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Abstract. Bidding in a periodic double auction (PDA) is challenging
due to its sequential nature, where one needs to consider current as well
as future auctions to decide the bids. Monte-Carlo Tree Search (MCTS),
which is a state-of-the-art online planning algorithm for tackling sequen-
tial problems, seems a perfect fit for bidding in PDAs. However, the suc-
cess stories of MCTS are largely limited to discrete action spaces, and its
efficacy diminishes when dealing with continuous actions. Conventional
methods often resort to overly simplistic discretizations that limit explo-
ration and fail to provide valuable insights into unexplored actions. In
this work, we propose a novel bidding strategy for PDAs, Regression-
MCTS, that is built upon MCTS for a continuous action space of bid
prices. Unlike conventional methods, our novel MCTS method leverages
information obtained from explored actions to enhance the understand-
ing of the larger action set within the continuous domain to place bids
in the auctions, thus generalizing the information about action quality
between a wider action space for faster learning. To test the efficacy of
our proposed method, we design an efficient PDA simulator that closely
resembles real-world PDAs. Our analysis verifies that the increase in
the number of rollouts improves its performance. Furthermore, our ex-
perimental results demonstrate that our approach outperforms existing
MCTS-based bidding strategies and the majority of state-of-the-art PDA
bidding strategies, showcasing its superior performance in PDAs.

Keywords: MCTS for Continuous Action Space, Online Planning, Bid-
ding Strategy for PDA

1 Introduction

Auctions play a pivotal role in computer science and its associated domains, serv-
ing as dynamic mechanisms for the allocation of resources and the facilitation of
transactions. Their significance spans a broad spectrum, from the allocation of
computational resources in cloud computing to the distribution of spectrum in
wireless networks. Double auctions, in particular, are widely used in industries
like stock trading and energy markets, with significant economic influence. For
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instance, Stock Exchanges facilitate daily transactions worth trillions of dollars,
while energy markets in Europe alone witness volumes exceeding 1000 TWh,
translating to billions of dollars in cash flow through energy trades [1]. Given
this economic impact, the development of bidding strategies capable of opti-
mizing procurement costs holds paramount importance, promising significant
improvements in both profitability and operational efficiency.

However, despite the prevalence of double auctions, the design of optimal bid-
ding strategies remains a formidable challenge, particularly in complex domains
such as the energy market. In this context, trades often occur through periodic
double auctions (PDAs), where participants can procure energy several hours
ahead of the delivery hour, necessitating strategic planning across current and
future auctions, with each decision influencing subsequent steps. Consequently,
the decision-making process for bidding strategies becomes intricate, demanding
innovative approaches to navigate the complexities of real-time bidding dynam-
ics effectively. For such sequential decision-making problems, Monte Carlo Tree
Search (MCTS) emerges as a fitting framework capable of constructing trees
that encompass entire decision-making trajectories, comprehensively capturing
process dynamics. Renowned for its efficacy in sequential decision-making tasks,
MCTS gained widespread recognition after its pivotal role in AlphaGo’s triumph
over the world champion in Go [2]. However, MCTS’s application predates its
Go breakthrough, primarily in game-playing.

Numerous variations aiming to enhance search efficiency and reduce com-
putational overhead have since been proposed. MCTS’s advantage lies in its
ability to blend the precision of tree search with the generality of random sam-
pling. Nevertheless, its performance in continuous spaces remains a subject of
exploration, particularly in real-world problems with continuous action spaces,
like determining velocity and acceleration in autonomous driving or setting bid
prices in auctions. In these contexts, sequential decision-making is paramount,
with each action step affecting the problem state in the future. While MCTS
appears well-suited for such tasks, its adaptation to continuous action spaces
requires further investigation and refinement.

In the literature, addressing the challenge of applying MCTS to continuous
action space problems involves several approaches, including (i) Discretization,
(ii) Unpruning or Progressive Widening, (iii) Policy Optimization, and (iv) Ac-
tion Optimization. Discretization simplifies the continuous action space by dis-
cretizing it into a finite set of actions. However, this method constrains MCTS
to operate within a fixed action set, limiting its ability to explore all potential
outcomes and failing to provide insights into unexplored actions. Progressive
Widening addresses the fixed action set limitation by dynamically expanding
the action space with more and more simulations. Nevertheless, it also faces
constraints due to discretization, restricting thorough exploration of potential
outcomes. These techniques share a common limitation: they do not leverage
insights gained from explored actions to inform the exploration of unexplored
actions or enhance knowledge about previously explored ones.



