Agents for DDD — Back and Forth

Alessandro Ricci', Andrei Ciortea?,
Samuele Burattini!, and Matteo Castellucci

! Dipartimento di Informatica - Scienza e Ingegneria,

Alma Mater Studiorum - University of Bologna, Cesena Campus, Italy
{a.ricci|samuele.burattini}@unibo.it, matteo.castellucci@studio.unibo.it
2 School of Computer Science, University of St.Gallen, Switzerland
andrei.ciortea@unisg.ch

Abstract. In this paper, we are interested in exploring the bi-directional
conceptual interaction between Agent-Oriented Software Engineering
(AOSE) and Domain-Driven Design (DDD). Our aim is not only to
extend DDD with the proper level of abstraction that would make it
effective in designing complex software systems — that is, systems fea-
turing relevant levels of autonomy, interactions, adaptivity, dynamism,
etc. — but also to integrate DDD in AOSE. As a first step, we explore
two integration perspectives: (1) modelling bounded contexts as cognitive
agents, or (2) as workspaces in which multiple agents interact to perform
their activities. Both perspective draw a separation of concerns between
the application layer and domain layer in a DDD-AOSE integration. We
sketch a roadmap for further investigating this integration.

Keywords: Domain-Driven Design - Agent-Oriented Software Engi-
neering - Agents & Artifacts - JaCaMo

1 Introduction

Domain-Driven Design (DDD) was introduced about two decades ago by Eric
Evans with the so-called “Blue Book” [5] — and since has become a reference
approach for a large community of designers and developers in mainstream soft-
ware development [I7]. The original main motto of DDD, i.e. tackling complexity
in the heart of software, sounds familiar to researchers in Agent-Oriented Soft-
ware Engineering, where the capability of tackling the complexity of software
systems is a main tenet for introducing agent-based approaches [§]. Complex-
ity, though, can be tackled from different perspectives: DDD mainly concerns
what is defined as structural complexity i.e. challenges that emerge from the
inherent complexity of the entities within a domain [10]. AOSE mainly concerns
dynamic complexity, thus modelling and designing systems for domains that call
for autonomy, reactivity, adaptability, and distribution.

In this paper, we focus on the fruitful interaction and integration between
these two worlds — discussing how, on the one hand, agents can be integrated
with DDD to deal with complex dynamic domains, and, on the other hand, DDD

2 Ricci et al.

is relevant for enhancing the applicability of agent-based approaches to main-
stream software development. We start in the next section by briefly recalling
the main concepts of DDD. We then analyse the bi-directional benefits that both
the DDD and the AOSE communities can gain from one another and tie them to
related works that motivate this exploration. Following this analysis, we propose
an initial conceptual integration with two perspectives on how to align AOSE
abstractions with DDD. The key characteristic of both perspectives is to identify
the application layer in DDD as the primary focus for AOSE abstractions. Other
integration perspectives using different AOSE abstractions could follow a similar
path. We conclude the paper with a roadmap for future work in this direction.

2 DDD Key Concepts

As summarized by Evans in [6], Domain-Driven Design is an approach to the
development of complex software in which designers and developers:

— Focus on the core domain.
— Explore models in a creative collaboration of domain practitioners.
— Speak a ubiquitous language within explicitly bounded contexts.

A domain is a sphere of knowledge, influence, or activity, that is the subject
area to which the user applies a program is the domain of the software. A model
is a system of abstractions that describes selected aspects of a domain and can be
used to solve problems related to that domain. The concept of model is the heart
of DDD. A domain is typically broken down in several Bounded Contexts.
They represent the description of a boundary (typically a subsystem) within
which a particular model is defined and applicable. The Ubiquitous Language
(UL) is the linguistic counterpart of the model, that is the language structured
around the domain model and used by all team members working within a
bounded context to discuss the model and connect all the activities of the team
with the in a pervasive way, even into the code itself. Like contexts in general,
bounded contexts are also the setting that determines the meaning of a word or
statement of the UL, that is: statements about a model can only be understood
in relation to a specific context and should not be considered globally defined.

