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Abstract. This paper presents our extension for the BDI-ABM inter-
face, which provides a connection layer for BDI agents to interact with
Agent-based Models (ABM) such as simulation platforms in an inte-
grated Multi-Agent System (MAS). We introduce a new version of the
ABM-Jadex layer, which provides the possibility to attach BDI Agents
developed with Jadex, an Agent Development Framework, to the MAT-
Sim traffic simulation environment. We introduce cognitive vehicle agents
capable of negotiating among themselves via the contract net protocol.
The scalability of the integrated MAS architecture is tested in the first
experiments simulating the behavior of a fleet of autonomous e-trikes.
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1 INTRODUCTION

Sustainable mobility is one of the global challenges. Large-scale systems with
agent-based technology can contribute to reducing traffic emissions [4]. Simu-
lations of vehicle agents may facilitate better decisions in urban development,
usage of multi-modal mobility, or traffic operation. Platforms like Grab1 have
recently emerged and launched mobility services with fleets of public and private
vehicles. The Grab app connects passengers with private hire, taxi, and coach
drivers. However, it takes seven minutes according to Grab’s web page to be
matched with an appropriate vehicle when using its ride-sharing service Grab-
Share which takes more bookings in one ride than one.2 Cognitive software agents
with negotiation capabilities may provide a more efficient, scalable solution for
transport tasks, especially for Autonomous Mobility on Demand (AMoD) sce-
narios. An AMoD system consists of a fleet of autonomous vehicles that pick
⋆ An earlier version of this paper had been presented at the LWDA 2023 workshop in

Marburg, Germany [23]
1 https://www.grab.com/, last access: 04/16/2024
2 https://www.grab.com/sg/inside-grab/stories/grabshare-weve-revamped-our-

carpooling-service/, last access: 04/16/2024
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up passengers and transport them to their destination [40]. Cognitive software
agents have been applied in a wide range of real-world domains and scenarios
for solving different challenges [16, 4, 22, 15]. BDI agents are based on the human
reasoning cycle, translating into beliefs, desires, and intentions [17]. Their ability
to deal with multiple goals in parallel predestines them to negotiate, maintain
battery power, and steer driving actions simultaneously.

Many agent development platforms supporting BDI agents provide a simula-
tion environment. Frequently, those simulations are rather simplified and closely
application-specific. In contrast, stand-alone simulation platforms are mostly
limited to simple agent types and do not support BDI agents. This makes it
difficult to carry out more complex simulations with BDI agents. Singh et al.
[34] open an alternative strand of research. They integrate agent development
platforms following the BDI agent architecture [17] with rich, agent-based simu-
lation platforms. Figure. 1 illustrates how the cognitive BDI agents in the upper
layer interact with each other and the simulation platform. The spotlights in-
dicate that a cognitive vehicle agent receives sensory inputs from its particular
avatar in the simulation and decides its actions.

Fig. 1: Paper contributions (left side: following Klügl [20]).

The main contribution of this paper is twofold (cmp. Figure 1):

1. the design of self-managing vehicle agents for AMoD applications following
the BDI paradigm and using the contract net protocol to negotiate workloads
among themselves.

2. the synchronization between a BDI agent development framework and a traf-
fic simulation platform building upon the results of Singh et al. [34].

We use mainly open-source tools and framework solutions to implement
the integration according to two MAS components. For the agent development
framework we choose Jadex [27]. It is a proven framework that supports BDI
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agents and is Java-based. A preliminary version of the vehicle agents imple-
mented in Jade [5] has been published in previous work [15]. The richer archi-
tectural support of Jadex compared to Jade led us to redesign the cognitive
agents in the Jadex framework. MATSim [39] is used as the simulation platform.
MATSim is an agent-based traffic simulation platform, widely used and based on
Java. To connect these two platforms, we build upon the already existing BDI-
ABM framework [34] and add a new interface for integrating Jadex and MATSim
which is not yet included. BDI-ABM has been used to train approximately 60
emergency management specialists from 20 different agencies on bushfire evacu-
ation recently [32]. There is already an integration between an outdated version
of Jadex and another simulation platform. The intended application scope of the
integrated MAS is a broad range of scenarios in AMoD, including ride-hailing,
last-mile delivery, or disposal logistics. For the experimental evaluation, we have
chosen an AMoD test scenario with a fleet of autonomous e-Trikes.

