
Octo-planner: On-device Language Model for
Planner-Action Agents

Wei Chen1⋆, Zhiyuan Li1∗, Zhen Guo2∗, and Yikang Shen3∗

1 Nexa AI & Stanford, USA
{alexchen, zack}@nexa.ai

https://www.nexa.ai
2 MIT EECS, USA
zguo0525@mit.edu

https://www.mit.edu
3 MIT-IBM Watson AI Lab, USA

yikang.shen@ibm.com
https://research.ibm.com

Abstract. AI agents have become increasingly significant in various do-
mains, enabling autonomous decision-making and problem-solving. To
function effectively, these agents require a planning process that de-
termines the best course of action and then executes the planned ac-
tions. In this paper, we present an efficient on-device Planner-Action
framework that separates planning and action execution into two com-
ponents: a planner agent, or Octo-planner, optimized for edge devices,
and an action agent using the Octopus model for function execution.
Octo-planner first responds to user queries by decomposing tasks into
a sequence of sub-steps, which are then executed by the Octopus ac-
tion agent. To optimize performance on resource-constrained devices,
we employ model fine-tuning instead of in-context learning, reducing
computational costs and energy consumption while improving response
times. Our approach involves using GPT-4 to generate diverse plan-
ning queries and responses based on available functions, with subse-
quent validations to ensure data quality. We fine-tune the Phi-3 Mini
model on this curated dataset, achieving a 97% success rate in our
in-domain test environment. To address multi-domain planning chal-
lenges, we develop a multi-LoRA training method that merges weights
from LoRAs trained on distinct function subsets. This approach en-
ables flexible handling of complex, multi-domain queries while maintain-
ing computational efficiency on resource-constrained devices. To support
further research, we have open-sourced our model weights at https:
//huggingface.co/NexaAIDev/octopus-planning. For the demo, please
refer to https://www.nexa4ai.com/octo-planner#video.

Keywords: On-device AI · Multi-LoRA training · Large Language model · AI
agent

⋆ Equal contribution.

https://www.nexa.ai
https://www.mit.edu
https://research.ibm.com
https://huggingface.co/NexaAIDev/octopus-planning
https://huggingface.co/NexaAIDev/octopus-planning
https://www.nexa4ai.com/octo-planner#video

2 W. Chen et al.

Fig. 1. Planner-Action Agent in smartphone using Octopus models

1 Introduction

Artificial intelligence (AI) agents [1,2] have significantly transformed various
industries by enabling autonomous decision-making and improving operational
efficiencies [3,4,5,6,7,8,9,10]. These agents rely on a critical planning process that
involves determining the optimal course of action, executing the planned actions,
and summarizing the outcomes. Large Language Models (LLMs) such as Gemini-
Pro [11] and GPT-4 [12] have shown potential in this domain. While these models
face challenges in executing complex planning tasks at a level comparable to
human performance [13,14], they remain effective in addressing simpler tasks,
thereby facilitating practical applications.

One such application is the emergence of AI assistant tools from companies
like MultiOn [15], Simular AI [16], and Adept AI [17], which leverage the capabil-
ities of LLMs to provide intelligent assistance across various domains. Addition-
ally, consumer-oriented AI hardware products, such as Rabbit R1 [18], Humane
AI Pin [19], and Limitless Pendant [20], integrate LLMs into user-friendly de-
vices, making intelligent assistance more accessible and driving significant trac-
tion.

Octo-planner: On-device Language Model for Planner-Action Agents 3

The success of AI agents depends on the performance of the underlying LLMs.
Agents using pre-trained models without fine-tuning on tasks demonstrations
have relatively low success rates, ranging from 12% on desktop applications [21]
to 46% on mobile applications [22], while those leveraging fine-tuned models can
achieve up to 80% success rate on tasks similar to their training data [23,24].
However, using LLMs for AI agents is costly due to high computational de-
mands and infrastructure expenses, limiting widespread adoption. The lack of
on-device AI agents restricts applications requiring real-time processing, offline
functionality, or enhanced privacy.