Historically DDD has adopted an object-oriented meta-model for describing
any model, based on a set of core modelling building blocks composing a domain
pattern model, including Entities, Value Objects, Aggregates, Domain Events as
well as Services, Modules, Repositories, Factories [1715].

At the architectural level, DDD calls for a strong separation of the technical
concerns from the business concerns by adopting layering. Outer layers should
depend on inner layers and the domain layer is the heart of the application,
isolated from technical complexities (i.e., the infrastructure layer) by the appli-
cation layer, which is in the middle (as depicted in Fig. .

The domain layer (or model layer) is responsible for representing concepts
of the business information about the business situation, and business rules. State
that reflects the business situation is controlled and used here, even though the

Agents for DDD — Back and Forth 3

INFRASTRUCTURE

External
System

(upstream)

APPLICATION
SERVICES
LAYER

DOMAIN
MODEL
LAYER

External
System

(downstream)

External
System
(upstream)

External
System

(downstream)

Fig. 1. Hexagonal (Ports-&-Adapters) Architectural Pattern

technical details of storing it are delegated to the infrastructure layer. As pointed
out by Evans, this is the heart of business software.

The application layer wraps the domain layer and defines the jobs the
software is supposed to do and directs the expressive domain objects to work out
problems. The tasks this layer is responsible for are meaningful to the business
or necessary for interaction with the application layer of other systems. This
layer does not contain business rules or knowledge, but only coordinates tasks
and delegates work to collaborations of domain objects in the layer below. Its
state only reflects the progress of a task for the final users who although not
being domain experts should be able to understand and follow the progress of
the activities they want to perform.

The infrastructure layer provides the generic technical capabilities that
support higher layers—e.g., message sending for the application, persistence of
the domain, and drawing widgets for the UL

3 From DDD to AOSE and Back

We believe that a synergy between DDD and AOSE can bring benefits to both
communities. In this section, we elaborate on this bi-directional connection and
highlight how different initiatives in both communities suggest there might be
a growing need for a joint effort aimed at integrating and conceptually aligning
the two worlds. We consider this paper as a first step towards this direction.

3.1 DDD Relevance for Agent-Oriented Software Engineering

A main success factor of DDD in the mainstream is its effectiveness as a method
for building consensus with stakeholders and developing complex systems that
can easily scale and evolve. This is, of course, important in general for software
engineering and could have a positive influence on MAS engineering as well.

4 Ricci et al.

From the point of view of MAS developers, DDD can serve as a valuable
way to structure domain models within the MAS itself. Following the different
dimensions of Multi-Agent-Oriented Programming (MAOP) [2], domain knowl-
edge can be represented in elements that belong to either the agent, environment,
interaction, or organization dimension. As these dimensions can be considered
horizontally layered upon each other, complex domains can become hard to
represent. DDD and its focus on identifying bounded contexts to break down
complexity into manageable isolated portions could add a vertical separation
between concepts across the different dimensions. Moreover, within the same
context, the UL can help maintain a strong consistency in how knowledge is
represented across layers, whether it is data managed by agents, encoding norms
and policies, or representing external stimuli from the environment.

Finally, as DDD is a generic methodology that does not directly tackle a spe-
cific paradigm, it could serve as a common ground in developing integration of
MAS with other mainstream software architectures and with mainstream soft-
ware development in general. For instance, recent efforts in the MAS engineering
community have been bridging towards microservices [4] — the software systems
more commonly paired with DDD — but also exploring the adoption of other
software engineering practices closely related to DDD such as Test-Driven Devel-
opment (TDD) [I5JI] and Behaviour-Driven Development (BDD) in agent-based
software development [3T4].

3.2 DDD Limitations that call for Agents

Landre in [10] remarks that DDD is great for tackling structural complexity
but not dynamic complezity, which appears as a main issue of dynamic systems.
Recalling the concept of dynamic complexity and dynamic systems by Derek
Hitchins [7], Landre highlights that “complexity is a function of variety, connect-
edness, and disorder”, where we have two types of connections: stable connec-
tions, which lead to structural complexity, and arbitrary connections, which lead
to dynamic complexity.

