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Abstract. Automated testing of computer games is a challenging prob-
lem, especially when lengthy scenarios have to be tested. Automating
such a scenario boils down to finding the right sequence of interactions
given an abstract description of the scenario. Recent works have shown
that an agent-based approach works well for the purpose, e.g. due to
agents’ reactivity, hence enabling a test agent to immediately react to
game events and changing state. Many games nowadays are multi-player.
This opens up an interesting possibility to deploy multiple cooperative
test agents to test such a game, for example to speed up the execution of
multiple testing tasks. This paper offers a cooperative multi-agent test-
ing approach and a study of its performance based on a case study on a
3D game called Lab Recruits.
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1 Introduction

Modern computer games are often complex, with a huge, fine grained interaction
space, and many interacting game objects that influence the way a game behaves.
A common method for testing a game, to make sure that it behaves as the
developers expect, is to use human players to play a computer game through
various scenarios and report bugs [13, 10]. This technique is known as play testing.
In addition to being costly, such a manual process is also unreliable, e.g. due to
human fatigue. The tests also need to be repeated when some modifications are
applied to the game. The time and expense of having human testers repeat tests
multiple times can be reduced by employing automated testing.

Agent-based approaches are among the recent methods studied towards achiev-
ing game testing automation [2, 1, 19, 16]. Such an approach uses of a software
agent that interacts with the game under test by taking the role of a player.
The agent verifies the system by observing its state after the interactions, check-
ing them if they satisfy some specifications. In particular intelligent agents have
properties such as reactivity and autonomy [4]. Under the hood such an agent
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runs in continuous deliberation cycles, which makes it capable of responding
immediately to changes in the environment (reactive), making them suitable to
deal with the high interactivity of computer games. Autonomy means that agents
can make decisions based on their internal state and the information available to
them, allowing the agents to perform actions independently in an environment
over which they have control and observability.

Many games are multi player. This opens up an interesting possibility of de-
ploying multiple test agents to speed up testing, in particular when testing long
scenarios that may take minutes or tens of minutes for each run. The overall
duration of running a whole test suite can be quite significant, and therefore re-
ducing would help in improving developers’ productivity. However, a multi-agent
setup is more complex [11]. A major challenge is cooperation. By cooperating,
agents can improve the overall performance towards reaching common goals.
However, coordination may be needed, or else the agents will get in each other
way and their performance will suffer instead. Synchronizing the agent’s infor-
mation about their environmental perceptions can help, as each agent would
then have the most recent information that other agents have, thus allowing it
to make better decisions. Such synchronization does have its computation over-
head though, and it is not always obvious to decide what information needs to
be synchronized.

Compared to single-agent, the use of multi-agent for testing games is not a
well explored area yet. One work we can mention is that of Schatten et al. [18]
that presented a framework with which tests can be developed in a model-driven
way. The framework implements Belief-Desire-Intention (BDI) agents and allows
organizational dynamics to be modelled. However, the work does not include a
study on the subject. There are works such as [7, 22] that use multiple agents. The
agents are trained with reinforcement learning to perform testing objectives, e.g.
to interact and explore the game world as much as possible. These are individual
agents that run in parallel to train a common model, or a population of common
models. Arguably this is a form of multi-agent cooperation, but not in the sense
that the agents directly cooperate with each other.

This paper aims to contribute an investigation into the subject of multi-agent
game testing. A cooperative multi-agent testing approach will first be presented.
At the moment, the approach is aimed at games with world exploration and
puzzle elements. Next, the paper presents a study based on a 3D game called
Lab Recruits to investigate whether, and how much, the use of cooperative agents
can actually speed up testing.

The paper is structured as follows. Section 2 discusses the general idea of
using cooperating agents for testing a game and some of the key issues of such
a setup. Section 3 introduces the concept of testing task in game testing and
some typical challenges of automating such tasks. Then, Section 4 presents our
multi-agent testing algorithm. Section 5 presents a set of experiments to study
the performance the multi-agent setup. Section 6 discusses some related work,
and finally Section 7 concludes and mentions some future work.
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2 Multi agent Setup

Consider a simple game level in Fig. 1-left, containing three yellow treasure boxes
(Tk). Picking up the boxes awards the player some points, which are necessary
to complete the game. Imagine that the tester wants to verify that these boxes
are indeed reachable from the game initial state and that their logic is correct.
So, the tester has multiple ’testing tasks’ that need to be done: one task for every
Tk. For convenience, let’s use Tk to also denote the task. In a single test-agent
setup, a single agent will do all testing tasks, one at a time. For Tk the test agent
will first need to find corresponding box, and hence verifying its reachability, and
then verify whether the points rise after picking it up is correct.