The remainder of this paper is structured as follows: Section 2 presents the
related works. The idea and the design of the BDI-ABM integration in general as
well as the design of Jill-MATSim3 integration in evacuation scenario simulation,
which is the main basis for the synchronization of Jadex and MATSim, is covered
in Section 3. Section 4 contains the concept design and the implementation of
the integration layer. The conceptual framework of the Jadex vehicle agent is
covered in Section 5. In Section 6, the first experimental results toward scalability
of the fleet size for elastic demands are described based on real-world data from
a ride-hailing scenario. Section 7 concludes and discusses future work.

2 RELATED WORK

Integrating autonomous software agents into simulation environments has been
researched extensively. Software agents have been covered in survey works fo-
cusing on the different development frameworks as well as the extensibility of
the cognitive architecture [9, 21, 1, 13]. For example, the works of Timoteo et al.
[38] and Sadeghi Garyan et al. integrate software agents, built with Jade in [30],
and the traffic simulation SUMO4. The application of Contract Net Protocol
for transportation scheduling has been investigated by Fischer et al. [19] and
Dorer and Calisti [12]. The development of software agents is a well-researched
field with a plethora of Agent development frameworks proposed by different
research labs and organizations. Silva et al. cover the BDI agent architecture in
their survey [31] and point out several research directions. The main contribu-
tion of this paper extends the BDI-ABM environment5. This work is grounded
in several research papers mentioned in this section. The concepts and funda-
mental approach of BDI-ABM is presented by Padgham et al. in [24]. Here,
the authors present multiple layers for integrating different agent development
frameworks that especially implement the BDI Agent architecture, with ABMs.
3 https://github.com/agentsoz/jill (last access: 04/16/2024)
4 https://sumo.dlr.de/docs/index.html, last access: 04/16/2024)
5 https://github.com/agentsoz/bdi-abm-integration (last access: 04/16/2024)
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In this context, ABMs provide the environment, where the agents can interact.
Thus, research has been conducted in the application scenario of emergency evac-
uation and multi-modal transportation at a city-wide level [32]. One of the layers
connects the simulation environment MATSim [25] with the agent development
framework Jill. A Jadex layer is also considered in BDI-ABM. However, it is
outdated and does not support the connection to the current versions of Jadex
BDI agents, called BDIv3. Furthermore, it is developed to connect Jadex agents
to the Repast simulation6. Therefore, a connection to MATSim is not provided.
Furthermore, there is also no demonstration or example freely available that
demonstrates the interaction of Jadex with those simulation environments.

3 FOUNDATIONS

BDI-ABM is listed as a plugin for MATSim providing the connection of BDI
agents to MATSim [25, 35]. One application of BDI-ABM is in the Emergency
Evacuation Scenario (EES) [33, 34], where agents in Jill are combined with MAT-
Sim by using the BDI-ABM framework. The integration of Agent development
frameworks and traffic simulation has also been conducted by Soares et al. by
integrating Jade platform and the Sumo traffic simulation [37]. Developing a
simulation environment for software agents represents the same challenge as de-
veloping cognitive agents. Ricci et al. use an Artifact-based approach [29, 28].
Davoust et al. consider an Unmanned aerial vehicle (UAV) scenario where the
agents interact with the simulation environment [10]. Here, the focus is set on
the computational performance of executing the framework.

