
A Procedure for Conceptualizing
and Implementing Spade Agents

Henning Gösling1, Dennis Maecker1, Tom Pieper1,
Timon Sachweh2, and Christoph Heinbach1

1 German Research Center for Artificial Intelligence, Osnabrück, Germany
{henning.goesling,dennis.maecker,tom.pieper,

christoph.heinbach}@dfki.de
2 TU Dortmund University, Germany

timon.sachweh@tu-dortmund.de

Abstract. In this paper we present our approach for conceptualizing and imple-
menting software agents as part of a multi-agent system (MAS). The procedure
consists of four steps: (1.) defining the relevant types of software agents, (2.)
specifying the components of the software agents, (3.) conceptualizing each com-
ponent of the software agents, and (4.) implementing the different components
of the software agents. Our approach is derived from the experience in the ongo-
ing research project Gaia-X 4 ROMS in which we build a MAS for the real-time
control of various actors involved in parcel transports. After following step 1-3,
we are currently implementing the MAS using the development environment
Spade.

Keywords: Agent-Oriented Analysis and Design, Intelligent Agents, Spade De-
velopment Environment.

1 Introduction

In our ongoing research project, we are currently developing a multi-agent system
(MAS) consisting of six types of software agents that represent essential actors in parcel
transportation: booking agents, freight agents, parcel delivery robot agents, trailer
agents, depot agents, and workshop agents. The MAS we are currently developing will
be used for the real-time scheduling and control of robots, trailers, depots, and work-
shops. For this purpose, the software agents need to be connected with operators, vehi-
cles, booking platforms, other software, and other software agents. Several methodol-
ogies exist, that can be followed for the conceptualization of such a MAS: AAII, Gaia,
Prometheus, etc. (Wooldridge 2009). Moreover, there are models that describe the basic
components of software agents such as the BDI Agent, Practical Reasoning Agent, Sit-
uated Automata, InteRRaP, Stanley, etc. (Wooldridge 2009). Besides these agent-ori-
ented models, there are those that describe the basic components of autonomous sys-
tems which can be applied for the conceptualization of software agents, too (Wahlster
2017). Finally, there are development environments for the actual implementation of a
MAS, such as Jade, Spade, or ROS2.

2 Gösling et al.

As a model for our software agents’ internal structures, we decided to use the refer-
ence architecture of Wahlster (2017) since it explicitly covers all the components we
needed for our software agents. Besides, the Python-based Spade development envi-
ronment (Palanca 2024) was chosen early on in the project as we wanted to be able to
integrate state-of-the-art Python libraries (e.g., for reinforcement learning and optimi-
zation) into our project. Hence, we developed our own procedure for conceptualizing
software agents using Wahlster (2017) and for implementing these software agents us-
ing Spade. It consists of four steps: (1.) defining the types of software agents, (2.) spec-
ifying the components of each software agent using Wahlster (2017), (3.) conceptual-
izing the components of the software agents, and (4.) implementing the components of
the software agents in Spade. Currently, we are in the fourth step of implementing the
MAS. In this paper, we want to elaborate on the procedure in detail.

2 Background

In the research project Gaia-X 4 ROMS, we automate various processes in parcel trans-
ports. More precisely, we automate the booking process of transport resources involved
in the pick-up of the parcel, its main-haul transport between depots, and its delivery.
The involved actors are physically distributed, embedded in their environment, owned
by different companies, and work asynchronously. Thus, software agents were selected
as a technology that naturally fits to the use case (Heinbach et al. 2022, Maecker et al.
2023). Software agents are considered a valuable technology for managing logistics
resources (Gath 2016).

Research in software agents has produced different methodologies that provide step-
by-step guides for the design of software agents and MAS: AAII, Prometheus, Gaia,
Tropos, Agent UML, and Agents in Z (Wooldridge 2009). For example, following the
AAII methodology, firstly the roles and agents are defined and captured in a so-called
external model, secondly the software agents’ internal models are specified according
to their beliefs, desires, and intentions. The Prometheus methodology consists of the
system specification step, the architectural design step, and the detailed design step. In
the system specification step, the system’s goal, interfaces, and functionalities are de-
fined that are necessary for the use case. In the architectural design step, the software
agent types are formed by grouping functionalities. In the detailed design step, each
software agent is broken down into several components, and each component is mod-
eled separately (Wooldridge 2009).