In a multi agent setup, we have multiple test agents that work on a set T
of testing tasks. We will focus on the setup where the agents target the same
instance of the game under test (GUT), exploiting its multi player capability3.
The agents have to figure out how to divide the work. This is less trivial than
it sounds. The agents can choose to do different tasks in parallel. For example,
agent Blue in Fig. 1-left can take T1 and agent Green can take T3. This division
of tasks is ideal because T1 is closest to agent Blue, and T3 is closest to agent
Green. However, if the area is large and the agents do not have full visibility on
the world, it is not possible to know upfront which division of tasks is the best.
Alternatively, we can have multiple agents working in parallel on the same task.
For example, suppose agent Blue decides to do T3. Without full visibility, it does
not know where T3 is, and may end up searching the entire game world before
it finally finds T3. Having agent Green to also work on T3 would speed up the
task, as it happens to be close to it.

In our study we will focus on autonomous agents that dynamically chose the
task they want to do, as opposed to having a central process that allocate the
tasks. By ’dynamic’ we mean that while an agent is exploring the game it on
the fly decides on taking or ignoring a task.

Fig. 1. Two simple levels of a hypothetical game.

Cooperation. We will employ information synchronization and coordination
as the form of cooperation in our setup. Sharing and synchronising the agents’
observation may save the effort that each agent would otherwise need for explo-
ration and data collection. E.g. in the previous example where agent Blue targets
T3, if another agent shares the location of T3, agent Blue might be able to find

3 As opposed to performing parallel testing against multiple instances of the GUT.
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a path to it faster. In the study in Section 4 we will look at several options in
the degree of information sharing. For example, agents may only share partial
knowledge about the game. Such characteristics would have an impact on how
successful the testing task is executed.

Having multiple agents running simultaneously may require some coordina-
tion. For example, if two agents run into one another in a narrow corridor e.g.
as in Fig. 1-right they will get stuck. Generally, executing a task may require
resources critical to the task, which should not be shared, or else the task may
be disrupted or even cannot be completed. The narrow corridor in Fig. 1-right is
such a resource. In a game there are often objects that act as critical resources
towards certain testing tasks, for example keys, switches, or even healing items.
Access to such resources needs to be coordinated, e.g. through locking.

On top of the aforementioned challenges, the agents also have to deal with
the game logic itself, which can be a challenge of its own. We will discuss more on
this in the next section. And later, in Section 4, we will discuss our multi-agent
algorithm. It features the aforementioned dynamic task selection, information
sharing, and locking of key resources.

3 Problem Setup

In this section, we describe a general game setup and outline the challenges of this
setup. We abstractly treat a game under test as a structure G = (A,O) where
A is a set of players/agents and O is a set of game objects that have physical
locations in the game. We will use some or all agents to test the game, so in our
setup they are test agents. Game objects have their own state. Some objects are
interactable. Some may be hazardous. Objects such as doors are called blockers;
these can block the agent’s access to an area. Dealing with blockers is important
for testing tasks that aim to verify the reachability of a state.

Interacting with an object omay change the state of other objects. To provide
challenges for players, game designers often make blockers’ logic non-trivial. For
example, it may require an interaction with another object, called an enabler, to
unblock a blocker. The location of the enabler can be far, and not easy to find.
Or it can be placed in an area that is guarded by another blocker, that in turn
requires its own enabler to be found and activated, and so on. Across different
games there are different types of enablers. E.g. a toggling switch toggles the
state of associated blockers (from blocking to unblocking, and the other way
around). A one-off switch can only be used once. A key must be picked up,
and brought to a blocker to be used, and so on. In this paper, we will restrict
ourselves to toggling switches.