Structural domain complexity manifests in nested structures like component
hierarchies in products (e.g., home appliances, industrial machinery), retail as-
sortments, or project plans. Complexity arises from intricate internal state mod-
els, rules, and the extent of the connectedness and variability within these sys-
tems. In contrast, dynamic domain complexity stems from interactions among
autonomous components or objects. While objects may possess high internal
complexity, dynamic complexity arises from their constantly changing inter-
actions and arbitrary connectedness. Domain-driven design helps to mitigate
structural complexity: it provides abstractions such as entities, value objects,
aggregates, repositories, and services that bring order, reduce connectedness,
and manage variability within and across bounded contexts.

However, as remarked by Landre in [I0], dynamic complexity is not really
addressed in DDD. One step in that direction has been the introduction of
domain events [16]. Still, an open issue that remains is the introduction of proper
abstractions specifying how such events are managed to accomplish tasks.

Agents for DDD — Back and Forth 5

These remarks are even more relevant as soon as we aim at applying DDD
for the design of autonomous systems, operating in contexts characterised by
uncertainty, and concurrency — such as systems dealing with the physical world,
as is the case in the Internet-of-Things (IoT) and cyber-physical systems.

4 Empowering DDD with Agents (and Artifacts)

In this section, we discuss an integration of AOSE abstractions in DDD to make
it effective to deal with dynamic complexity in a domain. The AOSE literature
provides a large range of abstractions and meta-models that have been intro-
duced to model and design the many different aspects and levels of domains
and systems. In the following, we will consider first a single agent (dimension)
perspective, then we will look into MAS and introduce also an environment di-
mension as proposed in A&A [12] and applied to MAOP [2]. Other alignments
may of course be possible and necessary to apply the DDD approach to all the
different dimensions of MAS engineering. Here we lay a sketch of two intuitive
alignments on the agent and the environment dimension to motivate the com-
munity towards a deeper exploration of the concept in future works.

4.1 Bounded Contexts as Cognitive Agents

A first straightforward way to integrate agents in DDD so as to overcome the
limitations described in [10] is to model and design a whole bounded context as
a single coarse-grained agent featuring an autonomous, pro-active and reactive
behaviour in order to accomplish the business tasks as defined by the business
use cases. At the architectural level, the three layers of the hexagonal archi-
tecture can be mapped into three distinct layers of an agent architecture. The
very interesting point here is what happens if we consider high-level, cognitive
architectures — such as BDI [I3], SOAR [9] or alike — that is a vision of agents
at the Knowledge Level [I1]. In this case, both the dynamic knowledge about
the world of the agent, i.e. its beliefs, as well as the knowledge about its tasks
and the practical knowledge about how to accomplish them or the policies to be
used can be considered part of the domain model, at the centre (see Fig. .

Around this layer, in this case, we have the agent execution architecture:
following the hexagonal architecture this is the place of the application layer.
Differently, from DDD, in which the application layer is still customised depend-
ing on the business tasks when considering cognitive agents, this layer is meant
to be fixed and fully domain-independent. Finally, the infrastructure layer con-
cerns the implementation of sensors and actuators that enable interaction with
the external environment.

4.2 Bounded Contexts as Workspaces

A conceptual extension of the previous approach is to model the bounded context
as a workspace where one or multiple agents can work together to accomplish the

6 Ricci et al.

INFRASTRUCTURE

External

System
(upstream)

ARCHITECTURE
(FIXED)

KNOWLEDGE
LEVEL
DOMAIN
MODEL
(INCLUDING
AGENT POLICY)

External
System

(downstream)

External
System
(upstream)

External
System

(downstream)

Fig. 2. Modelling a Bounded Context as a single agent: the infrastructure layer provides
the means to receive perceptions and make actuation, and the domain model is the
agent’s internal knowledge base including beliefs and policies.

business tasks defined for that context. In this case, agents are used as building
blocks at the application layer for designing that application logic which must
exhibit forms of autonomous behaviour to fulfil business use cases.