On-device AI agents offer advantages including reduced latency, offline oper-
ation, lower costs, and improved data security [25,27,28,26]. While action models
like Octopus V2 achieve over 95% accuracy for function calling [29], an on-device
planning model is still missing. General agent frameworks use single-model in-
context learning, requiring lengthy function descriptions and planning instruc-
tions in each prompt. This approach is impractical for on-device models with
limited context lengths, causing high latency and battery consumption on edge
devices.

In this paper, we introduce Octo-planner, an on-device planning agent that
addresses the key challenges of efficiency, adaptability, and resource constraints.
Our Planner-Action framework separates planning and action execution into two
components: a planner agent, or Octo-planner, optimized for edge devices, and
an action agent using the Octopus model for function execution. By prioritizing
fine-tuning over few-shot prompting, we reduce computational costs and mini-
mize key-value (KV) cache requirements. Our approach uses GPT-4 to generate
and validate planning data, which is then used to fine-tune Phi-3 Mini for on-
device deployment. In-domain tests demonstrate that this fine-tuning improves
planning success rates to 97%. To address multi-domain planning challenges,
we develop a multi-LoRA training method that merges weights from LoRAs
trained on distinct function subsets. This enables flexible handling of complex,
multi-domain queries while maintaining computational efficiency on resource-
constrained devices. By focusing on pre-defined functions for simpler tasks and
leveraging fine-tuning, we aim to make AI agents more practical, accessible, and
cost-effective for real-world applications.

This work aims to contribute to the ongoing efforts to make AI more ac-
cessible and practical for everyday use. By bridging the gap between AI agent
potential and edge computing constraints, we seek to facilitate the adoption of
intelligent, on-device assistants across various domains. Through open-sourcing
our approach, we hope to inspire further innovations in on-device AI, expanding
the reach of advanced planning capabilities to a broader range of applications.

2 Related Works

2.1 Planner Agent

Language models have become essential in planning agent systems. Proprietary
models like OpenAI’s assistant API [52] excel in generating strategies based on

4 W. Chen et al.

user queries and available functions. Recent advancements have further expanded
the capabilities of language models in planning. The ReAct framework [33] inte-
grates planning and acting for limited action spaces, while research from Alibaba
Group [34] highlights the effectiveness of separate planning and action models
for complex tasks. In robotics, language models are also increasingly applied to
task-level planning [35,36]. Notable examples include SayCan [37], which uses
LLMs to break high-level tasks into concrete sub-tasks, and Video Language
Planning (VLP) [38], which enhances long-horizon planning through a text-to-
video dynamics model.

2.2 Fine-Tuning to Replace Long Context

Fine-tuning language models to internalize specific prompts or context informa-
tion reduces input length and improves efficiency [39,40]. This approach involves
training models on carefully curated, task-specific datasets. For models with lim-
ited context windows, this technique is particularly valuable as it enables more
efficient query processing without sacrificing response quality. The success of
fine-tuning largely depends on the use of diverse, high-quality datasets, which
ensure the model can generalize across various prompt phrasings [41,42,43,44].
When implemented effectively, fine-tuning streamlines application-specific inter-
actions, addressing both context length limitations and computational challenges
in practical deployments.

2.3 LoRA and Multi-LoRA

Low-Rank Adaptation (LoRA) efficiently adapts pre-trained language models
to specific tasks [45]. Unlike fine-tuning, which updates all parameters, LoRA
freezes pre-trained weights and adds trainable low-rank matrices to each layer,
significantly reducing trainable parameters and computational demands. Multi-
LoRA extends this concept by enabling multiple task-specific adapters to be
trained, combined, or switched during inference, allowing a single base model to
handle various tasks efficiently [46]. Building on these approaches, researchers
have developed several related variants of the original LoRA to address different
aspects of model adaptation: LoRA+ optimizes learning rates [47], VeRA uses
random projections [48], AdaLoRA implements adaptive rank [49], DoRA de-
composes weights [50], and Delta-LoRA updates pretrained weights [51]. These
variations aim to further refine efficiency or performance in specific scenarios.

3 Method

This section presents our framework for on-device Planner-Action agents. We
first describe the integration of planning and action agents for efficient problem-
solving. We then detail our approach to dataset design and the training process
for the planning agent, including support for extensive functions and a plug-and-
play capability for additional function sets. Finally, we outline our benchmark
used to evaluate agent performance.