Each agent a∈A is assumed to only be able to observe objects and parts
of the game/environment that it physically can see. Also, the agent does not
know upfront how to how to solve complex tasks, such as unblocking a blocker.
Examples of primitive actions available to an agent are interacting with an object
(if the agent is close enough to it) and moving in any direction for a small
distance. In our setup we will assume that a high level navigation action is
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also available to the agent, to auto-navigate to a specified location. This can be
achieved e.g. by leveraging a game testing framework like iv4XR [15] that comes
with a path planning module.

The agent can take one or more testing tasks to do. Abstractly, such a task
is be formulated as follows:

TestingTask = (o, ψ, S) (1)

Where ψ is a predicate to hold on an object o and S is a stop condition to
terminate the test.

We will focus on tasks whose objective is to verify whether the state of some
game object o, characterized by the predicate ψ, is reachable. ’Reachable’ means
that there exists a sequence of agent’s actions, starting from the game initial
state, that leads to a state where ψ is true. This is simple but still represents
many useful testing tasks. For example, if o is a blocker, ψ can specify that o is
open and visible to the agent. Verifying that ψ is reachable (thus that o can be
unblocked, by activating some game logic) implies that the area that o guards is
thus reachable for the player, which is important if the area is critical towards
the game’s story line.

We treat a testing task as a goal that a test agent wants to automatically
achieve/solve (and thus providing test automation). To do this, the agent needs
to search for a sequence of interactions that reach a state satisfying ψ (thus
confirming its reachability), while respecting the game rules. Finding such a
sequence is usually not trivial. Different heuristics are defined for this, which we
will explain later. The parameter S in a testing task is used to terminate the
task, e.g. based on time budget, after which the goal ψ is judged as unreachable.

4 Multi Agent Testing Algorithm

We propose a cooperative multi-agent approach to solve the given set of testing
tasks automatically. The details are provided in this section. The approach has
two main algorithms. Algorithm 1 takes a set T of testing tasks that the devel-
opers have specified and need to be carried out. The algorithm introduces some
variables to keep track of the status of the tasks, e.g. which ones are completed,
then runs N agents. It also deals with information sharing. Algorithm 2 called
Solver defines how each agent chooses testing tasks and how it proceeds to
complete a chosen task.

The agents run in principle in parallel, each will repeatedly select a task from
T and try to complete it. Certain coordination will be needed; we go into more
detail about that later. The notation P ∥ Q in Algorithm 1 denotes a parallel
execution of processes P and Q. A process is a program that sequentially exe-
cutes primitive actions. For an agent a, the process a.solver runs the algorithm
solver for the agent a. The process Sync() is responsible for regular sharing
and synchronization of agents’ observations with each other.

The agents attempt to complete as many tasks from T as possible according
to their task selection policy, as long as the budget that was given is not used
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Algorithm 1 It gets a set of tasks T and run N test agents.

1: procedure CooperativeAgents(T )
2: toDo = ∅
3: done = ∅
4: agent1.solver(H1) ∥ ... ∥ agentN .solver(HN )
5: ∥ Sync()
6: ∥ done=T ∨ budget ≤ 0 → terminate ▷ terminate the whole procedure

up. Variables toDo and done are empty at the beginning and will be updated
during the test execution. When an agent discovers an object o which is targeted
by a testing task T ∈ T /done, this T is added to the set toDo to keep track of
uncompleted tasks whose location of their target objects are known. When T is
completed, it is moved from toDo to the set done. This is done in Algorithm 2
Solver.

In Solver, the agent that runs it continues attempting to solve tasks until
there is no task left and there is no unexplored area left. To choose a task from
the toDo the agent uses an assigned selection heuristic selectH. E.g. the heuristic
might favor high-valued tasks. We will go for a scheme where each task is worked
on by at most one agent. This is enforced by removing the selected task from
toDo.

Suppose T = (o, ψ, S) is the selected task. To check if ψ already holds the
agent needs to be close enough to the object o to be able to observe its state. To
do this the agent invokes navigateTo(o) to steer itself from its current position
to the location of o. The travel to o can be done by implementing a graph-based
path-finding algorithm such as A* [8, 12].

Algorithm 2 For selecting and executing tasks, parameterized by two heuristics.