By putting agents at the application layer, both the domain layer and
the infrastructure layer can be naturally conceived as the environment where
the agent(s) are logically situated, that they need to work with and manipu-
late, to get jobs done. Accordingly, environment first-class abstractions can be
adopted [I8], defining then the set of actions that can be executed in that dy-
namic context, and what agents can perceive/observe of that context in terms of
observable state and events. Therefore, in a bounded context, we may have one or
multiple application agents sharing the same environment, in charge of possibly
different tasks, and possibly cooperating either by means of direct communica-
tion using some communication language, or mediated interaction through the
environment.

By adopting the A&A metamodel [12], the environment first-class abstrac-
tions that can be used to modularise the environment are called artifacts, and
the application layer can be designed as an A&A workspace (see Fig. . Each
artifact exposes a usage interface composed of observable properties, operations,
and observable events (signals) [I2]. On the agent side, artifacts’ operations cor-
respond to the actions that agents can do, and observable properties and events
to their percepts — to be mapped onto, e.g., beliefs in BDI agents.

Some artifacts can be used to enable and mediate the access to domain
objects, part of the domain layer—Ilet’s call them domain artifacts. Useful con-
straints when mapping domain objects into domain artifacts can be derived from
DDD building blocks’ properties. For instance, an obvious but fundamental one
is that artifact observable properties and events should be defined in the domain
model (and the ubiquitous language), and their value should be represented by

Agents for DDD — Back and Forth 7

INFRASTRUCTURE
LAYER

APPLICATION
LAYER

ooedsyiom

DOMAIN
LAYER

domain objects

Fig. 3. Modelling a Bounded Context as an A&A workspace: artifacts (rectangles)
represent domain objects or external interfaces, whereas agents (circles) encapsulate
the application logic to connect external perceptions to changes in the domain

value objects. Another one is that entities or aggregates — i.e. domain objects
with state and identity — should be referenced and managed by a single artifact;
nevertheless, the same repositories and factories can be shared and referenced
by multiple artifacts. Some other artifacts may represent the means that allow
agents to communicate with the external world—encapsulating the access to e.g.
APT infrastructural components. Some artifacts may represent entities that are
both bound to domain objects and exploit infrastructural means to be acquired
or to have an effect on the external world.

As an illustrative example, Fig. [4] shows a smart thermostat application de-
signed using this approach: a single agent implements the application logic to
interact with several artifacts proactively and achieve the goal of keeping the
temperature within the preferences expressed by the user through some form of
API. Different artifacts represent different aggregate roots and keep the separa-
tion that is established within the domain model. Being at the application layer,
they implement the logic of managing the interaction between the infrastruc-
ture components and the domain objects. The agent encapsulates the proactive
behaviour that is required in this scenario, interacting with different artifacts.

5 The Road Ahead

The bi-directional conceptual integration of DDD and AOSE could be beneficial
for both worlds: on the one hand, it can extend DDD with the proper level of
abstraction for building dynamic, adaptive, and complex systems that exhibit
relevant levels of autonomy; on the other hand, it can help structure the devel-
opment of domain models in AOSE. As a first step, we explore two integration

8 Ricci et al.

REST MaTT
A;;Pp:er Adapter
B ’ \ - REST
" API
loT hub Therm Wsp . Adapter
Adapter =
Temp : HVAC UserPref
iﬁﬂ:‘; ; Policy Artifact Artifact
T I

i Ermmmm T PR — s Ememeg, poms S >

[il !
1| Temperature : i | Temperature ' : : : User :
: Sensor H Variation : i 11| Preference '
! i Threshold il 1z o 1
1 ' V! HVAC ['
' current ' : Pl State ' desired 1
' temperature | 1} V!] temperature !
1 1 Day Schedules i T 1 1
! " [umnOn o '
1| temperature i y 1| command iy H
changed plommmmm e m e 1 1 desired '
1| domain event | ' e] temperature |1
il : . =P
[L e e [

DOMAIN LAYER

Fig. 4. A Bounded Context for the management of a Smart Thermostat mapped as a
workspace showing how artifacts serve as bridges towards the domain model.

perspectives: modelling each bounded context either as a single cognitive agent
or as a workspace in which multiple agents interact and perform their activities.
Both perspectives draw a separation of concerns between the application and
domain layers in a DDD-AOSE integration. Still, many open issues remain, such
as knowledge-oriented domain modelling, agent coordination, or agent mobility
(i.e., moving across different bounded contexts when represented as workspaces).