A Novel Bidding Strategy for PDAs 3

Given the impracticality of exhaustively exploring all available actions in
continuous space, any MCTS algorithm operating in this domain must general-
ize the action space based on exploration. Policy optimization and action opti-
mization exhibit this generalization capability. Specifically, action optimization
(techniques like KR-UCT) aims to enable insights across the entire continuous
action space with each action MCTS sample using the environment knowledge,
whereas policy optimization methods take a hybrid approach where they build
the MCTS tree in a continuous action space and update the policy gradient us-
ing the sampled MCTS trajectories to train a parametric model; thereby outper-
forming discretization and progressive widening methodologies. However, both
the above methods are curated for specific problem settings and may not be
directly extendable to other problem settings.

In this study, we delve into the realm of continuous action spaces to ex-
plore the potential of MCTS, presenting a novel bidding strategy tailored for
PDAs. Our strategy, named Regression-MCTS (R-MCTS), harnesses MCTS to
derive optimal bidding prices from the continuous action space of prices. Un-
like conventional approaches that limit exploration to discrete sets of candidate
actions, R-MCTS considers the entirety of the continuous action space, lever-
aging a predefined set of candidate actions as initialization. Inspired by the
KR-UCT method, the core of our strategy lies in generalizing action value es-
timates across the entire parameter space, facilitating information sharing and
enabling exploration beyond the initial candidate set. This adaptability proves
invaluable, especially in scenarios with imperfect domain knowledge.

Central to our approach is the generalization of action value estimates over
the bid price parameter space for PDAs, achieved by assigning a clearing prob-
ability to each action in the action space at each level of the Monte-Carlo tree,
reflecting the likelihood of bid clearance. As simulations progress, each explo-
ration updates the clearing probabilities for all previously considered actions at
any given level, enhancing MCTS’s knowledge incrementally with each iteration.
To evaluate the effectiveness of our method, we develop a comprehensive PDA
simulation that closely replicates real-world dynamics. This simulation serves as
a rigorous testing ground, enabling a comparative analysis of our proposed strat-
egy against state-of-the-art MCTS approaches and top-performing PDA bidding
strategies. Below, we outline our contributions:

– We investigate the efficacy of MCTS in continuous action spaces, specifically
for the context of placing bids in a periodic double auction.

– Introducing R-MCTS, a novel method designed to navigate the continuous
action space of bid prices, harnessing insights gleaned from explored actions
to update knowledge about previously visited actions, facilitating enhanced
generalization of the action space and accelerating MCTS learning.

– With comprehensive performance analysis, we demonstrate the effectiveness
of R-MCTS. Our evaluation encompasses comparisons against several state-
of-the-art MCTS methods, as well as various PDA bidding strategies, lever-
aging a simulated PDA environment as our experimental test bed.



4 Chandlekar and Subramanian

2 Related Work

Some attempts have been made previously to extend the vanilla MCTS to contin-
uous action spaces. One of the early works is done in HOO [5], which deals with
continuous arms by utilizing a tree of coverings of the action space and is inspired
by the bandit framework. HOOT [3] improvises on vanilla MCTS by replacing
the UCB1 action selection rule with HOO. Alternatively, HOLOP [6] embraces a
different strategy by modeling this as a continuous bandit problem, where actions
correspond to plans, leveraging HOO. Alternative strategies, such as the progres-
sive widening method, have also been expanded to address stochastic continuous
state and action planning predicaments by employing double progressive widen-
ing [7], which applies progressive widening to both states and actions. To amplify
the efficacy of MCTS integrated with progressive widening, cRAVE [8] inte-
grates the RAVE heuristic [10] using Gaussian convolution, thereby promoting
information exchange among actions throughout the entire subtree. Additionally,
KR-UCT [11] is another notable approach fostering information sharing among
actions within the same node through kernel regression, and it generates new
actions guided by kernel density estimation. KR-UCT has showcased superior
performance compared to cRAVE in simulated curling environments, earning
its acknowledgment as state-of-the-art. The work by Couetoux[9] provides an
excellent overview of the MCTS literature.