3.1 Traffic simulation

In our considered domain of traffic simulation, we focus on AMoD settings, where
the vehicle agents transport customers from a starting position to their desired
destination. MATSim is an activity-based, extendable, multi-agent simulation
framework implemented in Java, which is open-source [39]. MATSim is devel-
oped using the concept of agent-based modeling that is specified for transport
simulation. This framework is designed for large-scale scenarios and is usually
used to model a single day. With MATSim, it is possible to simulate traffic, taxi
fleets, mobility as a service as well as different modes of transportation. By using
MATSim, different modes of Mobility on Demand systems can be simulated. In
the current version of MATSim7 the contribution package DVRP provides the
necessary components for setting up a ride-sharing or ride-hailing simulation. In
addition, the contribution DRT provides ride-pooling including vehicle agents
with additional capacities. It is built on top of the DVRP package. Recent work
that investigates scenarios on Mobility on Demand is from Bischoff et al., where
ride-pooling and shared taxi fleets are simulated on a city-wide scale analyzing

6 https://repast.github.io/
7 version 15.0, https://github.com/matsim-org/matsim-libs (last access: 04/16/2024)
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the fleet performance [6, 8, 7]. Other mentionable work investigating ride-pooling
by using MATSim is from Zwick et al. [42] and Kaddoura & Schlenther [18]. Our
work differentiates from the previously mentioned works since we not only con-
sider MATSim solely but investigate the interaction of external BDI agents with
the simulation platform. Therefore, the mentioned MoD and Mobility as a Ser-
vice (MaaS) components in MATSim are not considered in our work.

On a high level, the BDI-ABM framework contains several integration layers
for different Agent Development Frameworks (ADF) implemented in Java. Es-
pecially, the framework contains a generic layer, which represents a connection
layer for different ADF and simulation environments. For each ADF and simu-
lation environment, a specific layer is developed, which interacts via BDI-ABM.
According to Singh et al. [34], the mentioned layer provides the possibility to
connect other simulation environments as well. Thus, we developed a novel in-
tegration layer for the connection of Jadex and MATSim. In BDI-ABM, there
exists an old integration layer for Jadex. However, the layer is customized for el-
der versions of the ADF and only works with the simulation environment Repast
and not with MATSim. The advantage of Jadex over other ADFs is that the
contract net protocol [36] for the communication between agents has been in-
tegrated and the Jadex application is currently further developed. At the same
time, MATSim is a mature and powerful traffic simulator that can be used for
large-scale traffic simulations, primarily to assess the likely results of various
infrastructure or road network changes.

3.2 Interface for cognitive agents

In the conceptual framework of BDI-ABM [34], some agents in the simulation
have a ”brain” in the BDI system, which is the decision-making component, and a
”body” in the ABM system which carries out actions. An agent in this integrated
framework will be situated in an environment where it can perceive environ-
mental input via percepts, and act, via actions. These activities of perceiving
and acting will happen inside the ABM, where the ”body” interacts with the
physical world of the domain. To be precise, as shown in Fig. 1 with the arrows
of action and percept, the perceptions from ABM will be communicated to the
”brain” in BDI, and the ”brain” will use its decision-making mechanism to select
the suitable action based on the input from percepts, the chosen action will be
delivered back to ABM to be carried out. It is defined in the conceptual frame-
work that a percept going into BDI from ABM does not have to be identical to
the percepts in ABM. The percept in BDI is a high-level percept composed of
lower-level observations of the environment, which are the percepts represented
in ABM. Similarly, an action going from the BDI agent to its ABM counterpart
must typically be decomposed into a sequence of lower-level environment actions
that the ABM agent knows how to perform. In terms of data transfer between
the BDI and ABM systems, two key optimizations for this integrated framework
are defined. The first one is that a single data container is passed between the
systems in each simulation cycle. The data container bundles the messages for
all agents and delivers them all together to the other system to simplify the



6 Mauri et al.

synchronization between the systems. The second one is that not every percept
is computed and pushed to the BDI system on every cycle. The reason is the
BDI agent processes information contextually and only certain information is
useful in certain situations. In case of ad-hoc information requirements, the BDI
agent can pull this percept from the ABM environment as needed via the per-
cept queries function. From the technical point of view, the framework consists
of three distinct layers. First is a generic layer, which realizes the conceptual
model from the previous section. The second layer is the system layer, which
provides the code necessary for linking a particular BDI or ABM system into
the generic layer. With this layer, built on top of the generic layers, specific BDI
systems like Jadex and Jill, as well as ABM systems (i.e. MATSim), can receive
and send percepts and actions back and forth. The last layer is the application
layer, which provides the application-specific code including agent behavior and
reasoning. Overall, the BDI application provides action decisions to the ABM
and the ABM provides observations and environmental information of interest
to the BDI module.

