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Abstract. Despite the significant advances in subsymbolic artificial intelligence
over the last decade, including novel Large Language Model (LLM) based meth-
ods, this technology comes with high, even prohibitive, development and applica-
tion costs. Recent research suggests that instead of blindly increasing the model
sizes and deploying larger numbers of better accelerators, there are benefits from
a focus on the model structures and methods employed instead. An approach that
has gained in popularity lately that addresses this is neurosymbolic reasoning.
By focusing on various ways of combining subsymbolic, mostly neural network-
based, computations with classical symbolic reasoning, it promises to alleviate
the computation demands of pure deep learning approaches by guiding the learn-
ing process with symbolic knowledge. In this paper, we introduce the Modular
Hybrid Agent Architecture (MHAgentA), a cognitive agent architecture, along
with a Python framework that implements it. This architecture is designed to
facilitate the prototyping and deployment of neurosymbolic agents that follow
Kahneman’s System 1, System 2 model. We provide a breakdown of a high-level
view of the architecture and outline the technical details of its implementation.
Moreover, the framework produces containerised multiprocessing-based agents,
reducing the inherent complexity of deployment that similar systems usually face.

1 Introduction

The concept of an agent as an autonomous software program capable of pursuing goals
on behalf of its owner is far from new. Envisioned in the era of symbolic artificial intelli-
gence [30], agents have been extensively explored, with a number of classifications and
even standards developed [26] formalising their potential capacities, structures, mod-
els, etc. Many cognitive architectures were developed, such as Soar [18], formalising
potential building blocks of an intelligent agent and their internal structures facilitating
the pursuit of goals. It was soon discovered, however, that the high computational com-
plexity, as well as issues in translating noisy and imprecise real-world sensor data into
symbolic formats, were prohibitive for its application in complex domains [36, 37].
Subsymbolic approaches have now become dominant in Al, trading off inherent
explainability for generalisation capacity and, eventually, computational efficiency. As
they evolved, the concept of agents was rediscovered, and new agent-based approaches
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were established. For instance, with advancements in the field of (deep) reinforcement
learning (RL, DRL), many complex problems were tackled with computational agents,
with particular focus on various games of high complexity [21, 31, 32, 34, 23].

Furthermore, the recent advances with large language models (LLM) show that they
can be sufficient to approximate intelligent agents [25] and even imitate symbolic rea-
soners [24]. However, the price for these advancements is not negligible with the inher-
ent opacity of deep models and gargantuan time, financial, and environmental costs of
training complex neural architectures [7].

Neurosymbolic approaches [17], striving to combine the explainability of symbolic
methods with the generalisation of neural networks, hugely vary in combination ratios
of these components [8]. With the neurosymbolic approach followed in this paper, we
aim to address the high computational demands of both subsymbolic and symbolic
approaches when applied to complex use cases by utilising adaptive learning during the
agent runtime, as well as value-based reasoning.

To facilitate efficient experimentation while pursuing these research goals, we de-
termined a need for a computationally lightweight, highly customisable modular ar-
chitecture (and corresponding agent development framework) that can be adapted and
modified quickly in accordance with evolving research objectives. This work resulted in
MHAgentA — Modular Hybrid Agent Architecture — a modern cognitive architecture
and a Python framework designed to facilitate the prototyping of neurosymbolic agents,
which is the subject of this paper.

The rest of the paper is organised as follows. In section 2, we briefly explore related
research. Section 3 follows with the details on the MHAgentA. Finally, in section 4, we
conclude with a discussion of the scope of the work, its goals, and next steps.

2 Related work

A significant number of cognitive architectures have been proposed over the last 40
years, many inspired by the works of Allen Newell [22] and Marvin Minsky [20]. These
works outlined an intelligent agent as a system of various components defining its ca-
pacities and behaviour, such as knowledge, language, perception, decision-making, etc.

One of the most famous cognitive architectures, Soar [18], is a classical example
of a symbolic agent architecture. Other notable cognitive architectures include ACT-
R [5] and LIDA [6], grounded in cognitive neuroscience and modelling their reasoning
processes after human cognition, and a large set of architectures inspired by the belief-
desire-intention reasoning model [27], such as PRS [14], JACK [10], dMARS [12],
JADEX [9], and others. However, most of them were developed a long time ago, mean-
ing that they lack easy inherent support for more recent optimisation and deployment
techniques, as well as leaning more towards symbolic agents while posing technical
challenges for extensive incorporation of modern deep learning-based subsystems.

On the subsymbolic side, there is a lot of research on DRL methods [21, 19, 29, 28].
Given enough computational and time resources (prohibitive amounts in complex real-
world scenarios), they can find near-optimal solutions for many agent-based environ-
ments. Nevertheless, these costs and the inherent opacity of DRL agents’ behavioural
policies hinder their adoption in many areas.