Research in software agents has also produced a lot of models structuring the com-
ponents of software agents: BDI Agent, Practical Reasoning Agent, Situated Automata,
InteRRaP, or Stanley. For instance, the rather sophisticated Stanely architecture (that
was used to build a software agent embodied in a car) consists of the sensor interface
layer, the perception layer, the planning and control layer, the vehicle interface layer,
the user interface layer, and the global service layer (Wooldridge 2009). Beyond, there
is the reference architecture for autonomous systems by Wahlster (2017), which can be
applied to software agents and robots. Wahlster (2017) differs between components for
(1.) self-regulation, (2.) perception, (3.) learning, (4.) planning and plan recognition,

 Conceptualizing and Implementing Spade Agents 3

(5.) collaboration, (6.) saving knowledge, (7.) communicating with the environment,
(8.) communicating with humans, (9.) sensing, (10.) acting, (11.) operators to stop the
operation at any time, (12.) operators to take over the operation, and (13.) operators to
influence the operation. The reference architecture of Wahlster (2017) is shown in Fig-
ure 1.

Figure 1. Reference architecture for autonomous systems adapted from Wahlster (2017).
(Adaption by numbering the components and by translating from German.)

3 The Procedure Applied in the Gaia-X 4 ROMS Project

3.1 Defining the Types of Software Agents

In the first step, several interviews were conducted between an expert in the field of
MAS and an expert in the field of transport logistics. From the insights of these inter-
views, the main roles in our parcel transport use case were defined: a booking manage-
ment for the interaction with customers, parcel delivery robots for the first-mile
transport, so-called bordero management for the creation of parcel lists for scheduled
long-haul transports between depots, trailers for the long-haul transport, parcel delivery
robots for the last-mile transport, depot management for the assignment of ramps to
robots and trailers, depots for the cross-docking between first-mile, long-haul, and last-
mile transports, and workshops for the maintenance of the transport resources. Each
role in the transport system got an own software agent type: (i) a booking agent for
booking management, (ii) a parcel delivery robot (PDR) agent for the management of
first-mile transports and last-mile transports, (iii) a bordero agent for the long-haul
transport management, (iv) a trailer agent for the trailer management, (v) a depot agent
for the ramp assignment and cross-docking management, (vi) and a workshop agent for
the workshop management. In a word document, a table was set up for each type of
software agent. In each table, the two experts defined the software agents’ main

4 Gösling et al.

responsibilities, added a detailed description of each responsibility, marked it as a basic
function or as an additional function, and linked it with other software agents, different
operator roles, and remote software systems. In the following Table 1, an excerpt of the
booking agent table is shown that was defined as part of the procedure’s first step. The
result of this first step can be seen as the so-called external model to be created when
applying the AAII methodology. The external model is a system-level view that de-
scribes the agents, their responsibilities, and their interactions (Wooldridge 2009).

Table 1. Excerpt of the booking agent table, specified in several expert interviews.

Nr. Responsibility Description Basic
function
vs. add-
on

Interaction
with opera-
tors, robots,
or remote
software

Interaction
with other
software
agents

1 Collection of
shipping orders

The booking agent receives
the transport orders from the
booking platform, which are
divided into three partial or-
ders (first-mile, long-haul
and last mile) and contain in-
formation on depots, time re-
strictions and release times.

Basic
function

Booking
platform

2 Validation of
shipping orders

The booking agent uses a
verification mechanism to
check the transport orders for
type of goods, destination,
weight, plausibility, and
speed (same day/hour, over-
night, etc.). If necessary, a
query is made for dangerous
goods, prohibited substances,
live animals or organisms.
Transports are only approved
for the transportation of
goods within Germany.