4 JADEX-MATSIM INTEGRATION LAYER

Fig. 2: Simplified illustration of the connection between Jadex and MATSim by
BDI-ABM

The Jadex-MATSim integration framework is inspired by the already existing
Jill-MATSim integration framework [35]. Figure 2 shows the new integration
layers with the existing components depicted in grey color. The BDI-ABM layer
synchronizes the mutual control taken by the cognitive side (Jadex agents) and
the simulation side (MATSim). The Dataserver component controls the access to
a shared memory structure called AgentDataContainer. The Dataserver grants
read/write access to the cognitive side via the TakeControl BDI command and
withdraw it via the command TakeControl ABM, which provides the simulation
side with read/write access. Intermediate results from the reasoning cycles of
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the BDI site are stored in AgentDataContainer to be shared with the simulation
and the simulation outputs and vice versa.

The JadexModel is responsible for initializing the BDI agents and controls
the incoming and outgoing data from and to Jadex. To connect the vehicle
agents with the BDI-ABM layer, the SimSensoryInputBroker and the SimAc-
tuator play the role of mediators. The mediators are required because Jadex
active components like the vehicle agents cannot be accessed directly by exter-
nal (non-Jadex) components [26]. The SimActuator is used by the vehicle agents
to write the actions (drive-to) into the AgentDataContainer. The SimSensory-
InputBroker distributes the incoming data from the BDI-ABM (MATSim) side.
The entries of the AgentDataContainer are directly written into the beliefs of
the respective vehicle agents. Once the SimActuator has collected new drive-to
commands from the vehicle agents, the JadexModel will update the content of
the AgentDataContainer and notify the Dataserver to pass control to the MAT-
Sim side again. The MATSimModule [24] will then translate the BDI-actions
from the AgentDataContainer into low-level actions for MATSim. This means
that the updates are performed in a non-equidistant manner.

Unlike the Jill-MATSim integration framework, our Jadex-MATSim integra-
tion layer allows agents to continue other non-driving related activities when the
control is currently at the MATSim side. All other actions such as communi-
cation, negotiation, and calculations are carried out independently of the cycle
described in Figure 2.

5 BDI VEHICLE AGENTS

The agent framework we have developed consists of different types of agents. The
geographical environment is divided into multiple zones, each with a responsible
area agent. Vehicle agents are autonomous vehicles that are distributed in the
application area. They can check in and out at their area agents when they enter
or leave their zone and send an update with their current location after every
completed journey. When a customer requests a trip, it is delegated to the area
agent whose area of responsibility the starting position of the trip is located.

The area agent sends the request to the vehicle agent which is located closest
to the start position. The vehicle agent will then evaluate how well it is suited to
fulfill the customer’s request considering the amount of already accepted trips,
the battery level (etc.). Depending on the outcome, it processes the request or
negotiates with other vehicle agents in its area of operation to delegate it to a
more suitable one. Therefore, it can request a list of other vehicle agents from
its associated area agent. The negotiation between the vehicle agents will be
realized by the Contract Net Protocol (CNP) [36]. Thus, the vehicle agents are
self-managed. When there are no customers, they drive to safe parking spaces,
and when their battery level is low, they drive to a charging station.

Jadex agents implement a BDI architecture using beliefs, goals, and plans.
Beliefs represent the current knowledge of the agent. Desires are goals that are
desirable for the agent in general while intentions are a subset of the desired
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Fig. 3: The components of the vehicle agent architecture

goals for which the agent has committed. Goals in Jadex are used to implement
both desires and intentions. Depending on the current state of a goal its theo-
retical meaning [17] may change between a desire only (inactive goal) or a desire
and an intention (active goal). Jadex supports multiple types of goals for differ-
ent purposes. There are performance goals that will only be executed once and
maintain goals that will be triggered by a condition repeatedly. Plans describe
the sequence of actions that are executed to achieve a goal.