Adaptive Modular Agent Architecture for Hybrid Two-Level Reasoning 3

The explainable reinforcement learning field aims to address the latter issue, but it
faces its own set of problems, such as a lack of standardisation and high ambiguity in
the definition of what is a (good) explanation with a promising research direction lying
in extracting symbolic explanations from subsymbolic behavioural policies [13].

Large language models also seem to benefit from following the classical cognitive
reasoning approaches. For instance, it was shown that a classical intelligent agent struc-
ture with its components imitated by LLMs could simulate high-level behaviour [25].
Moreover, it was shown that forcing LLM architectures to undergo internal “reasoning”
cycles could vastly improve the output quality [24, 11].

Finally, there exist many works on neurosymbolic methods, with various types of
approaches identified in this field, from using symbols to the benefit of the otherwise
purely subsymbolic systems and vice versa to attempts to create true hybrid solutions [8,
4,35]. The last is generally regarded as the most promising way forward [17] and is the
approach we follow with MHAgentA.

3 MHAgentA: Modular Hybrid Agent Architecture

3.1 Requirements

As stated above, MHAgentA is a modular and customisable cognitive architecture in-
spired by Kahneman’s System 1 — System 2 model of human mind [16, 15]. The separa-
tion into two systems implies, to a first approximation, a two-part architecture capturing
a coarse division between fast and slow thinking. We also argue that the learning sub-
system and the intrinsic value model are crucial for efficient adaptive agents capable of
dynamically distributing the decision workload between the two systems.

The framework’s main requirements were computational efficiency and ease of
agent development and deployment. We aimed to achieve the former with multi-processing
(especially given the current high availability of high-performance computing) and the
latter by using a popular programming language with a low entry threshold, such as
Python, and with containerisation.

3.2 Cognitive architecture

Like many other cognitive architectures, MHAgentA takes inspiration from the percep-
tion of the human mind, a complex system running many parallel processes. As stated
above, we view it as two interacting systems: the faster, resource-efficient and reactive
System 1, and the slower, more sophisticated, conscious System 2, which can generally
take over control from System 1 as needed. Moreover, the separation of responsibilities
between these two is not fixed: Kahneman states that while System 2 initially handles
novel situations, it gradually relinquishes control to System 1 as the situation becomes
more familiar. This ability to learn to adapt the workload separation between these two
systems is the key feature we set as the main learn-term goal for this ongoing work.
MHAgentA’s modularity and customisability allow for the creation of agents with
varying capabilities implemented by a number of symbolic and subsymbolic techniques
depending on the use case. Essentially, each of the provisioned module types is optional
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Fig. 1. MHAgentA modules and their interaction channels.

and represents a set of potential capabilities. However, for this section we will assume
that the full set of module types defined below is used. The complete diagram of MHA-
gentA’s module types and their interactions appears in Figure 1.

Each of these modules represents a separate semi-autonomous process running in
parallel with other module processes and interacting with them to facilitate information
processing and decision-making. Depending on the strictness of the agent and multi-
agent system definitions and specifics of module implementations, a MHAgentA agent
can be considered a multi-agent system itself.

The architecture does not specify the exact details of each module’s implementation;
instead, it focuses on the communication scheme (i.e., defining the internal information
flow) between them. To this end, each module can be as complex or simple as needed.
Moreover, it is possible to define several modules of the same type but with potentially
different purposes and capabilities.

The following paragraphs describe the architecture’s modules in more detail.

Perceptors: should be used as sensors, gathering data from the environment and for-
warding it to a low-level reasoner for processing and (symbolic) belief extraction. This
process can be automatic and continuous or triggered as a response to a request from a
low-level reasoner. In the case of several observation types or modalities, although it is
possible to implement a single perceptor to handle them all, it might be more efficient
to have a set of specialised perceptors instead.

Actuators: these are agents’ means to act upon the environment. Certain actions can
be performed autonomously and continuously; however, actions performed in response
to requests from reasoners are more common. Although actuators have the capacity to
provide basic feedback on the action execution (e.g., failure or success of its execu-
tion from the internal agent perspective), the full consequences of the performed action
should be observed by agent perceptors.
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Low-level reasoners: analogues of System 1, they are conceptualised as fast subsym-
bolic reactive decision-makers. Each has easy access to raw observations via its connec-
tion to perceptors and actions via actuators. It receives its current goals from the goal
graph module and works towards achieving or maintaining them. A low-level reasoner’s
additional responsibility crucial to the neurosymbolic reasoning capacity is processing
the raw observations into sets of beliefs (alternatively performed inside the knowledge
base, depending on the use case requirements and design choices).