Octo-planner: On-device Language Model for Planner-Action Agents 5

3.1 Planner and Action Agents Framework

Our Planner-Action approach distinguishes itself from general agent frameworks
by separating the planning and action execution processes into two components.
This separation improves modularity and allows for specialized optimization of
each component. The framework operates as follows.

Planner Phase: Given a user query q, our planning model πplan decomposes
the task into a sequence of sub-steps. Formally:

{τ1, τ2, . . . , τn} = πplan(q;F) (1)

where F is the set of available function descriptions, and τi is the ith execution
step. πplan internalizes F during instruction fine-tuning.

Action Phase: For each step in the execution sequence, we employ an action
model πaction. At step i, given the observation of the current state Oi, the action
model performs:

Oi+1 = πaction(τi, Oi) (2)

where Oi+1 and τi+1 are passed to the next step for continued execution.
For the action model, we utilize the Octopus model, which is specifically

designed for on-device function calling. Figure 2 illustrates the difference between
our Planner-Action framework and the single-model approach for LLM agents.

query

Planner

Step 1

Step ...

observation

observation

Answer

Step N

Single LLM Agent Planner-Action Agent

x N

All function descriptions,

and query

Action: ...

Observation: ...

Answer

Action

Action

Action

Fig. 2. Comparison of Single LLM Agent and Planner-Action Agent frameworks. (Left)
Single LLM Agent: A unified model performs both task planning and action execution.
(Right) Planner-Action Agent: A specialized planner model decomposes the task into
subtasks, while a separate action model executes each subtask sequentially.

The modular design of our framework offers several advantages:

– Specialization: Separating planning and action execution allows optimiza-
tion of each model for its specific role, enhancing performance in complex
tasks.

6 W. Chen et al.

– Scalability: Independent scaling of planning and action capabilities effi-
ciently accommodates varying task complexities.

– Interpretability: Explicit separation of phases improves transparency in
the decision-making process.

– Adaptability: Easier integration of domain-specific knowledge or constraints
into either phase without system-wide changes.

3.2 Planning Dataset

Our framework uses the Octopus model as the action model, requiring training
only for the planner agent. We fine-tune the planner agent with the following
dataset format:

<|user|>{user’s query}<|end|>

<|assistant|> {query1}<nexa_split>{query2}<nexa_split>...
<nexa_split>{queryn}.<|end|>

Special tokens like <|user|> and <|assistant|> are used for chat model
pretraining but are optional otherwise. We set n as 1-5, based on our finding
that most of tasks on mobile app consist of fewer than 5 steps. The dataset
generation and curation process includes:

1. Dataset collection: Given the available functions F , we use a large lan-
guage model (GPT-4) to generate diverse queries answerable by these func-
tions. We increase the model’s temperature setting to ensure query variety.
Responses are then generated in the specified dataset format. Importantly,
while function descriptions are used during generation, they are not included
in the final dataset. Instead, the planner model internalizes this function in-
formation during training.

2. Data validation: We employ the same language model as a validation tool
to assess the correctness of query-response pairs. Despite some errors in the
initial generation process, we found that the model effectively classifies gen-
erated content as valid or invalid, allowing us to filter out incorrect outputs
and maintain dataset quality.

Example data points with different number of sub-steps are shown below:

Octo-planner: On-device Language Model for Planner-Action Agents 7

Planning Dataset example:

query: Tell me today’s stock market.
response: Search for today’s stock market news and latest up-
dates<|end|>

Two-step example:

query: Find and email me Jensen Huang’s news in English.
response: Find articles about Jensen Huang in English<nexa_split>
Email the first article found to myself<|end|>

Three-step example:

query: Find and increase the screen brightness by 20% to better view
the quarterly report document before connecting to the office printer via
Bluetooth.
response: Find the quarterly report document in the sys-
tem<nexa_split> Increase screen brightness by 20% to improve
visibility<nexa_split> Connect to the office printer via Bluetooth to
print the quarterly report<|end|>

