
CRICOS provider number: 00122A | RTO Code: 3046

Agile Approach for
Agent Oriented Software
Engineering
Sebastian Rodriguez
sebastian.rodriguez@rmit.edu.au
Work in Collaboration with John Thangarajah and Michael Winikoff

RMIT University – CIAIRI
EMAS Workshop @ AAMAS’24
7 May 2024 - Auckland, NZ

Search and Rescue Scenario

Drones assist in locating and identifying victims, via tasks assigned to them by the
human drone operator which they carry out autonomously.

Image: wikimedia

Requirements:
- Autonomous Exploration
- Victim detection
- Human-Machine Interaction
- Explainability (!)

Agent Models and Programming

Testing, Evaluation, Verification and Validation

Runtime

Search and Rescue Scenario

Drones assist in locating and identifying victims, via tasks assigned to them by the
human drone operator which they carry out autonomously.

Image: wikimedia

Agile AOSE
Software Development
Lifecycle?

Agent-oriented Software Engineering approach
Agent Models and Programming

Testing, Evaluation, Verification and Validation

Runtime
Requirements

Requirements
Agile and User Stories
Requirement elicitation and gathering is critical in Software Development
Agile is widely used and accepted in the SE industry
User Stories are commonly accepted by agile practitioners

If we don’t have good
requirements, we are not going

to build the right system.

User Stories

A user story is an informal, natural language description of one or more features of a
software system. User stories are often written from the perspective of an end
user or user of a system.

Intelligent Autonomous Systems Requirements
7

As Drone Operator,

I want drones to explore autonomously
a given area

So that they find victims and notify me

Problems:
1) User Story can be too

large to fit in ONE iteration

2) Difficult to split in stories
from the ”End user
perspective”

System Stories: Idea
A system story is an informal, natural language
description of one feature of the system from the
system’s perspective required to fulfill one or more
user stories

Benefits

ü Clear link between User and System-level requirements
ü Consider the system as a first-class citizen

As <System>,

I want to <achieve goal>

So that <benefit>

USS Approach
Given a high-level specification of the system in terms of objectives:

(1) identify User Stories using classical techniques

(2) refine into System Stories and their acceptance criteria; and

(3) during the development process:
map the System Stories to the relevant agent concepts.
maintain a process ledger for the purpose of traceability

As Drone,

I want to explore an area assigned to me,

So that I can find victims.

As Drone,

I want to locate victims,

So that I can inform operator.

As Drone,

I want to detect victims,

So that I can locate their position.

Refine each User Story into System Stories
As Drone Operator,

I want drones to explore autonomously a given
area

So that they find victims and notify me

Refine each User Story into System Stories
As Drone Operator,

I want drones to explore autonomously a given
area

So that they find victims and notify me

As Drone,

I want to locate victims,

So that I can inform operator.

As Drone,

I want to explore an area assigned to me,

So that I can find victims.

As Drone,

I want to detect victims,

So that I can locate their position.

Requirements
Capture system requirements using User and System Stories

As Drone,

I want to explore an area
assigned to me,

So that I can find victims.

User Story System Story

Agent-oriented Software Engineering approach

Requirements

Agent Models and Programming

Testing, Evaluation, Verification and Validation

Runtime

Agent-oriented Software Engineering approach

Requirements

Agent Models and Programming

Testing, Evaluation, Verification and Validation

Runtime

<achieve or maintain goal>
<do action>

Explore Area

What

<achieve or maintain goal>
<handle perception>

Find Victim

Why

<agent/role/system module>
Drone Agent

WhoAs Drone,

I want to explore an area
assigned to me,

So that I can find victims.

Requirements to Agents (AAMAS’21)

SARL – Agent programming language
http://www.sarl.io

Tactical Development Framework

http://www.agentprojects.com/tdf/

Requirements Models Implementation

Agent-oriented Software Engineering approach

Requirements

Agent Models and Programming

Testing, Evaluation, Verification and Validation

Runtime

Agent-oriented Software Engineering approach

Requirements

Agent Models and Programming

Testing, Evaluation, Verification and Validation

Runtime

Testing, Evaluation, Verification and
Validation
Objective
- Adopt Test-Driven approach for Agent development
- Verify individual agent behaviors against requirements
- Verify System behavior against requirements

Constraints
- Integrate with traditional SE tools and techniques
- Facilitate requirements validation with SMEs
- Validate of test suite quality

AAMAS’23

Behaviour driven approach for agent system
Acceptance Criteria:
conditions that a software product must meet to be accepted by a
user, a customer, or other system.