The abstractions used in DDD for modelling the domain layer betray its
focus on object orientation. For instance, while it is possible to encapsulate pro-
cedural knowledge or the state of an interaction protocol into domain objects,
AOSE provides abstractions specifically designed for engineering such concepts
into software systems. Agents are programmed at the knowledge level and, as
we move towards agent-based systems, the domain layer could benefit from such
AOSE abstractions. Then, in both perspectives we put forward, agents are as-
cribed within bounded contexts. A challenge that remains is coordination across
bounded contexts. While DDD provides abstractions for communication across
bounded contexts (e.g., via domain events), they are inadequate for capturing the
complexity of multi-agent coordination. Finally, if we model bounded contexts as
workspaces, restricting agents to one workspace might simplify the design of the
system but it also limits the agents’ autonomy and adaptivity. Allowing agents
to operate and migrate across multiple bounded contexts would require further
conceptual support and clarity for the overall organization of the MAS.

Agents for DDD — Back and Forth 9

References

11.

12.

13.

14.

15.

Amaral, C.J., Hiibner, J.F., Kampik, T.: TDD for AOP: test-driven development
for agent-oriented programming. In: Agmon, N., An, B., Ricci, A., Yeoh, W. (eds.)
Proceedings of the 2023 International Conference on Autonomous Agents and Mul-
tiagent Systems, AAMAS 2023, London, United Kingdom, 29 May 2023 - 2 June
2023. pp. 3038-3040. ACM (2023). |https://doi.org/10.5555/3545946.3599165
Boissier, O., Bordini, R.H., Hiibner, J.F., Ricci, A., Santi, A.: Multi-agent oriented
programming with jacamo. Sci. Comput. Program. 78(6), 747-761 (2013). https:
//doi.org/10.1016/J.SCICO.2011.10.004

Carrera, A., Iglesias, C.A., Garijo, M.: Beast methodology: An agile testing
methodology for multi-agent systems based on behaviour driven development. Inf.
Syst. Frontiers 16(2), 169-182 (2014). https://doi.org/10.1007/S10796-013-9438-5,
https://doi.org/10.1007 /s10796-013-9438-5

Collier, R.W., O’Neill, E., Lillis, D., O’'Hare, G.M.P.: MAMS: multi-agent mi-
croservices. In: Companion of The 2019 World Wide Web Conference, WWW
2019, San Francisco, CA, USA, May 13-17, 2019. pp. 655-662 (2019). https:
//doi.org/10.1145/3308560.3316509

. Evans, E.: Domain-driven design: tackling complexity in the heart of software.

Addison-Wesley Professional (2004)

Evans, E.: Domain-Driven Design Reference: Definitions and Pattern Summaries.
Dog Ear Publishing (2014)

Hitchins, D.K.: Advanced Systems Thinking, Engineering and Management. Artech
House (2003)

Jennings, N.R.: On agent-based software engineering. Artif. Intell. 117(2), 277-296
(mar 2000). https://doi.org/10.1016,/S0004-3702(99)00107- 1

Laird, J.E.: The Soar Cognitive Architecture. The MIT Press (2012)

. Landre, E.: Domain-Driven Design: The First 15 Years Essays from the DDD

Community, chap. Agents aka Domain objects on steroids. Lean Pub (2024)
Newell, A.: The knowledge level. Artif. Intell. 18(1), 87-127 (jan 1982). https:
//doi.org/10.1016,/0004-3702(82)90012- 1

Omicini, A., Ricci, A., Viroli, M.: Artifacts in the A& A meta-model for multi-agent
systems. Autonomous Agents and Multi-Agent Systems 17(3), 432-456 (dec 2008).
https://doi.org/10.1007/s10458-008-9053-x