Add-on

4 Determination of
release times for
partial orders

The booking agent deter-
mines the release times for
the partial orders.

Add-on

5 Distribution of the
individual partial
orders

The booking agent distrib-
utes the partial orders via a
multi-agent-specific coordi-
nation mechanism as soon as
the release times have been
reached.

Basic
function

PDR agents

Bordero agents

Trailer agents

Depot agents

… … … … … …

After the tables for all types of software agents were completed, the word document
with the tables circulated among several practitioners involved in the research project.

 Conceptualizing and Implementing Spade Agents 5

The practitioners made comments in the document. Using the practitioners’ feedback,
the document was adapted and finalized. Afterwards, the document was used as the
starting point for the next step of our procedure.

3.2 Specifying the Components of each Software Agent using Wahlster (2017)

In the second step, we defined the architecture for each type of software agent based on
Wahlster (2017). When specifying the architecture, we tried to match the standard com-
ponents of a software agent with the responsibilities of each software agent defined in
the first step of the procedure. We also tried to formulate the architectural designs in
line with the work of Gregor et al. (2020) who differ between users, aim, context, mech-
anisms, and rationale of a so-called design principle. As an example, the architectural
designs for the booking agent and the PDR agent are (partly) presented in Table 2. The
result of the second step can be seen as an extension of the so-called internal model to
be created when applying the AAII methodology. The internal model in the AAII meth-
odology is concerned with the agents’ beliefs, desires, and intentions (Wooldridge
2009).

Table 2. Architectural designs for booking agent and PDR agent (excerpt).

Software agent Architectural design
Booking agent To allow transport order operators (users) to automate the process of

placing and modifying bookings for parcel deliveries from/to custom-
ers (aim) when parcel delivery robots are used for first- and last-mile
transports in urban areas and telematics-enabled trailers are used in
main-haul transports between depots (context), a booking agent should
be available that consists of the following functions (mechanisms) in
line with Wahlster (2017) (rationale):
 a self-regulation mechanism (see 1. in Figure 1) to orchestrate

the different functions of a booking agent and their interactions
with a booking agent's knowledge base (6.)

 a collaboration mechanism (5.)
o with PDR agents to assign transport orders to PDR

agents
o with bordero agents to assign freight orders to bordero

agents
 a communication mechanism (7.)

o to publish booking specifications
o to subscribe to messages of bordero agents, trailer

agents, PDR agents, and depot agents to collect the
current state of the parcel deliveries

 a user interface (8./13.)
o to start and stop a booking agent
o to create bookings for parcel deliveries
o to show the current state of parcel deliveries
o to change booking specifications and cancel bookings

PDR agent To allow transport order operators (users) to automate the process of
assigning transport orders to parcel delivery robots (aim) when these
mobile robots are used for first- and last-mile transports of parcels in

6 Gösling et al.

urban areas, each PDR should be represented by a corresponding agent
with the following functions (mechanisms) in line with Wahlster
(2017) (rationale):
 a self-regulation mechanism (1.) to orchestrate the different

functions of a PDR agent and their interactions with a PDR
agent's knowledge base (6.)

 a planning mechanism (4.)
o minimizing the marginal costs when adding a

transport order or a battery charging order to the inter-
nal tour list

o …
… …

These architectural designs were discussed during an expert panel of nine participants
(3x software developer for logistics systems, 1x cloud architect for logistics systems,
1x innovation manager, 1x product specialist for trailers, 1x researcher for PDR devel-
opment, 1x transport logistics expert, 1x senior researcher for MAS) as part of our re-
search project. At the end of the panel, they were evaluated by the experts and the feed-
back was used for their adaption. The finalized instructions were then used as the start-
ing point for the next step of our procedure.

