings such as those in our experiments,
passing the (estimated or true global) mean-field distribution as a flat vector to
the Q-network ignores the geometric structure of the problem. They therefore
propose to create an embedding of the distribution by first passing the vector to a
convolutional neural network, essentially treating the categorical distribution as
an image. This technique is also followed in [51] (for their additional experiments,
but not in the main body of their paper). As future work, we can test whether
such a method improves the performance of our algorithms.
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Table 1. Hyperparameters

Hyperparam. Value Comment
Trials 10 We run 10 trials with different random seeds for each experiment. We plot the mean and

standard deviation for each metric across the trials.
Gridsize 10x10 /

50x50 /
100x100

Experiments with population-dependent policies are run on the 10x10 grid (Figs. 6, 7, 8 and
9), while experiments on large state spaces are run on 50x50 and 100x100 grids (Figs. 1, 2, 3,
4 and 5).

Population 500 We chose 500 for our demonstrations to show that our algorithm can handle large populations,
indeed often larger than those demonstrated in other mean-field works, especially for grid-
world environments, while also being feasible to simulate wrt. time and computation constraints
[6, 10,11,15,16,18,43,44,51,55,60].

Number of
neurons in
input layer

cf. com-
ment

The agent’s position is represented by two concatenated one-hot vectors indicating the agent’s
row and column. An additional two such vectors are added for the shark’s/object’s position in
the ‘evade’ and ’push object’ tasks. For population-dependent policies, the mean-field distribu-
tion is a flattened vector of the same size as the grid. As such, the input size in the ‘evade’ and
’push object’ tasks is [(4×dimension)+(dimension2)]; in the other settings it is [2×dimension].

Neurons per
hidden layer

cf. com-
ment

We draw inspiration from common rules of thumb when selecting the number of neurons in
hidden layers, e.g. it should be between the number of input neurons and output neurons / it
should be 2/3 the size of the input layer plus the size of the output layer / it should be a power
of 2 for computational efficiency. Using these rules of thumb as rough heuristics, we select the
number of neurons per hidden layer by rounding the size of the input layer down to the nearest
power of 2. The layers are all fully connected.

Hidden layers 2 We experimented with 2 and 3 hidden layers in the Q-networks. While 3 hidden layers gave
similar or slighly better performance, we selected 2 for increased computational speed for con-
ducting our experiments.

Activation
function

ReLU This is a common choice in deep RL.

K 100 K is chosen to be large enough to see at least one of the metrics converging.
M 50 We tested M in {50,100} and found that the lower value was sufficient to achieve convergence

while minimising training time. It may be possible to converge with even smaller choices of M .
L 50 We tested L in {50,100} and found that the lower value was sufficient to achieve convergence

while minimising training time. It may be possible to converge with even smaller choices of L.
E 20 We tested E in {20,50,100}, and choose the lowest value to show the benefit to convergence

even from very few evaluation steps. It may be possible to reduce this value further and still
achieve similar results.

Cp 1 As in [6], we choose this value to show the convergence benefits brought by even a single
communication round, even in networks that may have limited connectivity; higher choices are
likely to have even better performance.

Ce 1 Similar to Cp, we choose this value to show the ability of our algorithm to appropriately estimate
the mean field even with only a single communication round, even in networks that may have
limited connectivity.

γ 0.9 Standard choice across RL literature.
τq 0.03 We tested τq in {0.01,0.02,0.03,0.04,0.05}, as well as linearly decreasing τq from 0.05 → 0 as

k increases. However, only 0.03 gave stable increase in return. Note that this is the value also
chosen in [46].

|B| 32 This is a common choice of batch size that trades off noisy updates and computational efficiency.
cl -1 We use the same value as in [46].
ν L− 1 We tested ν in {1, 4, 20, L − 1}. We found that in our setting, updating θ′ ← θ once per k

iteration s.t. θ′k+1,l = θk,l ∀l gave sufficient learning that was similar to the other potential
choices of ν, so we do this for simplicity, rather than arbitrarily choosing a frequency to update
θ′ during each k loop. Setting the target to be the policy from the previous iteration is similar
to the method in [28]. Whilst [51] updates the target within the L loops for stability, we do not
find this to be a problem in our experiments.

Optimiser Adam As in [46], we use the Adam optimiser with initial learning rate 0.01.
τ comm
k cf. com-

ment
τ comm
k increases linearly from 0.001 to 1 across the K iterations. This is a simplification of

the annealing scheme used in [6]. Further optimising the annealing process may lead to better
results.
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