Four-step example:

query: Find and email the project proposal document to
project.manager@company.com, then look up the submission dead-
line and schedule it in my calendar with a reminder.
response: Locate the project proposal document<nexa_split>
Send the project proposal via email to the project manager at
project.manager@company.com<nexa_split> Find the project proposal
submission deadline<nexa_split> Schedule a calendar event for the
project proposal submission deadline with a reminder<|end|>

Five-step example:

query: I have a meeting tomorrow morning, please find my presentation
then connect to the conference room projector via Bluetooth. After that,
increase the screen brightness then take a screenshot of the final summary
slide and email it to all participants.
response: Find the presentation for the meeting tomorrow<nexa_split>
Connect to the conference room projector via Bluetooth<nexa_split>
Increase screen brightness by 20%<nexa_split> Take a screenshot of the
final summary slide<nexa_split> Email the screenshot to all meeting
participants<|end|>

8 W. Chen et al.

For the visualization of the dataset collection, please see Figure 3. Example
function descriptions are in Appendix 8.1.

API with doc string

Sample query - one step Generate the steps

Sample query - ... steps

Sample query - N steps

Generate the steps

Generate the steps

Fig. 3. Dataset Collection Process for Planner Model Training. We generate queries
that require between 1–5 steps, verify correctness, and retain only high-quality samples.

3.3 Benchmark Design

Our evaluation relies on a carefully constructed test dataset. This dataset is
designed to represent the complexities of real-world planning, employing a multi-
stage approach that integrates automated generation, expert validation, and
empirical testing.

The process begins with the automated generation of an initial dataset com-
prising 1,000 data points using GPT-4. These data points then undergo a rigor-
ous quality assurance process to ensure their integrity and relevance. The quality
assessment criteria are as follows:

– Each step must correspond to an existing function;
– The sequential order of steps must be correct.

To ensure the reliability of our evaluation, we incorporate an additional phase
of manual verification. This phase involves selecting a subset of examples for
end-to-end model execution, thereby validating the accuracy of our results and
providing a comprehensive assessment of our model’s performance.

For the evaluation of our proposed planning model, we employ GPT-4 as an
oracle to determine the correctness of the generated plans. This choice is based
on empirical observations indicating GPT-4’s high proficiency in our specific use
case.

4 Experimental Design

Our experimental design assesses the Octo-planner’s performance for on-device
AI agent planning. We aim to determine the optimal configuration for deploying

Octo-planner: On-device Language Model for Planner-Action Agents 9

efficient, accurate planning models on resource-constrained devices while main-
taining adaptability to new domains and functions. Our experiments focus on
four key areas:

1. Performance and efficiency trade-offs between full fine-tuning and LoRA.
2. Multi-LoRA accuracy in handling different function sets simultaneously.
3. Performance comparison across various base models and sizes.
4. The impact of dataset size on accuracy, ranging from 100 to 1000 training

examples.

We conduct supervised fine-tuning on our curated dataset, using Phi-3 Mini
and a few other alternatives as the base model. Training includes both full fine-
tuning and LoRA techniques. For all experiments, we set the dataset size to be
800 times the number of available functions, and the multiplier was determined
empirically through initial pilot studies. We perform fine-tuning on an NVIDIA
A100 GPU using optimized hyperparameters for both approaches: a learning
rate of 5× 10−6, batch size of 4, a warm-up ratio of 0.2, and 2 training epochs.
For LoRA, we set the target_modules to be all-linear.

5 Results

5.1 Full Fine-Tuning vs. LoRA

Table 1 presents a detailed comparison of full fine-tuning and LoRA approaches
for our planning model. Our experiments reveal significant differences in perfor-
mance across these methods. Full fine-tuning achieves the highest accuracy at
98.1%, demonstrating superior performance. In contrast, LoRA performance de-
pends on rank size. With rank 64 and alpha 256, LoRA achieves 85.1% accuracy,
while reducing to rank 16 and alpha 32 drops accuracy to 72.9%. These results
highlight the trade-off between model performance and computational efficiency
when using LoRA. While full fine-tuning provides better accuracy, LoRA offers
a more resource-efficient alternative, with performance varying based on rank
configuration.