Extensions to USS for BDD
Adopt Scenario based Acceptance Criteria
- Originated with BDD

Define types of System Stories
- Goal
- Plan
- Belief
- Perception

Define Guidelines to capture acceptance criteria

Integrated with Industry-grade testing tools
- Gherkin Language
- Cucumber
- Junit

Scenario: <title>
 Given <state>
 When <trigger>
 Then <expected outcome>

Extensions to USS for BDD
Goal Story Example

@goal
Feature: Explore Area
 As Drone,
 I want to explore areas assigned to me
 So that I can find victims

 @goal-success
 …
 @goal-failure
 …
 @goal-context
 …
 @goal-plan
 …

Extensions to USS for BDD
Goal Story Example

@goal
Feature: Explore Area
 As Drone,
 I want to explore areas assigned to me
 So that I can find victims

 @goal-success
 Scenario: Goal success
 Given I believe current_area_explored is greater
than 95%
 When I evaluate current_goal success
 Then goal success is true
 @goal-failure
 …
 @goal-context
 …
 @goal-plan
 …

Extensions to USS for BDD
...
 @goal-success
 Scenario: Goal success
 Given I believe current_area_explored is greater than 95%
 When I evaluate current_goal success
 Then goal success is true

class ExploreAreaTestSteps {
...
@Given("I believe current_area_explored is greater than {int}%")
def exploration_is_percent(rate : int) {
 val area = new Area(0f, 0f, 10f, 10f, Priority.HIGH)
 doReturn(area).when(this.agt.beliefs).currentArea
 doReturn(rate /
100f).when(this.agt.beliefs).explorationRate(any(Area))
}
@When("I evaluate current_goal success")
def evaluate_goal_success {
 this.evalResult = this.goal.success
}
@Then("goal {word} is {word}")
def evaluation_outcome(cond : String, outcome : String) {
 assertEquals(Boolean.valueOf(outcome), this.evalResult)
}
}

Extensions to USS for BDD
...
 @goal-success
 Scenario: Goal success
 Given I believe current_area_explored is greater than 95%
 When I evaluate current_goal success
 Then goal success is true

class ExploreAreaTestSteps {
...
@Given("I believe current_area_explored is greater than {int}%")
def exploration_is_percent(rate : int) {…}
@When("I evaluate current_goal success")
def evaluate_goal_success {…}
@Then("goal {word} is {word}")
def evaluation_outcome(cond : String, outcome : String) {…}
}

skill ExploreArea extends Goal implements AchievementGoal{
 uses SearchRescueBeliefs, DroneState
 def context : boolean {…}
 def success : boolean {
 explorationRate(currentArea) >= 0.95f
 }
 def failure : boolean {…}
}

Extensions to USS for BDD
...
 @goal-success
 Scenario: Goal success
 Given I believe current_area_explored is greater than 95%
 When I evaluate current_goal success
 Then goal success is true

class ExploreAreaTestSteps {
...
@Given("I believe current_area_explored is greater than {int}%")
def exploration_is_percent(rate : int) {…}
@When("I evaluate current_goal success")
def evaluate_goal_success {…}
@Then("goal {word} is {word}")
def evaluation_outcome(cond : String, outcome : String) {…}
}

skill ExploreArea extends Goal implements AchievementGoal{
 uses SearchRescueBeliefs, DroneState
 def context : boolean {…}
 def success : boolean {
 explorationRate(currentArea) >= 0.95f
 }
 def failure : boolean {…}
}

Test Quality Evaluation
Mutation Testing via PI Test

Analysis
• Discovering missing acceptance criteria
• Identifying Ground beliefs
• Acceptable behaviours despite mutation survival

Tooling integration
Full IDE support (via SARL IDE)
• Debugging with breakpoints
• Code inspection