1: procedure Solver(selectH, findH)
2: while budget > 0 do
3: if toDo ̸= ∅ then
4: T ← selectH(toDo) ▷ use the task-selection heuristic
5: if T ̸= null then
6: (o, ψ, S)← T
7: toDo← toDo/{T}
8: navigateTo(o)
9: if ¬ψ then dynamicGoal(o, ψ, S, findH)

10: if ψ then done← done ∪ {T}
11: else toDo← toDo ∪ {T}
12: else
13: if there is terrain unexplored then findTask( )
14: else return
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When the agent reaches o, and its state satisfies ψ the testing task T is
completed with a positive result (pass). That is, it is confirmed that the state ψ
is reachable. If the state of o at that moment does not satisfy ψ the agent needs
to do something to change the state of o. A quite common logic in games is
that toggling the state of an object q requires another object i to be interacted
(so-called ’enabler’ in Section 3). We do not assume that the agent has pre-
knowledge of which object is the enabler (or enablers, if there are more than
one) of a particular target o. So, it invokes the algorithm dynamicGoal to
search for such an enabler.

dynamicGoal(o, ψ, S, findH) This procedure can be thought of as deploying
a goal to change o to a state satisfying ψ. The procedure first calculates a set
∆ of objects that have been seen by the agent and have not been ’tried’ before
(line 3). These are candidate objects, whose interaction might change the state
of the target o. An object i ∈ ∆ is selected based on the findH heuristic. For
example, the heuristic might favor objects of a certain type, or it might favor
closer i. When i is selected, it is marked to avoid choosing it again. If findH
cannot come up with an i, e.g. because ∆ is empty, the agent explores the
game, searching for a more objects. If we have an i, the agent navigates to it.
Once i is reached, an appropriate action (such as picking up or interacting) is
performed on i. In order to determine whether o has changed and ψ is met, the
agent navigates back to o. Some coordination is also needed during these steps.
The object i is critical towards checking ψ. That is, other agents should refrain
from messing with i. To enforce this, we employ locking on i, which is released
again after the checking of ψ. If ψ is established, dynamicGoal( ) is done. Else,
the process of calculating ∆ and selecting (another) i is repeated. This goes on
either until ψ is verified, or the stop condition S becomes true (and then the
verification verdict would be a ’fail’).

To give a more precise example of when to deploy a dynamicGoal, consider
the following testing task:

Example 1. Consider the door d1 in the game in Fig. 2. T1 = (d1, d1.open =
true, S) where S is some stop condition.

Suppose an agent shown in Fig. 2 takes the task T1. Since d1 is closed at that
moment, a dynamic goal to open d1 is added (a call to DynamicGoal). This
would then try buttons b1 and b2 (see Fig 2) to make d1 open. It will not try a
button twice, as it marks buttons it has touched.

Back in Solver, the agent uses Algorithm 4 findTask when the toDo set is
empty (there is no open task, whose location of its target object is known). The
agent explores the game world to learn the game’s spatial layout, finding game
objects as it goes. A graph-based exploration algorithm such as [17] can be used.
It stops upon finding some new target objects (objects targeted by tasks), or if
there is no terrain left to explore. The overall exploration heuristics may affect
the overall task-solving performance. A few examples are mentioned below:
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Fig. 2. Screenshot of the game Lab Recruit.

Algorithm 3 For solving a single task, parameterized by one heuristic.

1: procedure DynamicGoal(o, ψ, S, findH)
2: while ¬ψ ∧ ¬S do
3: ∆← {i | i ∈ seenObj ∧ ¬marko(i) ∧ ¬locked(i)}
4: choose i ∈ ∆, based on findH ▷ use the object-selection heuristic
5: if i = null then
6: if there is terrain unexplored then
7: explore( ) ▷ explore world to find new objects
8: else
9: return
10: else
11: marko(i)← true ▷ mark i as tried for o
12: lock(i)
13: navigateTo(i)
14: applyAction(i) ▷ such as interact
15: navigateTo(o)
16: unlock(i)

– Gradually: the agent explores the world only until it sees new target objects.
Algorithm 4 does this.

– Aggressive: as Algorithm 4, but the agent does not stop until there is nothing
left to be explored.

