
Enhancing Confidence of the vGOAL Interpreter
Using SAT Solving

Yi Yang[0000−0001−9565−1559] and Tom Holvoet[0000−0003−1304−3467]

imec-DistriNet, KU Leuven, 3001 Leuven, Belgium
{yi.yang,tom.holvoet}@kuleuven.be

Abstract. Agent programming languages and their interpreters are cru-
cial in autonomous decision-making. While formal methods are exten-
sively utilized to ensure the correctness of agent programs, their applica-
tion for verifying the implementation correctness of interpreters remains
infrequent. To formally specify and verify autonomous decision-making,
we proposed vGOAL and implemented its interpreter. The implementa-
tion correctness of the vGOAL interpreter is crucial for users to gain trust
in the vGOAL approach. Using program verification is one option, yet
this would require a huge effort to verify the correctness of the vGOAL
interpreter.
In this paper, we propose integrating an SAT-solving component into the
vGOAL interpreter to enhance confidence in its core component: minimal
model generation. The SAT-solving component consists of two subcom-
ponents: an SAT-encoding component and an SAT solver. Leveraging
PySAT for its interface to advanced solvers, our main contribution lies in
the SAT encoding. We devise an algorithm to encode the inputs and out-
puts of the core component into a satisfiable CNF formula. Importantly,
we justify that this algorithm generates a satisfiable CNF formula only
if the result is correct. We demonstrate the practicality and efficiency of
this SAT-solving approach using a case study involving an autonomous
transportation system with three mobile robots.

Keywords: Autonomous Decision-Making · Implementation Correct-
ness · vGOAL interpreter · SAT Solving

1 Introduction

Autonomous systems, defined as entities capable of independent task comple-
tion without continuous human instructions, hold immense potential for saving
lives and mitigating risks in hazardous environments like nuclear power plants
and space exploration. It is important to convince the public that autonomous
systems will correctly execute tasks as desired without any violations of safety
requirements. The development of safe autonomous decision-making is a chal-
lenging task in developing autonomous systems.

For many years, agent programming languages (APLs) and their interpreters
have been extensively researched to develop autonomous decision-making [12].
More precisely, an APL is a specification language to specify an autonomous

2 Y. Yang and T. Holvoet.

decision-making mechanism, and an APL interpreter serves as an autonomous
decision-making component. Therefore, we can increase confidence in the au-
tonomous decision-making process using APLs from two aspects: APL programs
and APL interpreters.

Formal verification is built on a rigorous mathematical foundation. Hence,
it is a reliable tool to provide high confidence for autonomous systems, espe-
cially in safety-critical applications. Many efforts have been made to prove the
correctness of an APL program using formal verification, enhancing the confi-
dence of the APL program. Particularly, model checking is the most successful
and influential verification method in verifying APLs, including AgentSpeak [2],
Gwendolen [4], and GOAL [7], owing to the automated verification process [1],
[5], [9], [13]. On the other hand, there is a noticeable gap in verifying the im-
plementation correctness of APL interpreters. To the best of our knowledge, the
implementation correctness of APL interpreters has only been briefly discussed
in [5], and the authors believe it is important but requires significant effort.

In our previous work, we proposed vGOAL [17], a specification language
specifically designed to formally specify and verify safe autonomous decision-
making, and implemented its interpreter [16]. To verify the correctness of vGOAL
specifications, we have implemented an automated model-checking process for
vGOAL, and its preliminary version is described in [15]. The vGOAL interpreter
is a tool to generate autonomous decisions. Consequently, its implementation
correctness is crucial for users to trust the vGOAL approach. This paper aims
to enhance the confidence of the vGOAL interpreter using an efficient and auto-
mated formal method.

It is truly a significant task to specify all preconditions and postconditions of
thousands of code lines to verify the implementation correctness of the vGOAL
interpreter. Instead of verifying the generation process, we propose demonstrat-
ing the correctness of the generated outputs, thereby enhancing confidence in the
vGOAL interpreter. To achieve this, we turn to Boolean Satisfiability Problem
(SAT) encoding and solving. SAT is the problem of determining if there exists an
interpretation that satisfies a given Boolean formula [10]. SAT solvers have been
researched and developed for many years, there are many well-known efficient
SAT solvers such as Chaff [11]. If software verification problems are converted
into Boolean Satisfiability Problems, the SAT Solvers can make the automated
execution of software verification possible [6]. Therefore, SAT solving is a feasi-
ble solution to increase the confidence of an APL interpreter while adhering to
the efficiency and automation requirements.

The vGOAL interpreter implements the semantics of vGOAL, whose core
component is the minimal model generation. Consequently, the implementation
correctness of the minimal model generation component plays a crucial role in
the implementation correctness of the vGOAL interpreter. One distinguishing
feature of vGOAL is its direct conversion of specifications into equivalently ex-
pressive propositional logical specifications. This characteristic facilitates the in-
tegration of an SAT-solving component into the vGOAL interpreter, particularly
into its core component, the minimal model generation.

Enhancing Confidence of the vGOAL Interpreter Using SAT Solving 3

To practically enhance the confidence of the vGOAL interpreter, we devel-
oped and integrated an SAT-solving component into its core component: min-
imal model generation. The SAT-solving component encompasses two subcom-
ponents: an SAT-encoding component and an SAT solver, leveraging PySAT [8]
as a simple interface to numerous state-of-the-art SAT solvers.