Mainstream Testing frameworks

Tools to verify tests suite quality

Building and Deployment tools
• Enables Continuous Integration and Delivery

Agent-oriented Software Engineering approach

Requirements

Agent Models and Programming

Testing, Evaluation, Verification and Validation

Runtime

Agent-oriented Software Engineering approach

Requirements

Agent Models and Programming

Testing, Evaluation, Verification and Validation

Runtime

Case Study: Evacuation Modelling
v Applied work in evacuation modelling for natural

disasters, esp. bushfires and floods spanning 10 years

v Combines agent-based modelling and simulation with
belief-desire-intention for cognitive reasoning

v Key stakeholders include Emergency Management VIC,
Department of Premier and Cabinet VIC, Department of
Land, Water, and Planning, and various councils

v Funded by CSIRO’s Dta61 (2018 - ongoing) [Singh et al.]

Evacuation
Model

Road Network

Population

Disaster model

Evacuability

OpenStreetMap,
VicRoads, iNSW,

SES, etc.

Census based,
Activity based,

Special event, etc.

Phoenix, Spark,
Swift, BoM, etc.

Zones
evacuated,
Egress
times,
Vehicles
stuck,
Congestion
points, etc.

2015 //
Warrandyte

VIC
Is the bridge a

choke point
for large

evacuations?

2020 //
Sydney NSW

Nepean-
Hawkesbury

flood
evacuation
modelling

2021 // VIC
Web-based
Evacuation
Decision

Support Tool
for Shires

2021 // VIC &
WA

State-wide
evacuation
risk hotspot
identification

tool

Process Overview

AAMAS, 2022

USS and Acceptance Criteria
32

Feature:
Handling of dependents for full-time residents

As ResidentFullTime,
I want to always attend to my dependents
so that they are safe

Scenario: first response is always to attend to dependents
Given agent is type ResidentFullTime
Given it believes HasDependents is true
When it believes current_goal is GoalInitialResponse
Then eventually it believes status is to:DependentsPlace

Scenario: ….

Scenario: ….

USS and Acceptance Criteria
33

<achieve or maintain goal>
<do action>

Attend Dependents

What

<achieve or maintain goal>
<handle perception>

Ensure Dependents
Safety

<agent/role/system module>
Resident FullTime

As ResidentFullTime,

I want to attend to my dependents,

So that they are safe.

Why

User and System Stories (AAMAS’21)

Who

Process Overview
34

42930|11:55:30|ResidentFullTime|8344|saw embers
42930|11:55:30|ResidentFullTime|8344|believes anxietyFromSituation=0.3
42930|11:55:30|ResidentFullTime|8344|believes …

...|thinks GoalFullResponse~>PlanFullResponse is applicable

...|thinks GoalInitialResponse~>PlanResponseWhenDependentsAfar is not applicable

...|thinks GoalInitialResponse~>PlanResponseWhenDependentsNearby is applicable

...|thinks GoalInitialResponse~>PlanResponseWithoutDependents is not applicable

...|thinks GoalInitialResponse~>PlanDoNothing is applicable

...

Process Overview
35

42930|11:55:30|ResidentFullTime|8344|saw embers
42930|11:55:30|ResidentFullTime|8344|believes anxietyFromSituation=0.3
42930|11:55:30|ResidentFullTime|8344|believes …

...|thinks GoalFullResponse~>PlanFullResponse is applicable

...|thinks GoalInitialResponse~>PlanResponseWhenDependentsAfar is not applicable

...|thinks GoalInitialResponse~>PlanResponseWhenDependentsNearby is applicable

...|thinks GoalInitialResponse~>PlanResponseWithoutDependents is not applicable

...|thinks GoalInitialResponse~>PlanDoNothing is applicable

...

GoalInitialResponse
PlanResponseWithoutDependents

ResidentFullTime (id=8344) Embers

Requirement Analysis

System Story Extension BNF

Extension Gherkin Syntax
Agent-specific and temporal constructs
Implemented on top of proven BDD testing framework

Requirement Analysis
System Story Extension BNF

Given agent is type ResidentFullTime
Given it believes HasDependents is true
When it believes current_goal is GoalInitialResponse
Then eventually it believes status is to:DependentsPlace

Requirement Analysis
Fault Model

Fault Name Fault
Type

Interpretation

PASS Trigger observed, conditions met, and the observed behaviour
of the agent complies with the specification

FAIL Strong Trigger observed, conditions met, but the observed behaviour
of the agent does not comply with the specification.