– Limited budget: as Algorithm 4, but the algorithm is given a certain budget,
and stops when the budget runs out.

Synchronization Level To later investigate the impact of information sharing
and synchronization between the agents, we consider two levels of sharing:

– Basic: the agents share seen tasks and solved tasks. Algorithm 1 already does
this, by maintaining common toDo and done sets. Additionally, the agents
also share the location of tasks’ target objects.
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Algorithm 4 For finding new tasks.

1: procedure findTask( )
2: while there is terrain unexplored do
3: basicExplore( )
4: V ← newly observed objects
5: W ← {(o, ψ, S) | o ∈ V ∧ (o, ψ, S) ∈ T /(toDo ∪ done)}
6: if W ̸= ∅ then
7: toDo← toDo ∪W
8: return

– Extended: this extends the basic sharing above by having the agents to also
share information about explored areas to each other, e.g. information about
discovered navigation mesh and object states. As common in a multi-agent
setup, each agent has its own state. So, sharing information involves sending
the information from one agent to another, and synchronizing the sent infor-
mation into the receiving agent’s own belief. This incurs some computation
overhead.

5 Experiments

This section discusses a series of experiments aimed to investigate the following
research questions:

– RQ1: does multi-agent speed up testing?
– RQ2: how well can multi-agent deal with complex logic?

We implement the agents using iv4XR4, a Java multi-agent programming
framework with a particular focus on game testing [15]. The purpose of an
iv4XR agent is to control an in-game entity; for instance to control a player
character of a game. As such, the agent can interact with game and control it
just like a human player can. The framework is inspired by the popular Belief-
Desire-Intention concept of agency [9], where an agent has belief, representing
information the agent has about its current environment. Iv4XR provides auto-
mated world navigation and exploration algorithms [17], and test agents can be
equipped with them. Having such a feature enables us to define testing tasks at
a more functional level, allowing us to abstract away details related to, for exam-
ple, physical 3D navigation. In our multi-agent approach, each agent simulates
a player and responds dynamically to the game under test.

For the experiments, a multi-player 3D game called Lab Recruit (LR) is
used5. Figure 2 shows an example screenshot of the game. LR allows new game
levels6 to be defined using plain text files. This allows us to generate a range of

4 https://github.com/iv4xr-project/aplib
5 https://github.com/iv4xr-project/labrecruits
6 In gaming, a ’level’ refers to a world or a maze, playable within the same game. To
extend the play-value of a game, developers often provide a set of levels.
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various levels for our experiments. The playing goal of an LR level can simply be
to explore it, or to reach a certain end-room. There are two types of game objects
in LR that are of particular interest for the experiments: doors and buttons. A
door guards the access to the rooms it connects. The state of a door can be
altered (e.g. from closed to open) by interacting with a button that is connected
to it. The players do not know upfront which buttons are connected to which
doors. Furthermore, the players’ have limited view range. Throughout the game,
players can be thought to gain points by going through rooms (e.g. due to certain
items in the rooms). Some rooms give much more points, and are thus important
for the game play. Verifying that all doors in a level can be opened and reachable
would prove the level’s basic correctness. If time is limited, verifying the doors
guarding high valued rooms can be considered as more important.

Several factors affect the performance a multi-agent setup, such as the size
of the game levels and the task distribution among agents. To investigate them
different LR levels are created. They are all variations of a level we will call
Basic-Level. This is a level with a 10m×10m main hall with ten doors (blockers)
guarding access to side rooms. There is a button in front of each door that opens
the door. Six of the doors have in-game points of one, and four have in-game
points of ten (they are guarding high-value rooms). The higher point doors are
d2, d3, d6, and d9.

Testing tasks. In the experiments, we consider a set of testing tasks, one
Td for each door d in the target level, to verify that a state where the door d is
open is reachable. Basic-Level has thus ten testing tasks.

Heuristics setting. Recall that each agent runs the algorithm Solver.
It is parameterized by two heuristics: selectH and findH. For the task selec-
tion heuristic (selectH), three heuristics are taken into consideration: one that
chooses tasks randomly, one that targets tasks whose value is higher than a given
threshold, and one that targets tasks with values below a threshold. Agents that
use them are referred to as AR, AH and AL respectively. The findH heuristic
(to choose a candidate enabler to try) is set to choose a button that is closest to
the agent’s position. The heuristic for findTask is set to be the same as what
is already in its algorithm, namely to explore gradually.