Our main contribution lies in SAT encoding. Specifically, we devise an algo-
rithm to encode the inputs and outputs of the core component into a satisfiable
conjunctive normal form (CNF) formula. Moreover, we justify that this algo-
rithm generates a satisfiable CNF formula only if the result is correct. Each
output generated by the minimal model generation process is checked by the
SAT-solving component. In the event of any inconsistencies detected during this
process, the vGOAL interpreter halts execution. The SAT-solving component en-
hances the confidence of the vGOAL interpreter because no incorrectly inferred
autonomous decision will be generated. We demonstrate the practicability and
efficiency of the SAT-solving component through an autonomous transportation
system including three autonomous mobile robots.

The rest of the paper is structured as follows. Section 2 briefly introduces
vGOAL, including its definitions and reasoning cycle. Section 3 describes how
to integrate the SAT-solving component into the vGOAL interpreter. Section
4 presents the formulation of the encoding problem, the description of an en-
coding algorithm, and the justification of the SAT-encoding algorithm. Section
5 describes a case study where we empirically test the differences of using the
vGOAL interpreter with or without the SAT-solving component. Finally, we
draw conclusions on our work.

2 Preliminaries

This section aims to explain why the minimal model generation component is
the core component of the vGOAL interpreter. We clarify all key concepts in the
paper, and we refer interested readers to [17] for more details of vGOAL.

2.1 vGOAL

Definition 1. (vGOAL Specifications) [17] A vGOAL specification is defined
as

vGOALSpec ::= (MAS,K,C,A, S, P,E,D)

MAS ::= (id,B, goals,MS ,MR)
∗

A vGOAL specification specifies autonomous decision-making. The first main
component is agents’ specifications, MAS. Each agent’s specification comprises
a unique identifier, a belief base, a set of goals, sent messages, and received
messages, denoted as id, B, goals, MS , and MR, respectively. The other speci-
fications are system specifications. K represents the knowledge base; C denotes
the rules on enabled constraints generation; A denotes the rules on feasible action
generation; S denotes the rules on sent message generation; P denotes the rules

4 Y. Yang and T. Holvoet.

on event processing, including modifying agent goals and beliefs, and processing
received messages; E denotes action effects; and D represents the domain of all
variables.

Table 1. Semantics of vGOAL Specifications

Specification Syntax Semantics

B [b1, ..., bn] ground atoms: I(B) = {b1, ..., bn}
goals [[g11, ..., g1m], ..., [gn]] ground atoms: I(goals) = {a-goal-g11, ..., a-goal-g1m}
MS [s1, ..., sn] atoms: I(MS) = {s1, ..., sn}
MR [r1, ..., rn] atoms: I(MR) = {r1, ..., rn}
K [k1, ..., kn] a first-order theory: I(K) = {k1, ..., kn}
C [c1, ..., cn] a first-order theory: I(C) = {c1, ..., cn}
A [a1, ..., an] a first-order theory: I(A) = {a1, ..., an}
S [s1, ..., sn] a first-order theory:I(S) = {s1, ..., sn}
P [p1, ..., pn] a first-order theory: I(P) = {p1, ..., pn}
id id I(id) = id

D D I(D) = D

E E I(id) = E

Table 1 illustrates the semantics of vGOAL specifications, detailing their
syntax and corresponding interpretations: B and goals are interpreted as sets
of ground atoms; MS and MR are interpreted sets of atoms; K, C, A, S, and
P are interpreted as first-order theories; id, D, and E maintain their identity
as specified. This table demonstrates that all vGOAL specifications, except for
id, D, and E, are expressed within first-order logic. Additionally, D plays a cru-
cial role in the transformation of first-order logical expressions to their logically
equivalent logical formulae by removing all variables.

Definition 2. (vGOAL States) [17] A vGOAL state is formalized as follows:

state ::= (substate)×n,

substate ::= id:(I(B), I(goals)).

The vGOAL state of a system is formally defined as a composition of sub-
states, (id:(I(B), I(goals)))×n. Each substate represents an agent with a unique
identifier and the semantics of its beliefs and goals, denoted as I(B) and I(goals).

Definition 3. (Operational Semantics of vGOAL) [17]

(substate)×n
(id:(MR,Act))×n−−−−−−−−−−−→ (substate′)×n.

The operational semantics of vGOAL is established by the reasoning cycle,
which involves the minimal model generation of first-order theories and function
updates based on the interpretation of vGOAL specifications. After each reason-
ing cycle, a substate can only be updated by the action effects and the processed

Enhancing Confidence of the vGOAL Interpreter Using SAT Solving 5

results of the event processing, including processing the received messages, sub-
sequently updating the vGOAL state.

2.2 vGOAL Interpreter

vGOAL is a specification language for autonomous decision-making mechanisms,
and it requires an interpreter to generate decisions based on the given vGOAL
specification. The vGOAL interpreter implements the operational semantics of
vGOAL, serving as an agent-based decision-making component for autonomous
systems [16].

Table 2. State Update in vGOAL Interpreter

Stage Input Output Process

1 MAS state Interpretation

2.0 id : (B, goals) substate Start substate update

2.1.a K, B, goals, D K′,B, goals Logical Equivalence Transformation

2.1.b K′, B, goals subP Minimal Model Generation

2.2.a subP , C, D subP , C′ Logical Equivalence Transformation

2.2.b subP , C′ GC Minimal Model Generation

2.3.a subP , GC, A, D subP , GC, A′ Logical Equivalence Transformation

2.3.b subP ,GC,A′ GA Minimal Model Generation

2.4.a subP , GC, S, D subP , GC, S′ Logical Equivalence Transformation

2.4.b subP , GC, S′ GS Minimal Model Generation

2.5.a subP , MR, P , D subP , MR, P
′ Logical Equivalence Transformation

2.5.b subP , MR, P
′ PR Minimal Model Generation

2.6 MAS MAS′ Communication

2.7 substate, PR, E, D substate′ Substate Update

3 (substate′)×n state′ Substate Combination

Table 2 presents an overview of the state update implemented in the vGOAL
interpreter. As an agent-based autonomous system consists of agents in a modu-
lar manner, a state consists of substates in a modular manner. The state update
involves three stages. At first, state, the current state, is directly interpreted
by MAS, agent specifications. Each substate of state needs to go through the
second stage: substate update. After each substate of the state goes through
the second stage, the state will be updated by the combination of the updated
substates.