Table 1. Full Fine-Tuning vs. LoRA

Training Configuration Benchmark Accuracy
Full model training 98.1%

LoRA (rank=64, alpha=256) 85.1%
LoRA (rank=16, alpha=32) 72.9%

10 W. Chen et al.

5.2 Multi-LoRA Training and Merging

While LoRA-based training is effective for specific function sets, real-world appli-
cations often require handling new or expanded sets of functions. To address this
challenge, we propose merging multiple LoRA weights, each trained on distinct
function subsets, with the same base model. This approach creates a composite
model that combines knowledge from various function sets, offering a scalable so-
lution for complex, multi-domain queries in resource-constrained environments.

To evaluate this method, we constructed a benchmark dataset by randomly
selecting functions from each LoRA’s domain with equal probability, combining
them into workflows. Queries and plans were generated using GPT-4. For exam-
ple, when testing two merged LoRAs, queries may involve Android functions,
E-commerce functions, or both, with equal likelihood.

The code block below shows sample queries from our benchmark dataset and
the corresponding inference results from the multi-LoRA merged model:

Android functions only:

query: Find the quarterly report for Q3 and print it for the upcoming
board meeting.
response: Locate the quarterly report document for
Q3<|nexa_split|>Print the located quarterly report document<|end|>

E-commerce functions only:

query: Find ergonomic office chairs and then buy the selected one using
my default shipping address and credit card
response: Search for ergonomic office chairs<nexa_split>Purchase the
selected ergonomic office chair using the default shipping address and
credit card<|end|>

Android and E-commerce functions:

query: Find ergonomic office chair list doc and print it for my shopping
response: Search for ergonomic office chair list doc<nexa_split>Print
the ergonomic office chair list doc <|end|>

Table 2 presents the performance results of our multi-LoRA merging tech-
nique. Each individual LoRA was trained with consistent hyperparameters: rank
64, lora_alpha 256, and target_modules set to "all-linear". The single-domain
Android function set LoRA achieves 85.1% accuracy. When merging LoRAs from
two domains (Android and E-Commerce), accuracy slightly decreases to 82.2%.
Further merging yields lower accuracies: 78.9% for three domains (adding Video
Streaming), and 69.7% for four domains (adding Travel). These results reveal a
pattern of gradual accuracy decline as we integrate more function sets, with a
steeper drop occurring after the third domain is added.

Octo-planner: On-device Language Model for Planner-Action Agents 11

Table 2. Multi-LoRA Benchmark

Training Configuration Benchmark Accuracy (%)

LoRA for Android 85.1
Merged for Android, E-Commerce 82.2
Merged for Android, E-Commerce, video streaming 78.9
Merged for Android, E-Commerce, video streaming, travelling 69.7

5.3 Full Fine-Tuning with Different Base Models

We also tested multiple base models in full fine-tuning. Table 3 shows that Google
Gemma 2b achieved 85.6% accuracy, Gemma 7b reached 99.7%, and Microsoft
Phi-3 Mini got 98.1%. The results indicate that while smaller models can be
adapted quickly, larger models generally achieve higher accuracy.

Table 3. Different Base Model Benchmark

Base Model Benchmark Accuracy
Google Gemma 2b 85.6%
Google Gemma 7b 99.7%

Microsoft Phi-3 Mini 98.1%

5.4 Full Fine-Tuning with Different Dataset Sizes

Our default training dataset has 1,000 data points, with an even distribution
across 1–5 step sequences. We investigate how dataset size affects performance,
balancing the cost of synthetic data generation with accuracy. Table 4 shows the
results. Accuracy grows with dataset size, suggesting that at least 1,000 data
points is recommended for robust performance.

Table 4. Dataset Size Benchmark

Training Dataset Size Benchmark Accuracy
1,000 data points 98.1%
500 data points 92.5%
250 data points 85.3%
100 data points 78.1%

6 Conclusion

We presented the Octo-planner, an on-device planning agent designed to work
alongside action agents like Octopus V2. By separating planning and action

12 W. Chen et al.

execution, we improve specialization and adaptability. Our approach fine-tunes
Phi-3 Mini (a 3.8B parameter LLM) to serve as a planning agent capable of
running locally on edge devices, achieving a 97% success rate in in-domain tests.
We reduce computational demands, improve latency, and introduce a multi-
LoRA approach for easily expanding model capabilities without full retraining.