Example. Take a look at the level depicted in Fig. 2. Suppose the agents
initially observe nothing because of their limited visibility range. They then
begin to gradually explore the level. Imagine that they see d1 and d2. Since
these are targets of testing tasks, the corresponding tasks Td1 and Td2 are added
to the toDo set. Both are worth one point. Since the testing task is not empty,
the agents first look through the toDo to see if any tasks are available before
choosing one. Suppose one of the agents is AL. The two tasks in toDo are of
low value, so they are targets for AL. Imagine that Td1 is chosen. The agent
AL then navigates to d1. As it is closed, AL invokes DynamicGoal to open
it. Suppose at that point AL has seen the button b1, and it also happens to be
located nearest to AL. By the heuristic findH, the agent then chooses b1, to
be tried (interacted) in order flip the state of d1 to open. If this happens and
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confirmed (by travelling to d1 to confirm its state), task Td1 is completed and
the agent can proceed to the next testing task.

All experiments were run on a Windows machine equipped with an Intel(R)
i7-8565U (4 cores) processor at 2.8 GHz and 32GB RAM. Every run in the
experiment is repeated three times, and the result is the average of the runs.

5.1 RQ1: does multi-agent speed up testing?

To answer the RQ, we consider a number of factors that affect performance:

– Information synchronization. The two synchronization levels, basic and ex-
tended, mentioned in Section 4 will be considered.

– Different team compositions, consisting of agents with different task selection
heuristics (selectH), will be considered.

– View distance: agents’ limited visibility complicates exploration and task
finding. We would like to investigate how the performance is affected if a
larger view distance is allowed.

Effect of information synchronization We run our multi-agent setup on ten
levels, variations of Basic-Level with increasing size. For each level, we deployed
a team of two agents, namely {AH , AL}. Two information synchronization levels
are tried: basic and advanced. The agents’ visibility range is set to six.

Fig. 3 shows the results. The multi-agent setup with extended synchroniza-
tion outperforms the single-agent setup, in particular in bigger levels, despite
the overhead of having to synchronize information. E.g. it is nearly 35% faster
than a single agent on the 100×100 level. When an agent chooses a task whose
target object o it has never seen before, the shared navigation information from
the other agent may help it to find o, saving time that is otherwise needed for
exploring the world in order to find it. In contrast, basic synchronization does
share the locations of target objects, but not the path to them. So in this case
the agent still has to search the level to actually get to o. Using only basic syn-
chronization, the multi agent setup is still faster than a single agent, but the
results clearly show that using extended synchronization, despite its overhead,
pays off.

Fig. 4 shows the points collected after a specific time on the 100×100 level.
Recall that opening a door gives points, so the collected total points correlate
with the number of tasks completed. A steeper increases in the graph corre-
sponds to the completion of the verification of a high-valued door, which is more
important. When a total of 46 points is reached, all tasks are completed. Multi-
agent with extended synchronization can complete all the tasks in five minutes,
while a single agent can only complete two important tasks.

Different team composition In this experiment, we run different teams of
agents on a 100×100 level. A team consists of agents with different task selection
heuristics. In addition to the aforementioned AH , AL, and AR agents we add
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Fig. 3. The time needed to solve all the tasks. The x-axis is the level size, e.g. 20×20.
The y-axis is time in second. Single uses just one agent. MA-Basic and MA-Extended
use two agents, using the basic and respectively extended information synchronization.

Fig. 4. Points collected over time on a level with size 100×100. Collected points corre-
late with the number of done tasks.

AEX and AE . Agent AEX does not select any tast. It just explores the world to
discover tasks’ target objects to help other agents by sharing information. Agent
AE is an eager agent that takes a task as soon as it sees its target object.

Fig. 5-left shows the results for different teams of three agents. The results
show that including a dedicated exploration agent in a team (team (AEX , AL, AH))
does not really improve the performance. This is because the agents still need to
do the tasks. On the other hand, the performance is not significantly worse either,
despite having one less worker agent, which shows that the shared information
from AEX does help.