MCTS-based strategies have also found application in the domain of simul-
taneous ascending auctions [18], negotiations [19] and PDAs, particularly within
the framework of the Power Trading Agent Competition (PowerTAC) [13]. This
competition, which closely simulates real-world smart grid scenarios, hosts an
annual tournament attracting various teams who deploy broker agents equipped
with bidding strategies for energy procurement from the wholesale market PDAs.
Notably, SPOT [14], a prominent broker agent in the PowerTAC literature, in-
troduced an MCTS-based bidding strategy augmented with heuristic techniques.
Inspired by the success of SPOT’s MCTS strategy, Tuc_Tac [17] developed its
own MCTS bidding strategy, which bears significant resemblance to SPOT’s ap-
proach. However, both strategies operate within discretized action spaces, crucial
for determining bid prices and quantities in auctions. Specifically, they employ
bid price predictors to anticipate suitable bid prices for all auctions. These pre-
dicted bid prices serve as input for MCTS, which subsequently determines multi-
pliers and quantity fractions from a discrete set of actions. These multipliers are
then applied to the predicted bid price to establish lower and upper bounds for
bid prices, within which they place multiple bids for the selected bid quantity.
However, all these methods are either limited by the discrete nature of action
space or curated for specific problem settings and may not be directly extendable
to other problem settings.

3 Background

We start by outlining the foundational algorithms that R-MCTS will build upon
and introducing the problem domain for which the proposed strategy is designed.
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3.1 MCTS for Discrete Action Spaces

MCTS is a powerful algorithm in the realm of artificial intelligence and com-
puter science, particularly acclaimed for its effectiveness in decision-making and
problem-solving in complex, strategic environments. Originally developed for
game-playing scenarios, MCTS has since found applications in various domains,
from robotics to optimization. Unlike traditional tree search methods, MCTS
employs a stochastic sampling approach to traverse the search space, effectively
balancing exploration and exploitation. By simulating numerous random play-
outs from each node of a decision tree and updating statistics accordingly, MCTS
gradually refines its understanding of the problem landscape, ultimately guiding
toward optimal or near-optimal solutions.

MCTS is a simulation-based search approach to planning in finite-horizon
sequential decision-making settings. The core of the approach is to iteratively
simulate executions from the current state to a terminal state, incrementally
growing a tree of simulated states (nodes) and actions (edges). Each simulation
starts by visiting nodes in the tree and selecting which actions to take based
on a selection function and information maintained in the node. Consequently,
it transitions to a successor state. When it encounters a node that is not fully
expanded, then the node is expanded by adding a new leaf to the tree. Then, a
simulation is performed from the new leaf to a terminal state. The value of the
terminal state is then returned as the value for that new leaf and the information
stored in the tree is updated.

The most widely used selection function for MCTS is Upper Confidence
Bounds Applied to Trees (UCT) [12]. In UCT, each node maintains the mean
of the rewards received for each action, v̄a, and the number of times each action
has been selected, na. It initially tries each action once and then chooses the
next action based on the size of the one-sided confidence interval on the reward,
computed using the Chernoff-Hoeffding bound as shown below,

argmaxa

[
v̄a + C

√
log

∑
b nb

na

]
(1)

This bound is controlled by the constant C, which determines the exploration-
exploitation trade-off and is typically fine-tuned for the specific domain. How-
ever, one of the primary limitations of discrete MCTS methods is the fixed size
of the action space, which is addressed by progressive widening methods.

3.2 MCTS for Continuous Action Spaces: Simple Progressive
Widening (SPW)

In continuous MCTS, the vanilla UCT no longer works since each action should
be tried at least once and there are infinitely many actions to be considered.
Progressive widening addresses this challenge by maintaining a finite list of ac-
tions to be explored and incrementally adding new child action nodes vc to this
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list based on visitation counts. Specifically, a new child node is added whenever
the following condition is met:

n(vc)
α ≥ |children(vc)|

Here, α ∈ (0, 1) is a parameter controlling the growth rate, n(vc) is the visit count
of the node vc’s and |children(vc)| is the size of node vc children list. This ensures
that before adding a new action to the list, the current set of actions gets visited
sufficient times. When a new node vd is created, a new action particle is either
sampled from a probability distribution a ∼ πsampler(|s) or deterministically
generated (e.g., to expand the action space coverage). This generated action
particle is stored in action(vd), and the process iterates accordingly.

3.3 Periodic Double Auction

The wholesale market of a smart grid comprises large power-generating com-
panies, also known as GenCos, which produce energy in bulk and offer it at
wholesale prices. Energy in this market is traded through an auction mecha-
nism, specifically a day-ahead periodic double auction involving GenCos and en-
ergy brokers. Here, day-ahead signifies that brokers engage in buying or selling
energy for future delivery timeslots, typically ranging from 1 to 24 hours ahead.
These auctions occur periodically, with clearing taking place after each hour.
In most cases, a specific type of double auction known as a k-double auction is
employed, which is considered for this work as well, as described below.

k-Double Auction: A k-double auction is a type of auction where potential
buyers submit bids and potential sellers submit asks to the auctioneer. The auc-
tioneer then aggregates these bids and asks, determining each player’s clearing
quantity and clearing price using predefined allocation and payment rules. The
clearing price represents the price at which the auctioneer clears the market by
matching buyers’ bids with sellers’ asks. The clearing quantity for each player
denotes the number of items they receive (for buyers) or sell (for sellers) after the
auction clears, as determined by the allocation rule. Additionally, the payment
rule specifies the payment each player makes or receives at clearing time (buyer
pays, seller earns). In our context, if a buyer’s bid b exceeds the seller’s bid s,
the clearing price is calculated as kb + (1 − k)s for some fixed k ∈ [0, 1]. Here,
we consider k = 0.5, meaning the clearing price is the mean of b and s.