Figure 3 shows the newly designed architecture of a vehicle agent. The design
comprises five goals: ManageJobs, BatteryLoaded, TripService, SimQuery and
SimReceive and their corresponding plans. Vehicle agents have an interface to
the BDI-ABM Layer and a second interface for communication with other Jadex
agents. Vehicle agents exchange messages with corresponding area agents and
other vehicle agents. Incoming jobs are stored inside the DecisionTaskList. Every
entry in this list is a not yet evaluated DecisionTask. A DecisionTask contains
information about a trip that has been requested by a customer (start time, start
position, end position, etc.). As long as this list is not empty the ManageJobs
goal is active. The corresponding plan EvaluateDecisionTask iterates through
the entries and determines by their actual progress state the next needed action.
We decided against a design in which every DecisionTask/ Trip will cause the
generation of a separate goal/plan that handles its processing. Our approach
achieves the same functionality but is easier to handle.

For newly received jobs a utility score is calculated. This score determines
how well this vehicle agent is suited to perform this ride. The agent self-assesses



Jadex BDI Agents Integrated with MATSim for AMoD 9

three relevant criteria in its utility function, namely the length of the journey
to the customer udistance, the battery conditions ubattery, and the punctuality
upunctuality. The journey to the customer journey is measured by the estimated
distance d the agent has to drive to reach the customer. This calculation is based
on the assumed position at which the agent is expected to be before starting the
journey to the customer. This can be the final position of the previously planned
journey, the location of a charging station, or simply the agent’s current loca-
tion. The Euclidean distance approximates the distance between geolocations
specified by decimal degrees with a 1-meter variation in every 2,500-meter dis-
tance (cmp. the discussion in [16]). udistance is calculated as follows:

udistance(trip) = max{0, 100− journey

dmax
} (1)

where dmax denotes the maximum possible distance between two points at the
borders of the territory to normalize the distance values.

The battery conditions are scored as follows. The current battery level from
the agent’s beliefs is discharged by the estimated battery power consumption
for serving the entire trip list committed so far and the job under consideration
resulting in an approximate value of battery. Assuming a linear decrease of bat-
tery during traveling, the battery consumption in terms of several charge units is
directly derived from the travel time. The travel time between two geolocations
lx, ly at a constant velocity v is estimated as:

travel_time(lx, ly) =
d(lx, ly)

v
(2)

We consider a battery factor Bfactor to rate battery lifetime-friendly thresholds
higher:

Bfactor =


1.0, battery > 80%

0.75, 80% ≥ battery > 30%

0.1, battery ≤ 30%

(3)

These thresholds are also used in other works [2, 41, 11]. An estimated battery
beyond the threshold gets a higher score to create incentives for the trip to reach
the threshold. The function of the battery utility in light of the agent’s current
beliefs is defined as follows:

ubattery(trip) =

{
−∞, battery < 0

Bfactor ∗ battery, else
(4)

The punctuality is scored using the estimated arrival time at the prospective
customer and its eventual delay delay (approximated using travel_time, cmp.
equation (2)) behind the desired arrival time:

upunctuality(trip) =


100, delay < θ

100− 100(delay−θ)
θ , θ ≤ delay ≤ 2θ

0, else

(5)
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where θ is a threshold the customer is ready to wait without any penalty.
Any distance that has not yet been calculated and is missing in the agent’s

belief database can be requested from the BDI-ABM environment. The requests
are handled by the goal SimQuery and its plan SendQuery. On the current state
of the implementation the goal SimQuery is not yet implemented. Currently, all
distance calculations on the Jadex side are based on the Euclidean distance, as
the agent does not know the actual path their counterparts will take in MATSim.