3.3 Conceptualizing each Component of a Software Agent

In the third step of our procedure, we defined a separate concept for each component
of our software agents. The self-regulation mechanisms were modeled with finite-state
machines, the knowledge base with a UML class diagram, the communication and in-
teraction with other software agents, remote software services, user interfaces of oper-
ators, and actors/sensors with a UML component diagram, the planning mechanism for
optimizing a software agent’s schedule with an optimization model, and the collabora-
tion mechanism for assigning tasks with a sequence diagram. For the self-regulation, at
least two routines, an evaluation and an execution routine, were defined per agent in
accordance with the MAPE-K architecture (IBM Corporation 2006). For the optimiza-
tion model, we looked for standard problems in the Operations Research literature that
could be used as the starting point for the mathematical formulation: for example, the
agents for the PDR and for the trailer have the single-vehicle routing problem with pick-
ups and deliveries and time windows while the depot agent has a cross-docking prob-
lem. The learning model of a software agent was described without a separate modeling
language. Each model and description of a software agent’s component was created by
a researcher who later was responsible for its implementation (step 4). The creation was
done using an interactive Miro board. In Table 3 below, some of the models for the
PDR agent are indicated by screenshots from this Miro board. These models and de-
scriptions were also discussed during several expert panels, one panel for each type of
software agent. The experts evaluated the models, and the feedback was used for their
adaption. The finalized concepts represented the blueprints for the implementation.

 Conceptualizing and Implementing Spade Agents 7

Table 3. Models for the components of the PDR agent (excerpt).
Models are indicated by screenshots from a Miro board.

PDR agent
component

Concept
model type

Model
(indicated by screenshots from Miro board)

Self
regulation
(see 1. in
Figure 1)

State machines
for evaluation

routine and
execution rou-

tine

Planning

(4.)
Mathematical
model of the

single-vehicle
routing problem

with pickups
and deliveries

and time
windows

… … …

8 Gösling et al.

3.4 Implementing the Software Agents with Spade

The Spade development environment was chosen for the agent implementation because
it can be used to build most of the necessary components of a software agent or at least
allows the integration of various Python libraries (see Table 4 below). Spade requires a
XMPP server for the inter-agent communication that needs to be accessible for all soft-
ware agents. A guide for setting up your own XMPP-Server was written as part of this
research project (https://roms.dfki.de/prosody.html, Pieper 2023). Spade provides clas-
ses that perform the XMPP-based communication. Spade classes also directly support
the setup of finite state machines for the agent’s self-regulation loops. For the collabo-
ration between software agents, there were neither Spade classes nor Python libraries
to be used out of the box. Therefore, we decided to develop a Spade extension during
our research project that allows for different types of order assignments (with or without
user interaction) among software agents using CNP-based auctions. Optimization mod-
els are formulated and solved with the Python package Pyomo for classical heuristics
and with PyTorch, NumPy, and gymnasium for reinforcement-learning-based ap-
proaches. Reinforcement learning (without optimization) can also be supported by a
combination of PyTorch, NumPy, and gymnasium. If sensors or actors need to be inte-
grated, vertical communication using web sockets can be set up with the Python pack-
age Flask-SocketIO. To develop user interfaces for the agents in Python, we used ai-
ohttp, jinja2, and plotly. Finally, we used Docker to virtualize the Spade agents for their
easy deployment on edge devices or remote servers – and for inter-agent learning we
set up a sharded NoSQL MongoDB database which allows sharing and storing data
across domains and agent types in a distributed fashion. The use of sharded replica sets
in Docker allows for fast, reliable data storage. With this stack of technologies, we are
currently implementing the software agents for our use case. A demonstrator for our
MAS consisting of a booking platform, booking agents, bordero agents, PDR agents,
and a small-scale robot will be presented at the upcoming Hanover Fair 2024.

Table 4. Spade classes and Python libraries to develop the different agent components.