As presented in Table 2, the second stage is the key implementation of the
vGOAL interpreter. The reasoning cycle involves six stages. The first five stages
are implemented by the logical equivalence transformation and minimal model
generation, and the last stage is implemented by communication among agents.
The logical equivalence transformation is used to transform a given first-order
theory under vGOAL syntax to its logically equivalent first-order theory with-
out variables, specifically, from K and D to K ′, from C and D to C ′, from

6 Y. Yang and T. Holvoet.

A and D to A′, from S and D to S′, and from P and D to P ′. Hence, the
converted first-order theories are expressible in propositional logic. The minimal
model generation is used to generate the substate properties(subP), the gener-
ated constraints (GC), the generated actions (GA), the generated sent messages
(GS), and the processed results (PR). The communication is implemented by ex-
changing messages among agents. Compared with the implementation of logical
equivalence transformation and communication, the implementation of the min-
imal model generation is much more complex and error-prone. The confidence
of the vGOAL interpreter will be significantly enhanced if the implementation
correctness of the minimal model generation is guaranteed.

3 SAT Solving Integration

This section elaborates on the data flow and the workflow concerning the inte-
gration of SAT solving into the vGOAL interpreter. As explained in Section 2.2,
the vGOAL interpreter implements the operational semantics of vGOAL, partic-
ularly through the implementation of the reasoning cycle that enables substate
updates. The SAT-solving component is used to check the correctness of the
generated results of the minimal model generation, thereby enhancing the over-
all confidence in the vGOAL interpreter. The implementation of the vGOAL
interpreter embedded with the SAT solver is available at [14].

Table 3. Dataflow between the Reasoning Cycle and the SAT-Solving Component

Component Precondition Input Output Guarantee Termination

2.1.a No K, B, goals, D K′,B, goals \ No

2.1.b No K′, B, goals R1 R1 = subP? No

SAT Solving No K′, B, G,R1 SAT R1 = subP No

SAT Solving No K′, B, G,R1 UNSAT R1 ̸= subP Yes

2.2.a SAT subP , C, D subP , C′ \ No

2.2.b No subP , C′ R2 R2 = GC? No

SAT Solving No subP , C′, R2 SAT R2 = GC No

SAT Solving No subP , C′, R2 UNSAT R2 ̸= GC Yes

2.3.a SAT subP , GC, A, D subP , GC, A′ \ No

Stage 2.3.b No subP ,GC,A′ R3 R3 = GA? No

SAT Solving No subP ,GC,A′, R3 SAT R3 = GA No

SAT Solving No subP ,GC,A′, R3 UNSAT R3 ̸= GA Yes

2.4.a SAT subP , GC, S, D subP , GC, S′ \ No

2.4.b No subP , GC, S′ R4 R4 = GS? No

SAT Solving No subP , GC, S′, R4 SAT R4 = GS No

SAT Solving No subP , GC, S′, R4 UNSAT R4 ̸= GS Yes

2.5.a SAT subP , MR, P , D subP , MR, P
′ \ No

2.5.b No subP , MR, P
′ R5 R5 = PR? No

SAT Solving No subP , MR, P
′,R5 SAT R5 = PR No

SAT Solving No subP , MR, P
′,R5 UNSAT R5 ̸= PR Yes

2.6 SAT MAS MAS′ \ No

Enhancing Confidence of the vGOAL Interpreter Using SAT Solving 7

Table 3 outlines the data flow between the reasoning cycle of the vGOAL
interpreter and the SAT-solving component. The table provides information on
components, along with their preconditions, inputs, outputs, guarantees, and ter-
mination. Components include all stages in the reasoning cycle that interact with
the SAT-solving component, involving from Stage 2.1 to Stage 2.6 and the SAT-
solving component. Preconditions are the preconditions to enter the component.
Inputs and outputs are the inputs and outputs of the component. Guarantees
are the guarantees provided by the SAT-solving component. Termination gives
information on whether the reasoning process should immediately terminate due
to the erroneous results generated by the minimal model generation.

For the details of the inputs and outputs of the stages in the vGOAL inter-
preter, we explained in Section 2.2. The SAT-solving component takes the inputs
and outputs of its previous stage as the inputs, and it generates the satisfiability
result of inputs: either SAT or UNSAT .

The SAT-solving component is used to check the correctness of the results
generated by the minimal model generation for the given input, involving stages
2.1.b, 2.2.b, 2.3.b, 2.4.b, and 2.5.b. If the SAT-solving component generates
UNSAT , the vGOAL interpreter will immediately terminate. The preventive
termination guarantees that the vGOAL never executes any erroneous decisions
due to the erroneous minimal model generation. Only when the SAT-solving
component generates SAT , the vGOAL interpreter proceeds to its subsequent
reasoning stage, including 2.2.a, 2.3.a, 2.4.a, 2.5.a, and 2.6.