Knowledge bases: represent collections of the agent’s inherent and acquired knowl-
edge of the world. They can include the use-case-specific ontology, sets of rules, current
sets of beliefs, etc. We argue for the importance of including a value model of the agent,
even as simple as a three-level partial order lattice of beliefs (e.g., like-neutral-dislike).
This allows the agent to automatically assign numeric values to the observations, which
in turn can function as rewards for reinforcement learning policies trained during the
agent’s execution. Finally, as mentioned above, the knowledge base can also process
raw observations into their symbolic counterparts.

High-level reasoners: analogues of System 2, with the role of classical, sophisticated
symbolic planners making strategic decisions on behalf of their agents while leaving
the minute details of the plans’ execution to their low-level counterparts. However, they
do have a certain level of control over an agent’s actions via goals and direct access to
actuators. Finally, the intended symbolic implementation of high-level reasoners makes
the strategic level of agents’ decision-making inherently transparent, contributing to
establishing trust and ensuring a level of explainability.

Goal graphs: used to store the plans, both active and inactive, and to facilitate the ex-
change of their execution status between the low and high-level reasoners. They are
essentially storage buffers but with the capacity to utilise their semi-autonomy to pro-
cess and combine existing plans, as well as automatically process partial stages of plan
execution without taking computational resources away from either of the reasoners.
Memory: another independent storage module type managing the information that
keeps track of past information. By default, this information is used primarily for learn-
ing, e.g., for a subsymbolic RL policy or a symbolic rule-based system.

Learners: general-purpose modules responsible for learning new behaviours based on
the agents’ experience at the runtime. Both high and low-level reasoners can communi-
cate with them, allowing the agent to learn both subsymbolic and symbolic behaviours.
The knowledge and the memory modules play a critical role here by projecting agent
values onto beliefs and observations and then storing them for learning.

3.3 Implementation details

In addition to the cognitive architecture design, MHAgentA also comes with a direct
implementation as a Python package, mhagenta, available through the PyPI reposi-
tory*. It facilitates the implementation, deployment, log collection, and general runtime
management of agent execution (via Orchestrator objects). Each agent is structured as
a multi-process system of modules (one process per module) wrapped inside a vir-
tual Docker container [1]. The internal module interaction is facilitated by the Rab-

4 https://pypi.org/project/mhagenta/
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bitMQ message-broker software [3] with a simple messaging server instantiated inside
each container. Individual module execution uses subprocess and asyncio Python
modules, as well as a custom priority queue for scheduling the execution of internal
tasks, such as incoming message processing and ticks of the user-defined internal loop.
Basic module coordination (e.g., synchronous start and finish) is done via a root con-
troller sending high-priority commands through a dedicated broadcast channel. Beyond
that, there is no internal mechanism ensuring synchronous execution in terms of time
steps; it is up to the user to ensure that each function is properly sliced to avoid exe-
cution bottlenecks at the individual module level. The module states are saved after the
agent stops, with an option to resume the execution from them. Finally, several spe-
cial variants of the modules are provided, with more pending release. Among those are
RabbitMQ-based Perceptor and Actuator classes and an environment template.

4 Discussion

This paper introduces the MHAgentA cognitive architecture and an agent framework
developed as part of a PhD project. The final goal of the project is to test the capabilities
of the neurosymbolic adaptive learning approach for creating efficient and effective
agents for complex environments.

MHAgentA is designed as a tool for rapid prototyping and iterating over possible
solutions for this problem. Its Python implementation, using containerisation and multi-
processing, proved to be sufficiently efficient when tested with various reinforcement
learning environments of the gymnasium library [2], and is expected to scale effi-
ciently with an increase in environment complexity. Furthermore, containerization and
the use of RabbitMQ are expected to facilitate efficient MHAgentA agents deployment
on HPC clusters, with tests to support this claim scheduled.

On the side of the default module instantiations, we plan to provide code examples
of MHAgentA agents, both general and environment-specific, in the near future.

The ultimate goal, and the current stage of the work, is to finish the implementa-
tion and testing of a Python MHAgentA agent under the following requirements (as
discussed above):

— DRL-based low-level reasoner and a symbolic planner high-level reasoner.
Knowledge base combining the ontological representation of the environment in
question with a value system over potential beliefs.

Goal graph organised hierarchically with primitive actions at the bottom and com-
plex plans at the top.

Learner module capable of updating its policies to shift the responsibility border
between the low and high-level reasoner higher on the goal graph.

We selected NeuralMMO [33] as the experiment environment and will extensively
test the agent’s capabilities to solve the list of tasks provided with NeuralMMO.

Further technical optimisations, especially regarding third-party tools like Docker
and RabbitMQ, are planned as future work, along with an extensive exploration of
MHAgentA agents in multi-agent settings.

Disclosure of Interests. The authors have no competing interests to declare that are relevant to
the content of this article.
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