Figure 1 provides an illustrative example of market clearing in a typical PDA
using the k-double auction mechanism. During each auction instance, buyers
and sellers submit their bids and asks to the auction, following the convention
where bids contain a positive energy amount and negative price, while asks
include a negative energy amount and positive price. Bids, or asks without price
details (known as market orders), are sorted first as they are treated as the
highest bid amount or lowest ask amount. Demand and supply curves are then
constructed from these bids and asks. As illustrated in the figure, asks are sorted
in increasing order of prices (forming the supply curve), while bids are sorted in



A Novel Bidding Strategy for PDAs 7

Fig. 1: Market Clearing Example: Partial bid5 and full ask4 are the last to clear

decreasing order of prices (forming the demand curve). The clearing price occurs
at the intersection of these curves. If there is no unique price intersection, the
clearing price is calculated based on the lowest successful bid (b) and the highest
successful ask (s) price, following the definition of a k-double auction.

In this work, we adhere to the uniform payment rule, where all successful buy-
ers[sellers] pay[receive] the same clearing price, regardless of their bid[ask] values.
The cleared quantity for a buyer[seller] matches its bid[ask] energy amount in
the case of full clearing and partially in the case of partial clearance.

4 Regression-MCTS (R-MCTS)

In this section, we present our proposed method, R-MCTS, which operates within
a continuous action space by leveraging domain knowledge to generalize explored
actions. Our algorithm draws inspiration from KR-UCT’s concept of facilitating
information sharing among all considered actions, aiding in action space gen-
eralization and insights into unexplored actions. Additionally, to accommodate
continuous action spaces, we employ the SPW technique. This involves initiat-
ing each node with a shallow action space and progressively expanding it as the
node is visited repeatedly. Both initially provided candidate actions and pro-
gressively added actions, along with their estimated values, collectively form a
single dataset at each node for R-MCTS.

Given the fundamental differences in the problem addressed in this work
compared to previous approaches like KR-UCT, we do not model execution
uncertainty for actions, as there is none in their execution of placing bids in a
PDA. Consequently, we abstain from utilizing a kernel function to gain insights
into similar unexplored actions. Notably, in the absence of execution uncertainty,
KR-UCT essentially operates akin to the standard UCT algorithm with SPW,
potentially limiting its efficacy in our problem domain. Instead, we utilize the
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knowledge of the market clearing of the bids to strengthen the insights about the
actions that have already been visited; here, the actions are the bid prices. The
core idea behind our approach is to calculate the clearing probability, p_cleared,
for each of the explored actions (bid prices) and keep updating these probabilities
with new information about market clearing.

Algorithm 1 delineates the pseudocode for R-MCTS, adhering to the conven-
tional four-step process of MCTS: selection, expansion, simulation, and back-
propagation. The primary procedure, R-MCTS, is invoked on the root of the
search tree for a fixed number of rollouts determined by a computation budget,
returning a list of bid prices for the buyer. The functions generate_sellers() and
clone_buyers() emulate the sellers and buyers (including R-MCTS and random
buyers) of the PDA, respectively. Thus, these modeled sellers and buyers facili-
tate the simulation of PDA scenarios during the rollout process.

The modeled sellers primarily comprise GenCos, which follow a quadratic
supply curve along with some noise. On the other hand, the modeled buyers
consist of a clone of R-MCTS alongside ZI buyers that place bids randomly.
Throughout the rollout process, we replicate the actual market scenario using
these modeled sellers and the same number of modeled buyers as in the original
PDA, trading for demands identical to the original demands of buyers. Since
we may not have information about the opponents’ actual bidding strategies
during the rollout, the ZI buyer functions as an opponent of R-MCTS. This setup
enables R-MCTS to assess the market scenario and make decisions accordingly.
Further insights of the proposed algorithm are provided below.