Logical Equivalence Transformation

Minimal Model Generation

SAT Encoding

SAT Solver

SAT UNSAT

SAT Solving

Fig. 1. Integration of the SAT Solving Component into the vGOAL Interpreter

Figure 1 illustrates the workflow of integrating SAT solving into the vGOAL
interpreter. As shown in Table 1, the first five reasoning stages involve logi-
cal equivalence transformation and minimal model generation, where the SAT-
solving component is integrated. The SAT-solving component comprises two
subcomponents: an SAT-encoding component and an SAT solver. The inputs
of the SAT encoding component are both inputs and outputs of the minimal
model generation. The SAT-encoding component transforms these inputs into

8 Y. Yang and T. Holvoet.

their logically equivalent formulas in CNF. The SAT solver takes the generated
CNF formula as input and outputs its satisfiability result. The output SAT in-
dicates the satisfiability of the inputs, verifying the correctness of the results
of the minimal model generation for the given inputs. Conversely, an output
of UNSAT denotes unsatisfiability, suggesting issues with the minimal model
generation process in achieving the minimal model for the given inputs. We use
PySAT [8] as the SAT solver for its simple access to numerous state-of-the-art
SAT solvers. Consequently, our main work on the SAT-solving integration is the
SAT-encoding component.

4 SAT Encoding

This section explains the SAT-encoding component in detail. First, we formula
the encoding problem. Second, we describe the SAT-encoding algorithm. Finally,
we justify the SAT encoding algorithm.

Definition 4 formally defines the inputs of the SAT-encoding component. The
inputs of the SAT-encoding component are the inputs and outputs of the minimal
model generation. T denotes the inputs of the minimal model generation, and
M denotes the outputs of the minimal model generation.

Definition 4. (Inputs of SAT-Encoding Component)

atom :: = ground atom

atoms :: = {atom} ∪ atoms|∅
lhs :: = atom|atom ∧ lhs|¬atom ∧ lhs

rule :: = lhs→ atom

rules :: = {rule} ∪ rules|∅
T :: = rules ∪ atoms

M :: = M ∪ {atom}|∅
Input :: = T ∪M

The inputs, T , are the first-order theory that is constrained by the vGOAL
syntax [17] with no variables and no quantification. The inputs of the vGOAL
interpreter is a vGOAL specification that follows the vGOAL syntax. The logical
equivalence transformation converts a first-order theory to its logically equivalent
first-order theory by removing all qualifications and variables. The outputs, M ,
are the consequence of the minimal model generation during the reasoning cycle.
Therefore, it only contains ground atoms.

Definition 5 formally defines the output of the SAT-encoding component
as a formula in CNF. A CNF formula is commonly represented in a set of
sets. For example, a CNF formula, (a1 ∨ a2) ∧ b1 ∧ (c1 ∨ c2) is represented as
{{a1, a2}, {b1}, {c1, c2}}. The input of PySAT uses the common representation
of a CNF formula.

Enhancing Confidence of the vGOAL Interpreter Using SAT Solving 9

Definition 5. (Output of the SAT-Encoding Component)

atom :: = ground atom|¬ground atom

Disjunction :: = atom|atom ∨Disjunction

CNF :: = Disjunction ∧ CNF |Disjunction

clause :: = {atom} ∪ clause|∅
output :: = {cluase} ∪ output|∅

Our goal is to prove the model generated by the minimal model generation
process is the minimal model for the given vGOAL specification. Specifically,
we need to encode the inputs of the SAT-encoding component into a formula in
CNF that encodes the condition of the minimal model. As CNF formulae can
be directly processed by an SAT solver, we can take advantage of the existing
efficient SAT solvers. To achieve the goal, we design and implement Algorithm
1, which is the core of the SAT-encoding component.

Algorithm 1 takes the input of the SAT-encoding component as the input,
denoting input. The algorithm generates a formula in CNF as the output, denot-
ing CNF . Following Definition 4, input consists of a first-order theory (T) and
a set of atoms (M). Following Definition 5, CNF is a CNF formula represented
as a set of sets.

Lines 1-10 describe the initialization of G, A, Check, CNF , and Min G. G
denotes the set of the generated atoms by the minimal model generation process,
initialized with M \atoms. A denotes a set of negative atoms, initialized with an
empty set. Check denotes a set of the generated atoms that need to be checked if
they are generated by at least one rule in T , initialized with G. CNF denotes a
formula in CNF. Each atom in atoms∪M is included in CNF as a clause.Min G
denotes a dictionary that contains all possible conditions for the derivation of
the generated atoms, initialized with an empty dictionary. The keys of Min G
are assigned with the generated atoms. Each value of the key in Min G records
all possible combinations of premises of the generated atom, initialized with an
empty set.

Lines 11-31 extend CNF by encoding each rule in T into two conditions.
derived atom denotes the atom that can be generated by the given rule. flag de-
notes if derived atom is an atom in the set of generated atoms,G. If derived atom
is an atom of G, flag is assigned with True. In this case, derived atom is
removed from the set Check, as there is at least one rule that can generate
derived atom. Premise is a set of atoms that includes all preconditions to gen-
erate derived atom.

Lines 19-20 describe the first condition is the transformation from the given
rule to its logically equivalent formula in CNF. Following Definition 4, a rule
in T can be transformed to logically equivalent clauses of a formula in CNF as
follows:

n∧
i=1

Ai → atom ≡
n∧

i=1

(¬Ai ∨ atom),

where Ai ::= atom|¬atom.