This contribution addresses key deployment concerns—data privacy, latency,
and offline functionality—moving toward practical, sophisticated AI agents that
function entirely on-device. By open-sourcing our model weights, we hope to
spur innovation in on-device AI, advancing efficient and privacy-protecting ap-
plications that serve everyday needs.

7 Limitations and Future Work

While our model is effective for specific mobile phone use cases, it lacks the it-
erative refinement seen in frameworks like ReAct [33], which alternate between
planning steps and real-time execution based on feedback. Our upfront plan-
ning approach is efficient for straightforward tasks but may be less adaptable to
changing conditions mid-execution.

Future work will explore incremental plan refinement using real-time ob-
servations to handle dynamic environments more effectively. We also intend to
integrate our planning model with a broader range of action models, extend-
ing beyond mobile applications to IoT and robotics. These steps aim to address
current limitations and broaden the versatility of on-device planning.

Acknowledgments. We thank the Nexa AI and MIT community for valuable feed-
back and support.

Disclosure of Interests. The authors have no competing interests to declare that
are relevant to the content of this article.

References

1. Jennings, N.R., Wooldridge, M.: Applications of intelligent agents. In: Agent Tech-
nology. Springer, pp. 3–28 (1998)

2. Poole, D.L., Mackworth, A.K.: Artificial Intelligence: Foundations of Computa-
tional Agents. Cambridge University Press (2010)

3. Kim, B., Gao, J., He, J., et al.: Language models are multilingual chain-of-thought
reasoners. arXiv preprint arXiv:2309.04958 (2023)

4. Deng, B., Xiao, W., Lin, X., et al.: Mind2web: Toward a generalist agent for the
web. arXiv preprint arXiv:2308.09230 (2023)

5. Yan, S., Wang, W., Fang, Y., et al.: Exploring gpt-4v as a multi-modal agent for
vision-based tasks. arXiv preprint arXiv:2310.12979 (2023)

6. Zheng, W., Song, W., Liu, X., et al.: GPT-4V in the loop: Multimodal chain-of-
thought reasoning for web navigation tasks. Under review (2024)

7. Koh, S., Wang, Y., Xu, A., et al.: VisualWebArena: A benchmark for vision-based
web manipulation. Under review (2024)

Octo-planner: On-device Language Model for Planner-Action Agents 13

8. Chen, W., Li, Z., Ma, M.: Octopus: On-device language model for function calling
of software APIs. arXiv preprint arXiv:2404.01549 (2024)

9. Xu, J., Li, Z., Chen, W., et al.: On-Device Language Models: A Comprehensive
Review. arXiv preprint arXiv:2409.00088 (2024)

10. Chen, W., Li, Z.: Octopus v4: Graph of language models. arXiv preprint
arXiv:2404.19296 (2024)

11. Gemini Team: Gemini: Next-generation large language model from Google. Under
review (2024)

12. OpenAI: GPT-4 Technical Report. (2024) https://openai.com/research/gpt-4
13. Xie, Q., Zhu, W., Li, D., et al.: Evaluating LLM-based agent for real-world travel

itinerary planning. Under review (2024)
14. Zheng, X., Chen, Y., Wu, S., et al.: The limit of LLM’s planning ability for real-

world tasks. arXiv preprint arXiv:2401.01234 (2024)
15. MultiOn Team: MultiOn: An AI assistant for multi-step tasks. https://www.

multion.ai (2024)
16. Simular AI Team: Simular: AI in everyday workflows. https://simular.ai (2024)
17. Adept Team: Adept AI. https://www.adept.ai (2024)
18. Rabbit Team: Rabbit R1: On-device AI phone. https://www.rabbitphone.com

(2024)
19. Humane: Humane AI Pin. https://hu.ma.ne (2024)
20. Limitless Lab: Limitless Pendant. https://www.limitlessai.com (2024)
21. Xie, Z., Gao, X., Yuan, Y., et al.: OSWorld: Evaluating LLM-based agent for OS-

level tasks. Under review (2024)
22. Bishop, W., Song, Y., Chen, R.: Latent planning in LLM-based mobile agents.