We also conducted an experiment to examine the impact of team size. Fig.
5-right shows the performance of teams consisting of one up to five eager agents.
Only eager agents are used because in the previous experiment they have the
best performance. The outcome indicates that performance gets better as the
number of agents increases. When there are five agents instead of only one, the
testing time is reduced by nearly one-third and by more than half when there
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are two agents. The performance of five agents is not much different from four
agents, however. A possible reason is because we have only have four CPU cores
in our experiment setup.

Fig. 5. Three agents setup with different task selection heuristics on a 100×100 level. In
addition to AR, AL and AH , we have AEX and AE; these are agents with exploration
and eager heuristics, respectively. In the graph on the right on the right side, only eager
agents are used, but with one up to five of them.

View distance To investigate the impact of view distance we run a setup with
two agents on a 100×100 level, with varying view distance. Fig. 6 shows the
results. It shows that when the view distance increases, test performance im-
proves. This is as expected, as by increasing the view distance, the agents can
see more objects/tasks and can choose a task based on how far it is from its posi-
tion. Multi-agent setups consistently outperforms the single-agent setup, which
is also expected. However, when the view distance increases, the performance of
multi-agent setups using various strategies is nearly equal. Also, at some point
further increase of the view distance does not significantly alter performance.
The reason is that, even though the locations are known, the agent still needs
to navigate to each task to solve it, and this costs time.

It should be noted that enlarging the view distance may not be an option
provided by the game under test, e.g. to keep the amount of data that the game
needs to send over to the agents light weight.

5.2 RQ2: how well can multi-agent deal with complex logic?

Game logic might make solving a testing task more challenging as the agents do
not have full pre-knowledge about the logic. For RQ2 we will consider a number
of door-logics, listed below, which are increasingly more challenging. These logics
are quite common in for example RPG games.

– Distant-connection logic. A door has this logic if its enabler is located far
from it. No door in Basic-Level has far enabler. So in the experiments later,
we will create variations of the level.
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Fig. 6. The performance of different setups under different view distance on a 100×100
level. MA-Basic and MA-Extended use two agents AH and AL with basic and extended
synchronization, respectively. MA-Eager uses two eager agents with advanced synchro-
nization.

– Chained-connection logic. A door d has this logic if its enabler is ’hidden’
in another room, guarded by its own door. So, to open d multiple enablers
have to be interacted, and in a specific order. It gets more complicated
if the chaining is deeper than one (deeper chains are not included in our
experiments).

Distant-connection logic To investigate how well a multi-agent setup can deal
with the distant-connection logic, a variation of a 30×30 basic-level is used.
Some of the doors are changed to have a distant connection logic, by placing
its corresponding button in a randomly far location. We created five different
instances of basic-level with different numbers of such doors, starting from two
to ten. We compare a single agent with a team of two agents {TH , TL}, using
either basic or extended synchronization.

Table 1 shows the result. It shows that when the number of distant enablers
increases, the time needed to finish the task increases, too. Even with extended
synchronization, it becomes harder for agents to solve all the tasks.

Multi-agents with advanced synchronization can perform better than the
other two other setups, except when all doors in the level have the distance con-
nection logic, where the single agent setup is unexpectedly superior. The likely
cause is accidental tasks solving. This happens when an agent unintentionally
completes a task that is not intended for it. This occurs when the agent interacts
with i′ that is linked to d′ while searching for an enabler to open a door d. The
task Td′ is then declared as completed, though Td remains uncompleted. If the
door is open when the agent sees it, it will be considered completed and removed
from the testing tasks.

Chained-connection logic Fig. 2 shows an example of a level with a ’hidden’
button, marked by X. This means that to open d2, d1 must first be opened. If the
agents take the tasks in such a way that d2 is to be opened by agent A and d2 by
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Table 1. The performance on a setup with doors with distant connection logic.

#DC Single MA-Basic MA-Extended

2 210 159 117
4 265 209 195
6 315 289 215
8 352 333 232
10 180 352 264

agent B, this presents a challenge. Until B opens d1, d2 cannot be opened. So, A
has to wait, and we lose parallelism. Note that the doors’ logic is not known to
the agents upfront, so it also not possible for the agents to know upfront what
an ideal task distribution is. Three distinct levels are created, each with a unique
arrangement of one, two, and three hidden buttons. Our comparison of the time
required to complete all tasks is shown in Table. 2.