If the utility score is below a previously defined threshold the agent will start
the CNP to delegate the trip. Before starting, it first requests a list of the vehicle
agents registered with its associated area agent. The call for proposals (cfp) will
be sent to the other vehicle agents in that area. Cfps are treated similarly to
DecisionTasks and are stored inside the DecisionTaskList. Any further step of the
CNP will also be executed by EvaluateDecisionTask. The recipients (contractors)
then calculate how suitable they are for the job and send their proposals back
to the sender (manager). When the manager has received all proposals it will
send an accept/ reject to the contractors and delegate the DecisionTask. In our
CNP implementation, the manager will always take part as a contractor too. By
this, we can ensure that always the best-suited vehicle agent will get the job.
Especially if the other agents’ proposals are even worse than the manager’s or if
there are no other agents at all. There are currently no unexpected events or the
possibility that the CNP will not be completed. In future updates, we will add a
robustness component to our agent that will enable it to make correct decisions
even in error cases (e.g. connection loss).

If the utility score of a DecisionTask is above the threshold or the agent has
received an acceptance regarding a completed CNP the agent will commit it and
create a corresponding trip. There are different subtypes of trips. Besides the
customer trips that contain information about a trip that was requested by a
customer, there are charging trips.

In the current state, each vehicle estimates what the charge level of its bat-
tery will be when all committed trips are finished. This estimate is refreshed
every time a new trip is committed. If it falls below a charge threshold the goal
BatteryLoaded is triggered. The corresponding plan NewChargingTrip will gen-
erate a chargingtrip that contains information for a drive-to charging station.
Depending on the type a trip can contain one or more coordinates. While a
charging trip just needs the coordinates of the charging station a customer trip
needs the start position and the end position of a trip. Trips are stored in the
TripList, which contains a sorted list of all committed trips that have not yet
been started. Any newly created trip will be sent to a scheduler that will in-
sert the new trips into the TripList and reschedule the entire list if needed. In
the current state of our framework, we can only use FIFO scheduling to insert
charging trips into the TripList. Future planning will be able to take various
criteria into account to ensure that all journeys can still be made and that the
remaining battery level is sufficient.

When the TripList is not empty the TripService goal is activated. The cor-
responding plan DoNextTrip takes the next trip from the TripList and sends
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a drive-to command to the BDI-ABM framework which will cause the MAT-
Sim counterpart of the agent to drive to the specified location. When a drive-to
command is sent the internal progress of this CurrentTrip is updated. As long
as there is no feedback from the BDI-ABM framework the agent will not per-
form any other drive-to operations. Any information sent from the BDI-ABM
framework to the Jadex vehicle agent is handled by the SimReceive goal. The
plan SensoryUpdate processes all incoming information from the simulation site.
This information could include, for example, the result of a drive-to with the
new position of the vehicle or a requested distance. After the vehicle has received
the confirmation that the last drive operation on the simulation site is finished
DoNextTrip can resume its work. If the vehicle should break down every Trip in-
side the TripList will be terminated and will be considered as failed. The vehicle
will then continue its journey on a full battery.

6 EXPERIMENTAL EVALUATION

The experimental evaluation investigates the following hypotheses:

H1 The customer satisfaction increases due to the capability to negotiate and
delegate trips via CNP.

H2 The average travel distance per satisfied customer remains stable despite
negotiation.

H3 Fewer agents are required to do the work due to negotiation.

Two measures are defined as evaluation criteria for the agent’s behavior.
The order dropout rate ODR measures the rate of trip requests that have been
dropped. The threshold θ specified for calculating the estimated punctuality (see
equation (5)) is also used during driving simulation. If the delay when arriving
at the customer is above θ the customer is deemed to be missed. In this case, the
vehicle agent drives to the start position of the next trip from the trip list. ODR
is a measure of customer satisfaction. The average travel distance ATD measures
the average travel distance to serve a trip. MATSim records the travel distances
when simulating a trip between two geolocations. The ATD is calculated by
dividing the overall travel distance from MATSim by the number of successfully
served trips for the entire fleet. ATD is a significant factor of the traffic emissions
(for a sample calculation see Chapter 18 of the MATSim book of Horni et al.
[25]).