NO_TRIGGER Weak Trigger (perception or belief update) was not observed for any
agent in the simulation

TRIGGERED
BUT_GIVEN
NOT_MET

Weak Trigger observed, but belief state of the agent did not meet
the given conditions

Given agent is type ResidentFullTime
Given it believes HasDependents is true
When it believes current_goal is GoalInitialResponse
Then eventually it believes status is to:DependentsPlace

Requirement Analysis
39

Fault Model

Fault Name Fault
Type

Interpretation

PASS Trigger observed, conditions met, and the observed behaviour
of the agent complies with the specification

FAIL Strong Trigger observed, conditions met, but the observed behaviour
of the agent does not comply with the specification.

NO_TRIGGER Weak Trigger (perception or belief update) was not observed for any
agent in the simulation

TRIGGERED
BUT_GIVEN
NOT_MET

Weak Trigger observed, but belief state of the agent did not meet
the given conditions

Given agent is type ResidentFullTime
Given it believes HasDependents is true
When it believes current_goal is GoalInitialResponse
Then eventually it believes status is to:DependentsPlace

Requirement Analysis
40

Fault Model

Fault Name Fault
Type

Interpretation

PASS Trigger observed, conditions met, and the observed behaviour
of the agent complies with the specification

FAIL Strong Trigger observed, conditions met, but the observed behaviour
of the agent does not comply with the specification.

NO_TRIGGER Weak Trigger (perception or belief update) was not observed for any
agent in the simulation

TRIGGERED
BUT_GIVEN
NOT_MET

Weak Trigger observed, but belief state of the agent did not meet
the given conditions

Given agent is type ResidentFullTime
Given it believes HasDependents is true
When it believes current_goal is GoalInitialResponse
Then eventually it believes status is to:DependentsPlace

Requirement Analysis
41

Fault Model

Fault Name Fault
Type

Interpretation

PASS Trigger observed, conditions met, and the observed behaviour
of the agent complies with the specification

FAIL Strong Trigger observed, conditions met, but the observed behaviour
of the agent does not comply with the specification.

NO_TRIGGER Weak Trigger (perception or belief update) was not observed for any
agent in the simulation

TRIGGERED
BUT_GIVEN
NOT_MET

Weak Trigger observed, but belief state of the agent did not meet
the given conditions

Given agent is type ResidentFullTime
Given it believes HasDependents is true
When it believes current_goal is GoalInitialResponse
Then eventually it believes status is to:DependentsPlace

Requirement Analysis
42

Fault Model

Fault Name Fault
Type

Interpretation

PASS Trigger observed, conditions met, and the observed behaviour
of the agent complies with the specification

FAIL Strong Trigger observed, conditions met, but the observed behaviour
of the agent does not comply with the specification.

NO_TRIGGER Weak Trigger (perception or belief update) was not observed for any
agent in the simulation

TRIGGERED
BUT_GIVEN
NOT_MET

Weak Trigger observed, but belief state of the agent did not meet
the given conditions

Given agent is type ResidentFullTime
Given it believes HasDependents is true
When it believes current_goal is GoalInitialResponse
Then eventually it believes status is to:DependentsPlace

Process Overview
43

Agent-oriented Software Engineering approach

Requirements

Agent Models and Programming

Testing, Evaluation, Verification and Validation

Runtime

Agent-oriented Software Engineering approach

Requirements

Agent Models and Programming

Testing, Evaluation, Verification and Validation

Runtime

SARL Programming Language
http://www.sarl.io

• Agent architecture-agnostic
• Powerful (yet simple) extension mechanism
• Distribution (network) abstraction

Open-Source Project
Full IDE Support
Compatible with modern deployment tools
Java interoperability

SARL Goal Engine
Goal oriented reasoning
• Goals: Achievement; Maintenance, ...
• Plans: Actions failures and durations
• Beliefs

Reasoning
• Customizable Goal / Plan Selection
• Customizable Intention Scheduling
• Goal achievement verification
• Meta reasoning (e.g. valuings)

skill ExploreArea extends Goal implements AchievementGoal{
 uses SearchRescueBeliefs, DroneState
 def context : boolean {…}
 def success : boolean {
 explorationRate(currentArea) >= 0.95f
 }
 def failure : boolean {…}
}

http://www.sarl.io/

Search and Rescue Scenario

Drones assist in locating and identifying victims, via tasks assigned to them by the
human drone operator which they carry out autonomously.