10 Y. Yang and T. Holvoet.

Algorithm 1: Encode the input of the SAT-solving component into a
formula in CNF
Input: input = T ∪M , T = rules ∪ atoms
Output: CNF

1 G←M \ atoms, A← ∅
2 Check ← G
3 CNF ← ∅
4 for each atom ∈ atoms ∪M do
5 CNF ← CNF ∪ {{atom}}
6

7 Min G← ∅
8 for each atom ∈M do
9 if atom ∈ G then

10 Min G←Min G ∪ {atom : ∅}

11 for each rule ::= lhs→ atom ∈ rules do
12 derived atom← atom
13 flag ← False
14 if derived atom ∈ G then
15 flag ← True
16 if derived atom ∈ Check then
17 Check ← Check \ derived atom

18 Premise← ∅
19 for each a ::= atom|¬atom ∈ rule do
20 clause← {−a, derived atom}
21 CNF ← CNF ∪ {clause}
22 if atom /∈M ∪ atoms then
23 A← A ∪ {atom}
24 Premise← Presmise ∪ {a}
25 if flag then
26 if Min G[derived atom] = ∅ then
27 Min G[derived atom]← {Premise}
28 else
29 Min G[derived atom]←Min G[derived atom]× Premise

30 for each atom ∈Min G do
31 CNF ← CNF ∪Min G[atom]

32 if Check ̸= ∅ then
33 for some atom ∈ Check do
34 CNF ← {{atom}, {¬atom}}

35 else
36 for each atom ∈ A do
37 CNF ← {{¬atom}} ∪ CNF

38 return CNF

Enhancing Confidence of the vGOAL Interpreter Using SAT Solving 11

Lines 24-31 encode the second condition that every generated atom can be
generated by at least one rule in T , which is the key to proving the generated
model is the minimal model. First, all preconditions of the rule are added to
Premise. If flag is True, the Min G is extended by two cases. If Min G is an
empty set, Min G is assigned with Premise. If Min G is not empty, Min G
is extended by all possibility that the original clauses multiply Premise. CNF
will be extended by all clauses recorded in Min G.

Lines 32-34 describe the case that at least one generated atom cannot be
derived by T . In this case, the generated model is certainly not a minimal model
of T . CNF is defined by two unsatisfiable clauses, {atom} and {¬atom}.

Lines 35-37 describe the extension of CNF . For each atom in A, its negative
atom is added to CNF .

Following Definition 4, there are three kinds of relations between T and M :
M is the minimal model of T ; M is a model of T , but M is not the minimal
model of T ; M is not model of T . We illustrate how Algorithm 1 handles these
three cases with three simple examples.

Example 1. Input: T ∪M , where T = rules ∪ atoms,
rules = {rule1, rule2, rule3}, atoms = {a1, a2}, M = {a1, a2, e}
rule1 = a1 ∧ a2 → e, rule2 = b1 ∧ b2 → e, rule3 = c ∧ ¬d→ f
Step 1: Initialization
G← {e}, A← ∅, Check ← G, CNF ← {{a1}, {a2}, {e}}, Min G = {e : ∅}.
Step 2: Expand CNF by handling rule1
derived atom← e, flag ← True, Check ← ∅,
CNF ← {{a1}, {a2}, {e}, {¬a1, e}, {¬a2, e}},
Premise← {a1, a2}, Min G[e] = {{a1, a2}}.
Step 3: Expand CNF by handling rule2
derived atom← e, flag ← True
CNF ← {{a1}, {a2}, {e}, {¬a1, e}, {¬a2, e}}, {¬b1, e}, {¬b2, e}}
A← {b1, b2}, Premise = {b1, b2},
Min G[e] = {a1, a2} × {b1, b2},
Min G[e] = {{a1, b1}, {a1, b2}, {a2, b1}, {a2, b2}}.
Step 4: Expand CNF by handling rule3
derived atom← f , flag ← False,
CNF ← {{a1}, {a2}, {e}, {¬a1, e}, {¬a2, e}}, {¬b1, e}, {¬b2, e}, {¬c, f}, {d, f}},
A← {b1, b2, c, d, f}.
Step 5: Expand CNF by encoding the condition for minimal model generation
CNF ← CNF ∪Min G[e]
Step 6: Expand CNF by adding all negative atoms in A.
CNF ← CNF ∪ {{¬b1}, {¬b2}, {¬c}, {¬d}, {¬f}}.
Output: CNF

Example 1 presents how Algorithm 1 generates a satisfiable CNF formula if
the generated model is the minimal model. Following Lines 1-10 of Algorithm 1,
the first step is initialization. Following Lines 11-29, CNF is extended by han-
dling each rule in rules. The expansion process is executed three times as rules

12 Y. Yang and T. Holvoet.

contains three rules, presented from Step 2 to Step 4. Following Lines 30-31,
CNF is extended by adding all premises of the generated atoms in Step 5. Fol-
lowing Line 32, Check is an empty set, the instructions described in Lines 33-34
are not executed. Following Lines 35-37, CNF is extended by all negative atoms
inA in Step 6. The output is {{a1}, {a2}, {e}, {¬a1, e}, {¬a2, e}}, {¬b1, e}, {¬b2, e},
{¬c, f}, {d, f}, {a1, b1}, {a1, b2}, {a2, b1}, {a2, b2}, {¬b1}, {¬b2}, {¬c}, {¬d}, {¬f}}.
The output is satisfiable when a1 ← True, a2 ← True, b1 ← False, b2 ← False,
c← False, d← False, e← True, and f ← False.