Software agent
component

Python Spade Python libary Individual
solution

Self-regulation
(see 1.in Figure 1)

 x

Learning (3.)

x (PyTorch,
NumPy, gym-
nasium for re-
inforcement-
learning)

Planning (4.)

x (Pyomo for
classical opti-
mization &
PyTorch,
NumPy, gym-
nasium for re-
inforcement-
learning based
optimization)

Collaboration (5.) x

 Conceptualizing and Implementing Spade Agents 9

Knowledge base (6.) x x
Communication with
environment (7.)

 x (XMPP)

UI (8./13.)

x (for agent
status)

x (aiohttp,
jinja2, plotly)

Sensor and actor integra-
tion (9./10.)

x (Flask-So-
cketIO)

4 Conclusion

In this paper, we present a procedure for the development of a MAS in the ongoing
research project Gaia-X 4 ROMS. This procedure is similar to the available methodol-
ogies for designing agents (e.g. AAII and Prometheus) in its main steps: first building
an overview of the different types of software agents, then building an internal model
for each type of software agent. Our procedure uses the reference architecture of Wahl-
ster (2017) for defining the internal model of a software agent. Our procedure helps to
draw lines between an agent’s models and their implementation with Python, the Py-
thon-based development environment Spade, and additional Python libraries. In gen-
eral, our procedure helps to understand the different components of an agent and how
to implement them with Spade. All components of a software agent that we needed for
our use case (self-regulation, knowledge base, planning, learning, communication, UI
integration, and actor/sensor integration) can indeed be implemented using Python,
Spade or a Python library – except for the mechanisms between agents to assign tasks.
Therefore, we developed a Spade extension for integrating CNP-based auctions in our
MAS. Other projects that want to follow our procedure and want to use Spade, also
must come up with such an extension for task assignments. Additionally, our procedure
proposes modelling languages (e.g., finite state machines, mathematical model, UML
component model, etc.) for the different parts of the software agent except for the learn-
ing model. This is due to the limited focus on learning functionalities in the software
agents in the Gaia-X 4 ROMS project. Other projects that want to follow our procedure
would need to come up with their own suggestions for how to model their agents’ learn-
ing mechanisms before implementing them. In the future we want refine our procedure
accordingly – and also want to publish our Spade extension for CNP-based auctions.
Before doing so, we aim to complete the implementation of the six agent types.

Acknowledgments. This paper was written as part of the project Gaia-X 4 ROMS - Support and
Remote Operation of Automated and Networked Mobility Services (FKZ: 19S21005C). The joint
project is funded by the German Federal Ministry of Economics and Climate Protection
(BMWK). The authors are responsible for the content of this article.

10 Gösling et al.

References

1. Gath, M.:. Optimizing Transport Logistics Processes with Multiagent Planning and Control.
Springer Vieweg, Wiesbaden, Germany (2016).

2. Gregor, S., Chandra Kruse, L., Seidel, S.: Research Perspectives: The Anatomy of a Design
Principle. Journal of the Association for Information Systems 21(6) (2020)

3. Heinbach, C., Gösling, H., Meier, P., Thomas, O.: Smart Managed Freight Fleet: Ein auto-
matisiertes und vernetztes Flottenmanagement in einem föderierten Datenökosystem. HMD
Praxis der Wirtschaftsinformatik 60, 193–213 (2022)

4. IBM Corporation: An Architectural Blueprint for Autonomic Computing. IBM, Hawthorne,
USA (2006)

5. Maecker, D., Gösling, H., Heinbach, C., Kammler, F.: Exploring Multi-Agent Systems for
Intermodal Freight Fleets: Literature-based Justification of a New Concept.
Wirtschaftsinformatik 2023 Proceedings, Paderborn, Germany (2023)

6. Palanca, J.: Spade documentation, https://spade-mas.readthedocs.io/en/latest/, last accessed
2024/02/19

7. Pieper, T.: How to Setup a SPADE-Ready Prosody Server on Ubuntu / Raspberry PI,
https://roms.dfki.de/prosody.html, last accessed 2024/02/19

8. Wahlster, W.: Künstliche Intelligenz als Grundlage autonomer Systeme. Informatik-Spekt-
rum 40(5), 409–418 (2017)

9. Wooldridge, M.: An Introduction to Multiagent Systems. 2nd edn. John Wiley & Sons, West
Sussex, UK (2009)