Under review (2024)
23. Nakano, R., Hilton, J., Balaji, S., et al.: WebGPT: Browser-assisted question-

answering with human feedback. arXiv preprint arXiv:2112.09332 (2022)
24. Gur, I., Friedman, E., Heilbron, F.C., et al.: Real-world agent tasks: A fine-tuned

LLM approach. Under review (2024)
25. Yu, H., Wang, M., Chen, J., et al.: A survey on security issues of on-device AI.

IEEE Communications Surveys & Tutorials (2017)
26. Lin, X., Gan, Y., Xu, A., et al.: AWQ: Activation-aware weight quantization for

LLMs. Under review (2024)
27. Alwarafy, A., Barnawi, A., et al.: A survey on IoT-based edge computing for

streaming data analytics. IEEE Access 8 (2020)
28. Ranaweera, P., Ramasamy, S., Jayarathna, S.: A survey on security in edge com-

puting. IEEE Access 9 (2021)
29. Chen, W., Li, Z., Guo, Z., Shen, Y.: Octopus v2: On-device function calling with

95% accuracy. Under review (2024)
30. Chen, W., Li, Z.: Octopus v3: Technical Report for On-device Sub-billion Multi-

modal AI Agent. arXiv preprint arXiv:2404.11459 (2024)
31. Chen, W., Li, Z., Xin, S.: OmniVLM: A Token-Compressed, Sub-Billion-

Parameter Vision-Language Model for Efficient On-Device Inference. arXiv
preprint arXiv:2412.11475 (2024)

32. Chen, W., Li, Z., Xin, S., et al.: Squid: Long Context as a New Modality for Energy-
Efficient On-Device Language Models. arXiv preprint arXiv:2408.15518 (2024)

33. Yao, S., Yu, P.S., Wang, S.: ReAct: Synergizing reasoning and acting in language
models. arXiv preprint arXiv:2303.04671 (2023)

34. Shen, Y., Chen, W., Zhuang, T., et al.: Small LLM, Big Skills: A multi-agent
approach for complex tasks. Under review (2024)

https://openai.com/research/gpt-4
https://www.multion.ai
https://www.multion.ai
https://simular.ai
https://www.adept.ai
https://www.rabbitphone.com
https://hu.ma.ne
https://www.limitlessai.com

14 W. Chen et al.

35. Hu, Z., Zhu, Y., Farn, C., et al.: General-purpose robotics via large language mod-
els. arXiv preprint arXiv:2307.01233 (2023)

36. Firoozi, T., Lan, R., Magnus, G., et al.: Foundation models in robotics: A survey.
arXiv preprint arXiv:2306.03306 (2023)

37. Ahn, M., Chen, D., et al.: Do as I can, not as I say: Grounding language in robotic
affordances. arXiv preprint arXiv:2204.01691 (2022)

38. Du, Y., Zhang, S., Kemp, C., et al.: VLP: Video language planning for long-horizon
tasks. arXiv preprint arXiv:2309.10024 (2023)

39. Lester, B., Al-Rfou, R., Constant, N.: The power of scale for parameter-efficient
prompt tuning. arXiv preprint arXiv:2104.08691 (2021)

40. Li, X.L., Liang, P.: Prefix-tuning: Optimizing continuous prompts for generation.
arXiv preprint arXiv:2101.00190 (2021)

41. Paul, M., Kolesnikov, A., Reinhard, E., et al.: Deep training data curation. arXiv
preprint arXiv:2305.01012 (2023)

42. Cao, J., Giannini, S., Guo, D., et al.: Instruction-tuning data generation for
domain-specific tasks. arXiv preprint arXiv:2306.14175 (2023)

43. Xia, T., Wei, Y., Huang, H., et al.: Less is more: Efficient sample generation for
large instruction tuning. Under review (2024)

44. Wang, Y., Zhang, T., Kong, Y., et al.: On the importance of diverse synthetic data
for instruction tuning. Under review (2024)

45. Hu, E.J., Shen, Y., et al.: LoRA: Low-rank adaptation of large language models.
arXiv preprint arXiv:2106.09685 (2021)