6.1 Experimental data

In our experiments, we consider three trip request data sets each containing up
to 1000 trip requests from a single day. The dataset has its origin in an open-
source bike-sharing data set by Deutsche Bahn8. In this historical dataset, we
8 https://data.deutschebahn.com/dataset/data-call-a-bike.html, last access:

03/05/2024
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extracted all trips that have their start and end positions inside the considered
network area. Furthermore, we generated valid start and end coordinates for the
data set to create a free-floating scenario. Precisely, the original data set contains
trip request coordinates from a station-based bike-sharing system and gets new
coordinates from a range across the campus map. Thus, we get trip request
coordinates starting and ending in a free-float manner [16]. The amount of trip
requests for a single day is also increased intentionally since the performance of
the MAS can be observed clearly when a high capacity utilization arises during
processing. The simulation takes place on a university campus map and simulates
a day starting from 0:00 am to 11:59 pm. The campus map is extracted from
OpenStreetMap9. To run our framework, we create a MATSim scenario with the
required files [3]. Our MATSim scenario comprises the following data:

– Population file: Definition and starting position of the MATSim agents,
– Network file: Road network layer with roads of the university campus area,
– Configuration file: Configuration file for starting a MATSim simulation.

The sequence of data processing is conducted as follows: First, the trip re-
quest dataset is processed by the Area Agent. It delegates each trip request to
the nearest vehicle agent which in turn processes it by its internal reasoning
architecture. The Jadex agents send their drive-to operations to the equivalent
MATSim agents. After completing the trip, the simulation updates the BDI
agents by sending back status information concerning the driven trips including
their routes and the travel time. In this manner, the data set is processed in a
single simulation run representing a whole day of 24 hours.

6.2 Experimental runs

To show the influence of the total number of agents and the influence of the CNP,
we set up ten different experimental configurations and ran each with all three
datasets (1000 trip data files described above). The 10 configurations consist of
five different numbers of vehicle agents (8, 10, 12, 14, and 16), each once with
and once without the ability to use the CNP to delegate trips that received a
low utility score (cmp. Tab. 1 and 2).

Each component of our utility function, udistance, ubattery, upunctuality is
weighted with 1/3 and will result in a total score between 0 and 100. The com-
mitment threshold is set to 50, any value above 50 will commit the trip. Any
value below this will start the CNP, with the other agents’ bids based on the
same utility function. To ensure that the trip is always delegated to the most
suitable agent, the manager agent of the CNP will always be a participant too. It
is therefore possible for the CNP to delegate a trip to an agent even if the score is
less than 50. θ is set to 10 minutes. If a vehicle arrives at the customer’s location
later than 10 minutes after booking, the trip is treated as failed. The journey
to the end of the trip will not be made in these cases. When the battery has
dropped below zero this causes a breakdown of the vehicle. Thus, we estimate
9 https://openstreetmap.org
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the battery level after having served all trips in the trip list regularly for each
commitment of a new trip. If the estimated battery level is below a threshold of
40%, we will generate a charging trip.

6.3 Experimental results

The experimental results are measured by ODR and ATD as described above.
The presented results are the average form of the results gained by simulating
the three datasets. Figure 4 depicts the number of served trips, missed trips,
and charging trips for the ten configurations of experimental runs. Having a
look at the pie charts from up to down, the ODR decreases with an increas-
ing number of agents as expected (see also last column in Table 1). Compar-
ing the pie charts on the left-hand side for the configurations without negotia-
tion(Figure 4a, 4c, 4e, 4g, 4i) versus those including negotiation on the right-hand
side (Figure 4b, 4d, 4f, 4h, 4j), the ODR decreases due to the negotiation capa-
bilities for each pair of configurations. For all ten configurations, we can observe
that for the same number of agents, the ODR with negotiation is always lower
than with negotiation. For larger agent populations, the ODR decreases further.
Obviously, at some point, the amount of work per agent becomes so low that
the ODR values converge against zero for all configurations. Hypothesis H1 is
confirmed by the experimental results.