Example 2. Input: T ∪M , where T = rules ∪ atoms,
rules = {rule1}, atoms = {a1, a2}, M = {a1, a2, e, f}
rule1 = a1 ∧ a2 → e
Step 1: Initialization
G← {e, f}, A← ∅, Check ← G,
CNF ← {{a1}, {a2}, {e}, {f}}, Min G = {e : ∅, f : ∅}.
Step 2: Expand CNF by handling rule1
derived atom← e, flag ← True, Check ← {f},
CNF ← {{a1}, {a2}, {e}, {f}, {¬a1, e}, {¬a2, e}},
Premise← {a1, a2},
Min G = {e : {{a1, a2}}, f : ∅}}
Step 3: Expand CNF by encoding conditions for minimal model generation
CNF ← CNF ∪ {{a1, a2}}.
Step 4: Assign an unsatisfiable formula to CNF .
CNF ← {{f}, {¬f}}
Return CNF

Example 2 presents how Algorithm 1 generates an unsatisfiable CNF formula
if the generated model is a model but not the minimal model. Following Lines
1-10 of Algorithm 1, the first step is initialization. Following Lines 11-29, the
second step is the extension of CNF by handling rule1. As there is only one
rule in rules, the expansion process only is executed once. Following Lines 30-31
of Algorithm 1, CNF is extended by encoding the minimal model condition in
Step 3. Step 4 follows Lines 32-34. Check contains f , which implies f cannot be
derived by the given first-order theory, T . Therefore, CNF is assigned with an
unsatisfiable CNF formula: {{f}, {¬f}}, which is returned as the output. The
CNF formula is inconsistent, therefore, it is unsatisfiable.

Example 3. Input: T ∪M , where T = rules ∪ atoms,
rules = {rule1}, atoms = {a1, a2}, M = {a1, a2}
rule1 = a1 ∧ a2 → e
Step 1: Initialization
G← ∅, A← ∅, Check ← ∅, CNF ← {{a1}, {a2}}, Min G = ∅.
Step 2: Expand CNF by handling rule1
derived atom← e, flag ← False,
CNF ← {{a1}, {a2}, {¬a1, e}, {¬a2, e}},
Premise← {a1, a2}, A← {e}.

Enhancing Confidence of the vGOAL Interpreter Using SAT Solving 13

Step 3: Expand CNF by adding all negative atoms in A.
CNF ← {{a1}, {a2}, {¬a1, e}, {¬a2, e}, {¬e}}

Example 3 presents how Algorithm 1 generates an unsatisfiable CNF for-
mula if the generated model is not a model. Following Lines 1-7 of Algorithm
1, the first step is initialization. Following Lines 11-29, the second step is the
extension of CNF by handling rule1. As there is only one rule in rules, the
expansion process only is executed once. As MinG is empty, the instructions
described in Lines 30-31 are not executed. Step 3 follows Lines 32-37. CNF is
extended by adding all negative atoms in A, as Check is empty. The output is
{{a1}, {a2}, {¬a1, e}, {¬a2, e}, {¬e}}. The CNF formula is unsatisfiable, because
no truth assignment can make it true.

Proposition 1. Following Definition 4, an input for Algorithm 1 consists of
a set of atoms, M , and a first-order theory, T , where T consists of rules and
atoms. The output of Algorithm 1 is a CNF formula following Definition 5,
denoting as CNF . CNF is satisfiable iff the atoms ∪M is the minimal model
of T .

Proof. We briefly explain how Algorithm 1 generates CNF for the given input.
CNF consists of three parts. The first part is the CNF formula that is logically
equivalent to T , denoting F1. The second part is the CNF formula that encodes
all possibilities for the derivation of the generated atoms, denoting F2. The third
part is the CNF formula that encodes all negative atoms, denoting F3.

There are three kinds of relations between atoms ∪ M and T . We prove
Proposition 1 by cases.
Case 1 atoms ∪M is the minimal model of T .
In this case, F1 is satisfiable, as there is a model. F2 and F3 are satisfiable, as
atoms ∪M is the minimal model of T . F2 is satisfiable, which indicates each
atom in atoms∪M can be derived by T . F3 is satisfiable, which implies no more
atoms can be derived by T .
Case 2 atoms∪M is a model of T , but atoms∪M is not the minimal model of
T .
In this case, there is at least one atom that cannot be derived by T . Following
Lines 32-34, the output will be an inconsistent CNF formula. Therefore, the
output is unsatisfiable.
Case 3 atoms ∪M is not a model of T .
In this case, ∃c.T ⊢ c, and c /∈ atoms ∪M . Following Lines 32-37, either an
inconsistent CNF formula is generated, or the output contains {¬c}. The output
is unsatisfiable in both cases.

5 Empirical Analysis

In this section, we analyze the time cost brought by the SAT-Solving component
integrated into the vGOAL interpreter, as introduced in [16]. To conduct the
comparison, we use the same autonomous logistic system case study described

14 Y. Yang and T. Holvoet.

in [16], comprising three autonomous mobile robots denoted as A1, A2, and A3.
There are four durative high-level actions, each subject to potential success or
failure. Failures are classified as non-fatal or fatal, with non-fatal errors causing
the agent to drop its current goal, while fatal errors result in goal redistribution
among other agents and removal of the faulty agent.

The vGOAL interpreter consistently generates the same decision for a given
input. Following Def 1, only agent specifications, MAS, can be different during
the executions. Moreover, each agent is specified as (id,B, goals,MS ,MR). id
are not modified during the execution, while goals, MS , and MR are modified
due to the modifications of B. Therefore, it is sufficient to illustrate the time cost
brought by the SAT-solving component using three representative experiments:
(i) successful completion of all four delivery goals, (ii) successful completion of
the first three goals with one non-fatal action failure in the fourth, and (iii)
successful completion of the first three goals with one fatal action failure in the
fourth.

We conducted these experiments using both versions of the vGOAL inter-
preter, with and without the SAT-solving component. Each run lasted six to
eight minutes, with ROS providing real-time sensor updates every 0.5 seconds,
resulting in 720 to 960 updates per run for real-time decision-making. All ex-
periments demonstrated safe robot behavior, with no exceptions raised by the
SAT-solving component.