Calculation of Clearing Probabilities: The function pcleared(s, action) is
estimated from the past auction statistics as:

pcleared(s, action) =

∑
ac∈auction[s],ac.CP<action ac.cleared_amount∑

ac∈auction[s] ac.cleared_amount
(2)

where auction[s] represents the collection of all past auctions in the current state
s, with CP denoting the clearing prices of those auctions. Here, the state is de-
fined by the number of auctions remaining in the PDA, denoted as rem_auctions
and computed based on current and delivery timeslots (Line 2). Essentially,
this formula calculates the clearing probability of any action, which represents
a bid price, by considering what fraction of the total quantity traded in the
current state (s) had a clearing price (CP ) less than the given action. In Al-
gorithm 1, the get_pcleared(rem_auctions, cur.action) function executes the
above-mentioned calculations for each action or bid price selected during the
rollouts (Line 11).

4.1 Selection and Expansion Phase

The selection phase locates the leaf node in the current tree (the node that has
not been expanded yet) and then we perform the expansion phase to expand the
tree from that node (Lines 9-15). Our algorithm invokes the select method (Line
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Algorithm 1 R-MCTS(rem_quant, cur_ts, delv_ts)

1: bids← [], root← Node() # initialise bids list and root node
2: rem_auctions← delv_ts− cur_ts # number of auctions remaining in a PDA
3: if rem_quant > 0 then
4: while i in NUMBER_OF_ROLLOUTS do
5: visited← [], rewards← [], cur ← root # initialise lists of visited, rewards
6: visited← [visited; root]
7: list_of_sellers← generate_sellers()
8: list_of_buyers← clone_buyers()
9: while not cur.is_leaf(rem_quant) do

10: cur ← select(rem_quant) # see algorithm 2
11: cur.p_cleared← get_pcleared(rem_auctions, cur.action)
12: cp, cq, rem_quant ← perform_auction(cur.action, rem_quant,

list_of_sellers, list_of_buyers) # clearing the current auction round
13: rewards← [rewards; cp]
14: visited← [visited; cur]
15: end while
16: cur_cost, cur_quant← cur.simulation(rem_quant, rem_auctions)
17: root← backpropogation(rewards, visited, cur_cost, cur_quant)
18: end while
19: lp← root.best_action()
20: bids← [bids; Bid(buyer_ID, lp, rem_quant)] # limit order
21: else
22: bids← [bids; Bid(buyer_ID, NULL, rem_quant)] # market order
23: end if
24: return bids

Algorithm 2 select(node, rem_quant)

1: if number_of_visits(node)α ≤ number_of_children(node) then
2: A← actions considered in node

3: action← argmaxa∈AE(v|a) + C
√

log
∑

b∈A number_of_visits(b)

number_of_visits(a)
# UCB-select

4: else
5: new action← child of node by taking an action using p_cleared data
6: node.children← [node.children; action] # SPW-select: expanding action space
7: end if
8: new_state = node.action
9: return new_state

10), which determines the next node to traverse by utilizing two selection modes:
UCB-select and SPW-select, as depicted in Algorithm 2. UCB-select adheres to
the UCB formula at each decision node, aiding the algorithm in selecting from
previously explored actions. At each node, crucial metrics such as the number
of visits, the action that led to the current node, the average unit purchase cost
(mean utility E(v|a)), and a set of child nodes b are maintained. As iterations
progress and outcomes are revisited, their mean utilities and visit counts are
updated accordingly. These updated estimates are then integrated into their
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respective roles within the UCB formula, guiding the selection of actions for
further refinement. The scaling constant C plays a pivotal role, governing the
tradeoff between exploring less-visited actions and refining the value of more
promising actions.

SPW-select is triggered when the condition for SPW 3.2 is satisfied (Line 1),
indicating that a node has been visited sufficiently many times compared to its
number of children. This condition signifies the necessity to expand the action
space for the current node. This decision is based on maintaining the number
of outcomes in a node bounded by some exponential function of the number of
visits to the node. To execute the SPW step, a random policy is employed to
select an action beyond the initial action space. Alternatively, domain knowledge
can be utilized for selecting a new action.

During the SPW stage, we leverage the knowledge of pcleared data in the
current state of the node to introduce a new action into the action space. Given
that PDA allows a buyer to bid for 24 rounds per auction, our strategy varies
based on risk tolerance. In early rounds, we opt for actions with lower pcleared,
taking higher risks to procure the required quantity at lower prices. As the auc-
tion progresses towards its final rounds, we adopt a more conservative approach,
prioritizing actions with higher pcleared to ensure procurement certainty. This
strategy enables R-MCTS to explore risky actions (or bid prices) initially and
transition towards more assured options as the auction progresses. Once the new
action is chosen, it is added to the list of children of the current node, and the
function returns the next state after executing the selected action.