Rao, A.S., George, M.P.: BDI agents: From theory to practice. In: Proceedings
of the First International Conference on Multi-Agent Systems (ICMAS-95). pp.
312-319 (1995), |http://www.agent.ai/doc/upload/200302/ra095.pdf

Rodriguez, S., Thangarajah, J., Winikoff, M.: A behaviour-driven approach for
testing requirements via user and system stories in agent systems. In: Agmon, N.,
An, B., Ricci, A., Yeoh, W. (eds.) Proceedings of the 2023 International Conference
on Autonomous Agents and Multiagent Systems, AAMAS 2023, London, United
Kingdom, 29 May 2023 - 2 June 2023. pp. 1182-1190. ACM (2023). https://doi.
org/10.5555/3545946.3598761

Tiryaki, A.M., Oztuna, S., Dikenelli, O., Erdur, R.C.: SUNIT: A unit testing
framework for test driven development of multi-agent systems. In: Padgham,
L., Zambonelli, F. (eds.) Agent-Oriented Software Engineering VII, 7th Interna-
tional Workshop, AOSE 2006, Hakodate, Japan, May 8, 2006, Revised and In-
vited Papers. Lecture Notes in Computer Science, vol. 4405, pp. 156-173. Springer
(2006). https://doi.org/10.1007/978-3-540-70945-9 10, https://doi.org/10.1007/
978-3-540-70945-9 10

https://doi.org/10.5555/3545946.3599165
https://doi.org/10.5555/3545946.3599165
https://doi.org/10.1016/J.SCICO.2011.10.004
https://doi.org/10.1016/J.SCICO.2011.10.004
https://doi.org/10.1016/J.SCICO.2011.10.004
https://doi.org/10.1016/J.SCICO.2011.10.004
https://doi.org/10.1007/S10796-013-9438-5
https://doi.org/10.1007/S10796-013-9438-5
https://doi.org/10.1007/s10796-013-9438-5
https://doi.org/10.1145/3308560.3316509
https://doi.org/10.1145/3308560.3316509
https://doi.org/10.1145/3308560.3316509
https://doi.org/10.1145/3308560.3316509
https://doi.org/10.1016/S0004-3702(99)00107-1
https://doi.org/10.1016/S0004-3702(99)00107-1
https://doi.org/10.1016/0004-3702(82)90012-1
https://doi.org/10.1016/0004-3702(82)90012-1
https://doi.org/10.1016/0004-3702(82)90012-1
https://doi.org/10.1016/0004-3702(82)90012-1
https://doi.org/10.1007/s10458-008-9053-x
https://doi.org/10.1007/s10458-008-9053-x
http://www.agent.ai/doc/upload/200302/rao95.pdf
https://doi.org/10.5555/3545946.3598761
https://doi.org/10.5555/3545946.3598761
https://doi.org/10.5555/3545946.3598761
https://doi.org/10.5555/3545946.3598761
https://doi.org/10.1007/978-3-540-70945-9_10
https://doi.org/10.1007/978-3-540-70945-9_10
https://doi.org/10.1007/978-3-540-70945-9_10
https://doi.org/10.1007/978-3-540-70945-9_10

10

16.

17.
18.

Ricci et al.

Vernon, V.: Implementing Domain-Driven Design. Addison-Wesley, Upper
Saddle River, NJ (2013), https://www.safaribooksonline.com/library/view/
implementing-domain-driven-design /9780133039900 /

Vernon, V.: Domain-Driven Design Distilled. Addison-Wesley, Boston, MA (2016)
Weyns, D., Omicini, A., Odell, J.: Environment as a first class abstraction in mul-
tiagent systems. Autonomous Agents and Multi-Agent Systems 14(1), 5-30 (feb
2007). https://doi.org/10.1007 /s10458-006-0012-0

https://www.safaribooksonline.com/library/view/implementing-domain-driven-design/9780133039900/
https://www.safaribooksonline.com/library/view/implementing-domain-driven-design/9780133039900/
https://doi.org/10.1007/s10458-006-0012-0
https://doi.org/10.1007/s10458-006-0012-0

	Agents for DDD – Back and Forth