Notably, during action execution, sensor updates frequently duplicate previ-
ous information. When such duplication occurs, the interpreter does not generate
any decisions for the agent. Consequently, the SAT-solving component, which is
integrated into the decision-making process, remains inactive. Therefore, mini-
mal time discrepancies were observed between the two versions of the vGOAL
interpreter during experiments. To precisely measure the time cost introduced
by the SAT-solving component, we extracted sensor inputs from the original
real-time data, modifying only the occurrence of repeated sensor information.

All experiments are conducted with a MacBook Air 2020 with an Apple
M1 and 16GB of RAM. Detailed information regarding the complete vGOAL
specification of the case study, is available at [14]. Additionally, we have provided
three demonstration videos on [14]: an error-free run, a run involving a non-fatal
error, and a run involving a fatal error.

Table 4 presents the results of experiments conducted, labeled numerically
under the column ”Experiment.” The ”Step” column denotes the step number
of the decision-making generation. The ”Repeated” column indicates whether
repeated sensor information was present. The ”System” column specifies the
number of agents in the system, while ”Active” denotes the number of agents
that have goals to achieve. ”Decision” indicates the number of decisions made at
the step, and ”Error” categorizes errors encountered during the experiment: no
errors, fatal errors, or non-fatal errors). The columns labeled ”T1(s)” and ”T2(s)”
represent the time taken for the vGOAL interpreter without or with the SAT-
Solving component. The last column, labeled ”SAT”, denotes the call numbers

Enhancing Confidence of the vGOAL Interpreter Using SAT Solving 15

Table 4. Experiment Results

Experiment Step Repeated System Active Decision Error T1(s) T2(s) SAT

1,2,3 1 No 3 3 2 No 0.82 0.88 352

1,2,3 2 Yes 3 3 0 No 4.60E-5 4.50E-5 0

1,2,3 3 No 3 3 0 No 0.64 0.67 249

1,2,3 4-7 No 3 3 0 No 3.72E-5 3.08E-5 0

1,2,3 8 No 3 3 1 No 0.31 0.33 102

1,2,3 9 No 3 3 1 No 0.38 0.41 151

1,2,3 10 No 3 3 1 No 0.59 0.63 217

1,2,3 11 No 3 3 1 No 0.65 0.71 309

1,2,3 12 No 3 3 0 No 0.61 0.64 192

1,2,3 23 No 3 2 1 No 0.61 0.65 246

1,2,3 24 No 3 2 0 No 0.44 0.46 135

1,2,3 25 No 3 2 1 No 0.47 0.50 165

1,2,3 26 No 3 2 1 No 0.24 0.25 78

1,2,3 27 No 3 2 1 No 0.50 0.54 177

1,2,3 28 No 3 2 0 No 0.44 0.45 105

1,2,3 29 Yes 3 2 0 No 3.79E-5 3.70E-5 0

1,2,3 30 No 3 1 1 No 0.46 0.50 157

1,2,3 31 No 3 1 0 No 0.44 0.46 99

1,2,3 32 Yes 3 1 0 No 3.79E-5 3.91E-5 0

1,2,3 33 No 3 1 1 No 0.48 0.52 182

1,2 34 Yes 3 1 0 No 4.08E-5 4.10E-5 0

3 34 No 2 1 0 Fatal 0.40 0.40 0

1,2 35 No 3 1 0 No 0.42 0.44 129

3 35 No 2 1 1 Fatal 0.38 0.41 166

1 39 No 3 1 1 No 0.21 0.22 54

2 39 No 3 1 1 Non-Fatal 0.48 0.51 158

1 51 No 3 1 1 No 0.47 0.50 156

2 45 No 3 1 1 No 0.47 0.50 156

3 55 No 2 1 1 Fatal 0.46 0.48 134

of the SAT-solving components involved in the decision-making generation at
the current step.

The three experiments undergo identical decision-making processes for the
initial three delivery goals, encompassing Steps 1 to 33. Thus, their efficiency
performances are consolidated when N is 33 or less. From Steps 1 to 22, each
autonomous system comprises three agents, with each agent trying to accomplish
the delivery goal. Subsequently, from Steps 23 to 29, the autonomous systems
still consist of three agents, yet only two agents pursue the delivery goal. From
Step 30 to Step 33, only one agent retains the delivery goal.

Divergence in results emerges from Step 34 onwards. In Experiment 3, a fatal
error disrupts the agent with the delivery goal at Step 34, leading to a reduction
in the autonomous system’s agent count to two. Experiment 1 and Experiment

16 Y. Yang and T. Holvoet.

2 exhibit deviation from Step 39, where an encountered non-fatal error affects
the delivery agent in Experiment 2.

Notably, the final decision by the vGOAL interpreter directs the autonomous
system to execute a move action from the waiting point to the destination,
occurring at Step 51 for Experiment 1, Step 45 for Experiment 2, and Step 55
for Experiment 3.

The table reveals four key observations. First, there exists an almost positive
linear relationship between the time required for SAT solving for each decision-
making process and the number of calls made to the SAT-solving component.
The more calls for the SAT-solving component, the more time cost is brought by
the SAT-solving component. Second, the calls for the SAT-solving component
are positively linear to the agent number of the autonomous system, and the
number of generated decisions. Third, the vGOAL interpreter generates decisions
without involving the SAT-solving component when handling repeated sensor
information. As shown in Table 4, the calls for the SAT-solving component are
zero when the column for ”Repeated” is ”Yes”. Finally, the time cost brought by
the SAT-solving component is at most 0.06s for each decision-making generation.