Once the algorithm reaches a leaf node in the tree, it expands the tree by
selecting an action and conducting auction clearing (perform_auction()) for
that chosen action. This process results in transitioning to the next state, which
becomes a child of the current node. Subsequently, the simulation phase is con-
ducted from this new state.

4.2 Simulation and Backpropagation Phase

When a new outcome is integrated into the tree, a complete search ensues to
reach a terminal state using a default policy, which can be a random policy as
well. We simulate the remaining rounds of the auction from the state generated
during the expansion phase and record the procurement cost along with the
quantity purchased by R-MCTS (Line 16). During the simulation phase, at each
of the remaining auction states (rem_auctions), we conduct auction clearing
(perform_auction()) and record intermediate procurement costs. Additionally,
we update the remaining quantity of all the brokers for the subsequent state
based on the market clearing in the current state. Subsequently, all the interme-
diate procurement costs and cleared quantities of R-MCTS are aggregated and
returned as the output of the simulation phase. This output is then utilized to
update E(v|a) and the visit count of the visited nodes along the selected path
through the tree during the backpropagation phase (Line 17).
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Fig. 2: Pictorial Representation of R-MCTS Displaying all the Phases

4.3 Final Selection Phase

Once the computational budget is exhausted, determined either by the number
of iterations or by a pre-allocated time limit, we utilize the search results to
select an action for execution. The chosen action is the one at the root with the
highest mean utility, indicating the lowest unit purchase cost.

Figure 2 shows an intermediate state of R-MCTS. Each node contains VC,
act, MU, |C| denoting visit count of the node, action or limitprice that lead to
the node, mean utility, number of children, respectively.

5 Experimental Evaluation

In this section, we conduct experiments to assess the performance of R-MCTS
within continuous action spaces. As R-MCTS deals with a continuous action
space, it can effectively handle any number of actions by expanding the tree
in breadth. Specifically, we apply R-MCTS to the domain of PDAs, where it
generates bid prices from a continuous range of feasible prices. To facilitate our
evaluation, we have developed an efficient PDA simulator that faithfully repli-
cates real-world PDA dynamics. This simulator serves as our testing platform
to thoroughly examine R-MCTS and compare it against baseline strategies. We
begin by detailing the experimental setup, followed by descriptions of each of the
opponent baseline strategies. Finally, we present results alongside discussions.

5.1 Experimental Setup

To thoroughly evaluate the proposed R-MCTS, we conduct a comprehensive
analysis alongside state-of-the-art MCTS strategies and efficient PDA bidding
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strategies. Our experiments are organized into three sets. Set-1 focuses on exam-
ining the learning capabilities of R-MCTS by analyzing its performance relative
to the number of rollouts. Specifically, we compare the average purchase cost
of R-MCTS across varying rollout numbers to ascertain whether increased roll-
outs lead to improved performance. Set-2 involves comparing the purchase cost
of R-MCTS against various other MCTS-based bidding strategies in 1v1 games
(only two buyers in PDAs, R-MCTS and one of the opponent strategies) under
different demand scenarios (low, medium, high, and extreme). By performing
these experiments, we aim to demonstrate the efficacy of our proposed approach
against state-of-the-art MCTS methods. Similarly, Set-3 entails a comparison
of R-MCTS against potent bidding strategies from the PowerTAC literature in
1v1 games across all four demand scenarios. This experiment assesses the per-
formance of our strategies against some of the best PDA bidding strategies.

By conducting these comparisons across different demand levels, we aim to
test the efficacy of our strategies under diverse circumstances. Each experiment
is executed 100 times to ensure robust results, with mean values presented in
the results. Below, we provide detailed explanations for each set of experiments.

Experiment Set-1: In this set of experiments, we engage R-MCTS as the
sole participant in a PDA. Each iteration involves randomly generating demand
for the strategy from a Gaussian distribution. To fulfil this demand, R-MCTS
conducts a series of rollouts to familiarize itself with the environment and deter-
mine optimal bidding strategies. The purpose of these experiments is to assess
the learning proficiency of R-MCTS across varying numbers of rollouts, rang-
ing from low to high. Specifically, we explore the following rollout numbers:
{1, 5, 10, 50, 100, 500, 1000}. For each rollout quantity, we record the unit pur-
chase cost of R-MCTS, and the corresponding graph is depicted in Figure 3.
This analysis provides insights into how the performance of R-MCTS evolves
with increasing rollout numbers.