The multi-agent setup with extended information synchronization outper-
forms the single-agent setup. Increasing the number of hidden buttons increases
the overall testing time. Having three chained-connection doubles the testing per-
formance. As previously mentioned, one of the causes is the choices the agents
make when selecting the tasks to do. The choices taken may force an agent to
wait for another agent to access to certain areas, and hence the overall task solv-
ing becomes longer. Secondly, by attempting random buttons that are actually
not connected to the door that guards a target room, the agent may block access
to another area.

Table 2. Different numbers of chained connections in a basic level with a size of 30.

#HB Single MA-Eager MA-Extended

0 149 128 111
1 214 145 140
2 307 254 191
3 337 308 241

6 Related Work

Automated game testing is a challenging problem. The interaction space of a
game is often very large and it is challenging for an algorithm to steer a game
under test to get to a particular state that needs to be tested. Much of recent
work on automated game testing has been focused on the use of AI [21]. For
example, the use of Monte Carlo Search Tree (MTCS) for generating play tests
was studied in [3, 2]. The use of reinforcement learning was studied in e.g. [14,
22, 6]. These approaches require little human steering, though the training time
could be excessive. Model-based games testing was studied in [10, 5]. These ap-
proaches use a behavior model e.g. in the form of an Extended Finite State
Machine (EFSM), from which test cases are generated. Test generation is fast,
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but on the other hand an EFSM model is needed. The model needs to be re-
fined enough to make sure that the generated test cases are actually executable.
Crafting such a model is costly.

Most of the works mentioned above [3, 2, 14, 22, 5, 6] are arguably agent-based
in a broad sense that they use a test agent to control the player character of the
game under test. In our previous work, we studied the use of BDI agents [20, 16].
E.g. these agents memorize the states of seen game objects, believing that they
remain unchanged until proven otherwise. The agents also use path planning to
navigate the world, based on navigation information they have in their belief.
This eliminates the need for expensive training as in e.g. reinforcement leaning,
though on the other hand, additional implementation effort may be needed to
enable a navigation graph to be constructed automatically during the tests.

The work in [5] combines model-based testing, search-based testing (SBT),
and agent-based testing. An SBT algorithm is used to generate test-cases from
an EFSM model. The model in [5] can remain quite abstract. The approach
exploits a BDI agent as a smart executor of test sequences generated from such
an abstract model. The work in [6] combines reinforcement learning and BDI
agents. The BDI layer is used to provide an abstract concept of actions (e.g. to
auto-navigate to a given target object), so that the reinforcement learning part
only needs to deal with such abstract actions.

Most of the approaches mentioned above are single agent. The works in [7,
22] use multiple agents, though these are individual agents that run in parallel
to train a common model, or a population of common models. Arguably this is
a form of multi-agent cooperation, but not in the sense that the agents directly
cooperate with each other. The latter, so the use of cooperating agents for game
testing, has not been much studied.

7 Conclusion and Future Work

We presented a cooperative multi-agent testing approach, targeting mainly puzzle-
based and world-exploration games and evaluated the approach using a case
study of a 3D game called Lab Recruits. Basic and extended information syn-
chronisation were considered, as different levels of cooperation. In the latter,
agents share information about explored areas to each other in addition to shar-
ing the location of testing tasks’ target objects which is shared at the basic
level. We evaluated the differences in test performance between a single-agent
and multi-agent setups. The experiment demonstrates that multi-agent with ex-
tended information sharing consistently performs better than single agent and
multi-agent with just basic sharing. Adding more agents was demonstrated to
improve performance. We also demonstrate that multi-agent can handle complex
game logic, while still being superior to a single agent. The study was done with
one case study. For future work we would like to investigate more case studies,
e.g. more games or considering more variations in the layout of the game world.
Also, currently information synchronization is done by greedily pushing the in-
formation to share. We can consider a more lazy pull mechanism. It is more
complex, but may give further performance improvement. This is future work.
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