46. Wang, R., Zhu, Y., Zhang, R.: Multi-LoRA: Fine-tuning large language models
across domains. arXiv preprint arXiv:2305.12345 (2023)

47. Hayou, S., Gurram, A., Ingold, R.: LoRA+: Learning rate aware LoRA for efficient
adaptation. Under review (2024)

48. Kopiczko, P., Foltyn, R., et al.: VeRA: Very efficient random adaptation. Under
review (2024)

49. Zhang, X., Jiang, Y., et al.: AdaLoRA: Fine-tuning large language models with
adaptive rank. arXiv preprint arXiv:2303.11527 (2023)

50. Liu, K., Hayes, T., Barnett, M.: DoRA: Decomposed rank adaptation for
parameter-efficient tuning. Under review (2024)

51. Zi, W., Wei, J., Lin, Z., et al.: Delta-LoRA: Revisiting the tradeoff between model
adaptation and stability. arXiv preprint arXiv:2310.14257 (2023)

52. OpenAI: OpenAI Assistant API Overview. https://platform.openai.com/docs/
guides/gpt (2023)

https://platform.openai.com/docs/guides/gpt
https://platform.openai.com/docs/guides/gpt

Octo-planner: On-device Language Model for Planner-Action Agents 15

8 Appendix

8.1 Function description examples

def get_trending_news(query , language):
"""
Retrieves a collection of trending news articles
relevant to a specified query and language.

Parameters:
- query (str): Topic for news articles.
- language (str): ISO 639-1 language code. The default

language is English (’en ’), but it can be set to any
valid ISO 639-1 code (e.g., ’es’, ’fr ’).

Returns:
- list[str]: A list of strings , where each string

represents one news article (title and URL).
"""

def get_weather_forecast(location):
"""
Provides a weather forecast for a specified location.

Parameters:
- location (str): Location for the forecast (city name ,

ZIP code , etc.).

Returns:
- list[str]: A list of daily forecasts , each containing

the date and a brief description of the weather.
"""

def send_email(recipient , title , content):
"""
Sends an email to a specified recipient.

Parameters:
- recipient (str): Recipient ’s email address.
- title (str): The subject line of the email.
- content (str): The body content of the email.

Returns:
"""

def search_youtube_videos(query):
"""
Searches YouTube for videos matching a query.

Parameters:

16 W. Chen et al.

- query (str): Search query.

Returns:
- list[str]: Each element includes the video name and URL.
"""

def find_route_google_maps(origin , destination , mode):
"""
Computes a route using Google Maps from origin to destination.

Parameters:
- origin (str): Starting location.
- destination (str): Target location.
- mode (enum): ’driving ’, ’walking ’, ’bicycling ’, or ’transit ’.

Returns:
- list[str]: Route details , including directions and distances.
"""

def send_text_message(contact_name , message):
"""
Sends a text message to a specified contact.

Parameters:
- contact_name (str): The name of the recipient contact.
- message (str): The content of the message.

Returns:
"""

def create_contact(name , phone_number):
"""
Creates a new contact in the device ’s address book.

Parameters:
- name (str): Full name of the contact.
- phone_number (str): Phone number (preferably in E.164 format).

Returns:
"""

def set_timer_alarm(time , label):
"""
Sets a timer or alarm for a specified time.

Parameters:
- time (str): Alarm time in "HH:MM" (24-hour format).
- label (str): Custom label (default is "alarm ").

Returns:

Octo-planner: On-device Language Model for Planner-Action Agents 17

"""

def create_calendar_event(title , start_time , end_time):
"""
Schedules a new event in the calendar.

Parameters:
- title (str): Event title.
- start_time (str): ISO 8601 format (YYYY -MM -DD -HH-MM).
- end_time (str): ISO 8601 format; must be after start_time.

Returns:
"""

def set_volume(level , volume_type):
"""
Sets the volume level for a specified type (’ring ’, ’media ’, ’alarm ’).

Parameters:
- level (int): 0 (mute) to 10 (max).
- volume_type (enum): One of ’ring ’, ’media ’, ’alarm ’.

Returns:
"""

	Octo-planner: On-device Language Model for Planner-Action Agents