Experiment Set-2: This set of experiments aims to assess the performance of
the R-MCTS bidding strategy against various other MCTS-based strategies. To
achieve this, we leverage several state-of-the-art MCTS methods to design bid-
ding strategies. Specifically, we implement bidding strategies based on Vanilla-
MCTS and MCTS-SPW [7]. Additionally, we incorporate the SPOT [14] agent,
renowned as one of the top-performing strategies in PowerTAC tournaments.
Each of these strategies engages in 1v1 competition against R-MCTS. Follow-
ing each individual bidding round, we record the average unit purchase costs
of each opponent, including R-MCTS. These experiments are conducted across
four different demand levels: (i) Low, (ii) Medium, (iii) High, and (iv) Extreme.
R-MCTS’s results are computed based on 500 rollouts. The resulting graph is
presented in Figure 4.

Experiment Set-3: The third set of experiments mirrors Set-2, albeit with
a broader scope. Here, we compare the R-MCTS bidding strategy against a
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comprehensive array of efficient bidding strategies drawn from the PowerTAC
literature. These strategies embody some of the most effective approaches for
PDAs, encompassing diverse attributes such as learning-based strategies using
Reinforcement Learning, Heuristics-based methods, and more. Specifically, we
include ZI, ZIP, VV21 and SPOT strategies in our evaluation. Similarly to Set-
2, each of these strategies engages in 1v1 competition against R-MCTS across
all four demand levels. We meticulously record the average unit purchase costs
of each opponent alongside R-MCTS following individual bidding rounds. R-
MCTS’s results are derived from 500 rollouts. The comparative performance
graph is displayed in Figure 5.

5.2 Baseline Strategies

Below, we provide concise descriptions of the baseline strategies employed as
opponents in our experiments. These strategies are categorized into two groups:
MCTS-based strategies and PowerTAC bidding strategies.

MCTS-based Strategies

MCTS-Vanilla: MCTS-Vanilla is an MCTS method utilizing a discrete and
fixed-size action space, constructed iteratively through a search tree as detailed
in Section 3.1. For designing a bidding strategy for PDAs, MCTS-Vanilla dis-
cretizes the action space of bid prices. Each action within this space is defined
by two multipliers, α1 and α2, applied to the lower and upper bounds of feasi-
ble bid prices, respectively. The resulting bid is then placed in the PDA, with
the remaining quantity placed as bid quantity across all auction instances. Pro-
curement cost, determined by the bid price, serves as a reward propagated back
through the tree.

MCTS-SPW: MCTS-SPW (Simple Progressive Widening) extends MCTS-
Vanilla to accommodate continuous action spaces better. While still maintaining
a discrete action space, MCTS-SPW dynamically grows its size with the number
of rollouts. In the context of designing a bidding strategy for PDAs, MCTS-SPW
initializes the action space with randomly sampled bid prices. With more and
more rollouts, it explores actions outside the initial action space while striking a
balance between exploration and exploitation. Like MCTS-Vanilla, it allocates
the remaining quantity as a bid quantity across all auction instances.

SPOT: SPOT [14] employs an MCTS-based bidding strategy; additionally,
SPOT integrates several heuristic techniques to optimize bid prices and strate-
gically place multiple bids in auctions. Specifically, it calculates the standard
deviation of clearing prices σ offline and incorporates an external limit price
predictor that provides limit-price µ. Utilizing a discrete action space, each ac-
tion includes two multipliers for the limit-price (∆min and ∆max) and a fraction
γ for bid quantity. MCTS selects an appropriate action, and multiple bids are
strategically placed within the price range of µ+∆min ∗ σ and µ+∆max ∗ σ to
procure a total fraction of γ of the remaining quantity.
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PowerTAC Bidding Strategies

ZI: Instead of considering market conditions, the ZI strategy randomly chooses
a bid price within a set range (between a minimum and maximum allowed value)
for each auction in a PDA. This strategy involves submitting a single bid with
a randomly chosen price for each auction, along with the remaining desired
quantity as the bid quantity in all instances.

ZIP: The ZIP agent [15] keeps a scalar variable m representing the profit it
aims to achieve, which gets combined with a unit limit price to calculate a bid
price p. Small increments adjust the price for each trade with the help of a δ by
comparing the submitted bid price and the clearing price. The initial bid price
µ is decided randomly at the start of the game and the profit margin is set to
−1% of µ, resulting in the initial bid price being p = µ ∗ 0.99. Both δ and µ are
updated after each auction to improve future bids. Like ZI strategy, ZIP agent
submits the entire remaining quantity as the bid quantity for each auction.