Image: wikimedia

Why?
Why not?
…

Agent-oriented Software Engineering approach

Requirements

Agent Models and Programming

Testing, Evaluation, Verification and Validation

Runtime

Built-in Explainability?

Explainable Agents (XAg) by design
Explainability is an essential feature for Trust

eXplainable-by-design Agents (XAg)
• Event driven architecture
• Explainable decision-making processes

• TriQPAN Design Pattern (AAMAS’24 Main Track) - Wednesday
• Query languages and explanation engines

Research agenda: Challenges and opportunities
• AAMAS’24 Blue Sky - Friday

AAMAS’24 (Main Track; Blue Sky)

Agile AOSE
Requirements that are understandable and traceable
- Use main steam SE practices
- Link requirements to system component (no black box)
Testable and Verifiable Intelligent Systems
- Validate System behaviors against requirements
- Testing frameworks for independent modules
- Validation of testing quality
Programable using concepts familiar to humans
- Goal oriented practical reasoning
Explainable-by-design agents (XAg)

AAMAS, 2021; AAMAS, 2022; AAMAS, 2023; AAMAS, 2024

Looking Forward …
Agile practices for AOSE
• Every step for the SDLC (ES; DDD; CI/CD; etc.)
• Agile methodologies
Design and Architectures
• DDD; MDE; Event-Driven architectures
• Design Patterns and Explainable-by-design
Test, Evaluation, Verification and Validation
Agent for mainstream SE projects
Models; Programming; …
Tools and infrastructure support

CRICOS provider number: 00122A | RTO Code: 3046

Agile Approach for
Agent Oriented Software Engineering

Sebastian Rodriguez
sebastian.rodriguez@rmit.edu.au

RMIT University – CIAIRI
EMAS Workshop @ AAMAS’24
7 May 2024
Auckland, NZ

THANK YOU!

Papers
(AAMAS21) Rodriguez, S., Thangarajah, J. and Winikoff, M. (2021) ‘User and System Stories: An Agile Approach for
Managing Requirements in AOSE’, in Proceedings of the 20th International Conference on Autonomous Agents and
MultiAgent Systems. Richland, SC: International Foundation for Autonomous Agents and Multiagent Systems (AAMAS ’21),
pp. 1064–1072. Available at: https://doi.org/10.5555/3461017.3461136.
(AAMAS22) Rodriguez, S. et al. (2022) ‘Testing Requirements via User and System Stories in Agent Systems’, in
Proceedings of the 21st International Conference on Autonomous Agents and Multiagent Systems. Richland, SC:
International Foundation for Autonomous Agents and Multiagent Systems (AAMAS ’22), pp. 1119–1127. Available at:
https://ifaamas.org/Proceedings/aamas2022/pdfs/p1119.pdf (Accessed: 12 May 2022).

(AAMAS23) Rodriguez, S., Thangarajah, J. and Winikoff, M. (2023) ‘A Behaviour-Driven Approach for Testing Requirements
via User and System Stories in Agent Systems’, in Proceedings of the 2023 International Conference on Autonomous Agents
and Multiagent Systems. Richland, SC: International Foundation for Autonomous Agents and Multiagent Systems (AAMAS
’23), pp. 1182–1190. Available at: https://doi.org/10.5555/3545946.3598761.
(AAMAS24 a) Rodriguez, S., Thangarajah, J. and Davey, A. (2024) ‘Design Patterns for Explainable Agents (XAg)’, in
Proceedings of the 2024 International Conference on Autonomous Agents and Multiagent Systems. Auckland, New Zeland
(AAMAS ’24).

(AAMAS24 b) Rodriguez, S. and Thangarajah, J. (2024) ‘Explainable Agents (XAg) by Design’, in Proceedings of the 2024
International Conference on Autonomous Agents and Multiagent Systems (Blue Sky). Auckland, New Zeland (AAMAS ’24)

https://doi.org/10.5555/3461017.3461136
https://ifaamas.org/Proceedings/aamas2022/pdfs/p1119.pdf
https://doi.org/10.5555/3545946.3598761