Table 1: Simulation results: Average Order dropout rate (ODR)
config served trips missed trips charging trips ODR

nearest8 748 252 261 25.2%
with_neg8 826 174 260 17.4%
nearest10 804 196 258 19.6%

with_neg10 875 125 253 12.5%
nearest12 852 139 239 13.9%

with_neg12 910 86 227 8.6%
nearest14 881 125 245 12.5%

with_neg14 934 61 234 6.1%
nearest16 893 89 235 8.9%

with_neg16 961 44 228 4.4%

The ATD values are listed in Table 2. Since the configurations with negoti-
ation capabilities serve more trips, they drive longer distances to do this work.
Despite the narrow scheduling approach (FIFO), the differences are smaller than
expected. This might be due to the fact, that the configurations without nego-
tiation (nearest) assign the agents in a simple greedy manner. Only the current
position of the agent at the time of assignment is considered. It is completely ig-
nored that the agent travels further when serving the trips committed so far. As
a consequence, the journey to the customer under consideration in the nearest
configurations might be sub-optimal. Having a look at the ATD values (travel
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(a) 8 Agents without negotiation (b) 8 Agents with negotiation

(c) 10 Agents without negotiation (d) 10 Agents with negotiation

(e) 12 Agents without negotiation (f) 12 Agents with negotiation

(g) 14 Agents without negotiation (h) 14 Agents with negotiation

(i) 16 Agents without negotiation (j) 16 Agents with negotiation

Fig. 4: Average values of 3 data sets of processed trips of each configuration
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distance per successfully served trip), Table 2 shows a slight decrease in the travel
distances due to negotiating. Hypothesis H2 is confirmed. An improved schedul-
ing method would potentially reduce the total distances further. At the moment,
bookings in advance are not yet allowed. Introducing pre-bookings might have
an additional positive impact on the total distances driven.

Table 2: Simulation results: Average travel distance (ATD)
config total distance (meters) served trips ATD (meters)

nearest8 1,442,185 748 1,928
with_neg8 1,535,585 826 1,859
nearest10 1,461,647 804 1,815

with_neg10 1,522,737 875 1,740
nearest12 1,467,224 852 1,722

with_neg12 1,500,483 910 1,649
nearest14 1,452,130 881 1,648

with_neg14 1,483,613 934 1,588
nearest16 1,454,333 893 1,629

with_neg16 1,454,542 961 1,514

Hypothesis H3 can be discussed as well using the ODR results. Comparing
the pie charts from Figure 4 gives an impression of the savings in terms of the
number of agents required to do the work. The results provide a first hint towards
the confirmation of H3. Larger experiments with even more data sets, further
sizes of agent populations, a more sophisticated utility function, and a scheduling
algorithm would hopefully allow us to confirm H3 with higher evidence.

7 DISCUSSION OF RESULTS AND FUTURE WORK

In this paper, we have designed, implemented, and tested two components of a
MAS framework for AMoD applications. In detail, we have specified goals and
plans for the architecture of BDI vehicle agents. We have defined a utility func-
tion for CNP-based communication between vehicle agents considering battery
conditions, estimated punctuality, and length of the journey to the customer as
decision criteria. We have extended the BDI-ABM integration framework by a
Jadex-MATSim connection layer to achieve an integrated MAS framework with
reasoning-simulation capabilities. The experiments with artificial data of a sim-
ulated e-trike service (based on a real data set from a bike-sharing scenario)
show very promising results. A reduction of resources such as vehicles and en-
ergy (cmp. H2, H3) becomes apparent. This might have a significant impact on
the development of future AMoD services based on MAS technology.

The integration of both ADF and simulation environment is part of a larger
project, where other research areas of Multi-agent systems are considered. The
project is ongoing work with still some minor open issues. Soon, a more sophisti-
cated scheduling of trips within the vehicle agent’s trip list will be implemented
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based on distance values received from MATSim. Further, the process of charg-
ing and the charging infrastructure will be investigated more in-depth. Larger
experiments on the scalability and robustness of the MAS in case of breakdown
and connectivity losses will be conducted.

For future work, we plan to extend the cognitive agents with Machine Learn-
ing algorithms to investigate Neuro-symbolic Agents as well as their explain-
ability [14]. Furthermore, we will design an experimental setup and run ride-
hailing scenarios with different configurations. Other application scenarios like
ride-pooling and waste collection by a fleet of trucks will be investigated using
the presented framework in this paper. We think that our MAS framework with
its reasoning-simulation integration contributes some foundational methods to
achieve more sustainable solutions for mobility in the future.
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