VV21: VV21 [16] is a heuristic strategy that models the cost curve of GenCos
derived from uncleared ask information available in PDAs. This strategy aims to
identify the price corresponding to the buyer’s bid quantity (based on demand
forecasts of both the buyer and the market) on the cost curve. It then sets
this price as the upper bound on limit prices and places multiple bids below it.
This approach facilitates procurement of the majority of the quantity from other
buyers’ asks in the market, potentially at lower prices, with GenCos considered
as suppliers of last resort. VV21 places bids for all the remaining quantity by
dividing it into multiple bids.

5.3 Results and Discussion

Below, we present the results of each of the three experiments mentioned above,
averaging over 100 random rollouts.

Fig. 3: Rollouts vs Average Unit
Purchase Cost for R-MCTS

Experiment Set-1: Figure 3 depicts
the results from Set-1 experiments, il-
lustrating the impact of the number of
rollouts on the average unit procure-
ment cost of R-MCTS. As evident in
the graph, there exists an inverse re-
lationship between the number of roll-
outs and the procurement cost: as the
number of rollouts increases, R-MCTS
enhances its performance and procures
the demand at lower prices. Conse-
quently, the efficacy depends on the num-
ber of rollouts feasible within the sys-
tem.
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Fig. 4: Comparing R-MCTS vs MCTS-based Bidding Strategies in Low, Medium,
High and Extreme Demand Scenarios (((a) vs MCTS-Vanilla (b) vs MCTS-SPW
(c) vs SPOT))

Experiment Set-2: Figure 4 illustrates the results of Experiment Set-2, com-
prising three graphs that compare R-MCTS against three opponents across
four different demand scenarios. Specifically, Figure 4(a) compares the R-MCTS
against MCTS-Vanilla, Figure 4(b) against MCTS-SPW, and Figure 4(c) against
SPOT. As depicted in Figures 4(a) and 4(b), R-MCTS consistently outperforms
MCTS-Vanilla and MCTS-SPW across all demand levels—low, medium, high,
and extreme. With the exception of extreme demand, R-MCTS achieves signif-
icantly lower procurement costs compared to MCTS-Vanilla and MCTS-SPW
across all scenarios. Similarly, as evident in Figure 4(c), except for low-demand
scenarios, R-MCTS matches SPOT’s performance in medium-demand scenarios
and outperforms SPOT by a substantial margin in high and extreme-demand
scenarios.

Experiment Set-3: Figure 5 presents the results of Experiment Set-3, com-
prising three graphs comparing R-MCTS against three opponents across four
different demand scenarios. Specifically, Figure 5(a) compares R-MCTS against
MCTS-ZI, Figure 5(b) against MCTS-ZIP, and Figure 5(c) against VV21. As
depicted in Figure 5(a), R-MCTS consistently outperforms ZI across all four de-
mand levels. Similarly, as shown in Figure 5(b), except for extreme demand sce-
narios, R-MCTS outperforms ZIP by a substantial margin and nearly matches its
performance in extreme demand scenarios. Finally, as illustrated in Figure 5(c),
while VV21 outperforms R-MCTS in low and medium-demand scenarios, R-
MCTS maintains its performance in high and extreme-demand scenarios, sur-
passing VV21 by a considerable margin. Notably, VV21 is regarded as the best
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Fig. 5: Comparing R-MCTS vs PowerTAC Bidding Strategies in Low, Medium,
High and Extreme Demand Scenarios (((a) vs ZI (b) vs ZIP (c) vs VV21))

strategy for PowerTAC PDA, and our proposed strategy proves to be more ro-
bust across different demand scenarios.

The series of experiments conducted above underscore the effectiveness of
our proposed R-MCTS method in the continuous action space of bid prices for
PDAs. It shows performance enhancement with an increasing number of rollouts.
Furthermore, our method consistently outperforms several top-tier MCTS-based
and PowerTAC PDA bidding strategies across different demand levels, under-
scoring its robustness in adapting to varying demand scenarios.

6 Conclusion

In this work, we delve into the underexplored realm of Monte Carlo Tree Search
(MCTS) for continuous action spaces, presenting a novel bidding strategy named
R-MCTS that extends MCTS to the continuous action space of bid prices, aiming
to improve auction bidding strategies. By leveraging information from explored
actions, R-MCTS enhances understanding of the larger action space within the
continuous domain, facilitating more informed bidding decisions. Specifically, we
utilize clearing probabilities of bid prices calculated based on MCTS’s previous
auction bids, thereby generalizing information about action quality. To evaluate
our method’s effectiveness, we developed a realistic PDA simulator closely re-
sembling real-world scenarios. Our analysis reveals that increasing the number
of MCTS rollouts enhances performance. Moreover, R-MCTS outperforms ex-
isting MCTS-based baseline bidding strategies and many state-of-the-art PDA
bidding strategies, showcasing its superior performance in PDAs.
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