6 Conclusion

This paper presents the integration of an SAT-solving component into the core
implementation of the existing vGOAL interpreter: the minimal model genera-
tion. The SAT-solving component consists of two subcomponents: an SAT en-
coding component and an SAT solver. Leveraging PySAT for its interface to
advanced SAT solvers, our main contributions lie in SAT encoding. We intro-
duce Algorithm 1, effectively encoding the inputs and outputs of the minimal
model generation process into a CNF formula, accompanied by a proof sketch
to establish its correctness. The empirical results obtained from experiments
conducted in an autonomous logistic system illustrate the practical usability
and efficiency of the SAT-solving component. The SAT-solving component can
significantly enhance the confidence of the vGOAL interpreter.

The implementation correctness of the vGOAL interpreter is crucial for users
to establish trust in the vGOAL approach. We face four challenges: complexity,
guaranteed assurance, efficiency, and automation. The SAT-solving integration
offers a practical solution by focusing on the error-prone minimal model genera-
tion, verifying the generated results rather than the entire process, and leveraging
PySAT within the existing vGOAL interpreter.

Finally, we briefly discuss the potential applicability of the SAT-solving in-
tegration to other APL interpreters. Belief-Desire-Intention (BDI) APLs are the
most popular paradigm of APLs encompassing BDI reasoning [3], which typi-
cally involves logical derivation. To show the correctness of the logical derivation
component, we need to show every derived atom can be derived from the first-
order theory, as outlined in Algorithm 1. Specifically, Algorithm 1 can be used
to encode the logical derivation component by removing the encoding part from
Lines 35-37.

Enhancing Confidence of the vGOAL Interpreter Using SAT Solving 17

Acknowledgements

This research is partially funded by the Research Fund KU Leuven.

References

1. Bordini, R.H., Fisher, M., Pardavila, C., Wooldridge, M.: Model checking AgentS-
peak. In: Proceedings of the second international joint conference on Autonomous
agents and multiagent systems. pp. 409–416 (2003)

2. Bordini, R.H., Hübner, J.F.: BDI agent programming in AgentSpeak using Jason.
In: International workshop on computational logic in multi-agent systems. pp. 143–
164. Springer (2005)

3. Cardoso, R.C., Ferrando, A.: A review of agent-based programming for multi-agent
systems. Computers 10(2), 16 (2021)

4. Dennis, L.A., Farwer, B.: Gwendolen: A BDI language for verifiable agents. In:
Proceedings of the AISB 2008 Symposium on Logic and the Simulation of Interac-
tion and Reasoning, Society for the Study of Artificial Intelligence and Simulation
of Behaviour. pp. 16–23. Citeseer (2008)

5. Dennis, L.A., Fisher, M., Webster, M.P., Bordini, R.H.: Model checking agent
programming languages. Automated software engineering 19(1), 5–63 (2012)

6. Gong, W., Zhou, X.: A survey of sat solver. In: AIP Conference Proceedings.
vol. 1836. AIP Publishing (2017)

7. Hindriks, K.V.: Programming rational agents in GOAL. In: Multi-agent program-
ming, pp. 119–157. Springer (2009)

8. Ignatiev, A., Morgado, A., Marques-Silva, J.: PySAT: A Python toolkit for proto-
typing with SAT oracles. In: SAT. pp. 428–437 (2018)

9. Jongmans, S.S.T., Hindriks, K.V., Van Riemsdijk, M.B.: Model checking agent pro-
grams by using the program interpreter. In: Computational Logic in Multi-Agent
Systems: 11th International Workshop, CLIMA XI, Lisbon, Portugal, August 16-
17, 2010. Proceedings 11. pp. 219–237. Springer (2010)

10. Marques-Silva, J.: Practical applications of boolean satisfiability. In: 2008 9th In-
ternational Workshop on Discrete Event Systems. pp. 74–80. IEEE (2008)

11. Moskewicz, M.W., Madigan, C.F., Zhao, Y., Zhang, L., Malik, S.: Chaff: Engineer-
ing an efficient sat solver. In: Proceedings of the 38th annual Design Automation
Conference. pp. 530–535 (2001)

12. Shoham, Y.: Agent-oriented programming. Artificial intelligence 60(1), 51–92
(1993)

13. Weiss, G.: Multiagent Systems. The MIT Press (2013)
14. Yang, Y.: Supplementary Documents. https://drive.google.com/drive/

folders/16xXEqjg41GWF2zMeR2phpqCuiCKo8m5L?usp=share_link (2024)
15. Yang, Y., Holvoet, T.: Making model checking feasible for goal. Annals of Mathe-

matics and Artificial Intelligence pp. 1–17 (2023)
16. Yang, Y., Holvoet, T.: Safe autonomous decision-making with vGOAL. In: Ad-

vances in Practical Applications of Agents, Multi-Agent Systems, and Cognitive
Mimetics. The PAAMS Collection. Guimarães, Portugal (7 2023)

17. Yang, Y., Holvoet, T.: vgoal: A goal-based specification language for safe au-
tonomous decision-making. In: Ciortea, A., Dastani, M., Luo, J. (eds.) Engineering
Multi-Agent Systems - 11th International Workshop, EMAS 2023, London, UK,
May 29-30, 2023, Revised Selected Papers. Lecture Notes in Computer Science,
vol. 14378, pp. 41–58. Springer (2023)

https://drive.google.com/drive/folders/16xXEqjg41GWF2zMeR2phpqCuiCKo8m5L?usp=share_link
https://drive.google.com/drive/folders/16xXEqjg41GWF2zMeR2phpqCuiCKo8m5L?usp=share_link

	Enhancing Confidence of the vGOAL Interpreter Using SAT Solving

