
Setting up a ROS2-based Multi-Agent System
implementing the Contract Net Protocol and IDS

Connectors

Dennis Maecker1[0009−0005−8932−0477], Henning Gösling1[0000−0003−4522−0464],
and Timon Sachweh2

1 German Research Institute for Artificial Intelligence, Osnabrück, Germany
{dennis.maecker,henning.goesling}@dfki.de

2 TU Dortmund University, Germany
timon.sachweh@tu-dortmund.de

Abstract. ROS2 is a software framework for building robots that al-
lows for a fully decentralized communication between so-called nodes.
We suggest interpreting these nodes as software agents and describe how
to set up a ROS2-based Multi-Agent-System (MAS). We were further
able to implement a Contract Net Protocol between several ROS2-based
software agents. For the inter-agent-communication we set up data con-
nectors emerging from the International Data Spaces initiative. Hence,
our MAS is capable of being integrated in state-of-the-art decentralized
data spaces enabling the self-sovereign coordination between agents, but
also self-sovereign data exchange between agents with other interfacing
resources.

Keywords: Multi-Agent System · ROS2 · Data Connector · Contract
Net Protocol

1 Introduction

The novel concept of a Smart Managed Freight Fleet was recently introduced
by Heinbach et al. [7] and Maecker et al. [12], particularly emphasizing the
application of Multi-Agent Systems (MASs) within supply chains in the in-
termodal transport sector. The technological approach involves a MAS where
agents are operating decentralized e.g., on remote servers and interface with
logistics resources like parcel depots and trucks. In the specific context of ur-
ban freight fleets for first- and last-mile deliveries, parcel delivery robots are
employed. These robots however operate in dynamic urban environments where
the high density of buildings may lead to communication disruptions. To miti-
gate such challenges and ensure efficient task management, it is envisaged that
the agents representing these parcel delivery robots may be deployed directly
onto the robots’ on-board units. This setup aims to enhance responsiveness in
rapidly changing situations. Automomously driving vehicles are commonly run-
ning the Robot Operating System (ROS) for the management of the robot’s



2 D. Maecker et al.

on-board unit and hardware functions [25, 17] as ROS provides libraries and the
framework to facilitate the development of robots. ROS2 was developed as the
successor of ROS, to cope with the limitations of ROS: security, reliability, and
support for large embedded systems. Instead of developing the software agents
on prevalent agent frameworks, we propose to interpret the software agents as
being constituted by ROS2 nodes as well. In this sense, it is possible to setup a
fully decentralized MAS without a central instance for communication. Further,
as the agents use the same message protocols as the ROS2 hardware nodes of
robots, the communication of agents with their physical representation is facil-
itated by using uniform communication protocols. Since software agents can be
owned by different organizations that communicate via the internet, we propose
using data connectors such as the International Data Spaces (IDS) connector
that can realize a sovereign and secure data exchange via the internet [8]. In a
further step, we considered the Contract Net Protocol (CNP) for the assignment
of tasks in between agents and integrated this CNP for the use with the IDS
connectors.

First, we give a short overview of ROS2 and other literature that address
ROS2-based MAS integrations and our used methodology for conceptualizing
agents (Section 2). Further, we describe the implementation of the CNP into our
MAS (Section 3), before elaborating on the integration of IDS connectors for the
usage with the CNP among the agents (Section 4). Subsequently, in Section 5,
we give an application-related example of our deployed MAS. Section 6 discusses
our findings and details future developments on the MAS as developed in our
project.

2 Background

ROS2 is the state-of-the-art framework for developing robot software systems [17,
25]. It builds upon the successes of ROS by providing more robust, secure, and
scalable solutions for complex robotic applications. Key enhancements in ROS2
encompass support for real-time computing, which is crucial for tasks requiring
precise timing and synchronization, such as motion control and sensor integra-
tion. Enhanced security measures and Quality of Service (QoS) settings in ROS2
ensure reliable and secure data communication, addressing critical concerns in
robotic applications that interact with the physical world and potentially with
human operators [19, 3]. At the core of ROS2’s communication infrastructure is
the Data Distribution Service (DDS), a middleware that enables flexible, scal-
able, and reliable communication. Unlike ROS, which relied on a central name
server for node management and message routing, DDS in ROS2 adopts a decen-
tralized approach, using a User Datagram Protocol (UDP) for communication [4,
11, 22]. The peer-to-peer discovery mechanism eliminates single points of failure
and bottlenecks, enhancing system reliability and scalability. The built-in secu-
rity standards of DDS provide encryption, authentication, and access control,
ensuring secure communication between nodes. The communication between
nodes is realized through several protocols, namely custom messages (topics),



A ROS2-based MAS with a CNP and IDS Connectors 3

services and actions [19], enabling complex interactions and workflows within
and across robotic systems. ROS2 conceptualizes robots as collections of inde-
pendent nodes that correspond to specific actors or sensors of the robot. The
advancements in ROS2, particularly its support for real-time computing and se-
cure, scalable communication through DDS, lay a critical foundation for more
sophisticated interactions within robotic systems. These improvements not only
facilitate complex robotic functionalities but also align with the demands of mod-
ern software agent frameworks, which require robust, real-time communication
and secure data handling to operate effectively in dynamic environments.

Concerning the field of software agent research, numerous frameworks for
organizing the constituent elements of software agents exist, including notable
models such as the Belief-Desire-Intention (BDI) Agent. Among these, the ref-
erence architecture by Wahlster [21] stands out for its comprehensive approach,
applicable to software agents in robotic systems. It encompasses a wide range
of components essential for autonomous functionality, including sensing, act-
ing, environmental communication, human interaction, knowledge management,
learning, and planning, among others. Wahlster’s framework is particularly note-
worthy for its systematic categorization of autonomous system components, of-
fering a robust blueprint for the development of complex software agents and
robotic systems.

In the field of MASs using ROS2, there is a body of literature that discusses
how agent models can work with robotic systems [1, 14, 2, 13]. Most of this re-
search tends to be more theoretical, often using the BDI model to structure
these agents. A common issue is that these studies are more about concepts
than real-world applications, and there is a noticeable need for interfaces that
can connect the specific languages used for agents with the ROS2 nodes. Unlike
the common focus on BDI models in the existing research, our work is guided by
Wahlster’s (2017) architecture, which provides a detailed framework for building
autonomous systems. Wahlster’s model gives us a clear and detailed breakdown
of the components needed for autonomous agents, covering everything from sens-
ing and interacting with the environment to learning and adapting over time.
This detailed structure is particularly useful for developing agents that control
robots, as it helps in creating more sophisticated and responsive systems.

3 Contract Net Protocol for the Assignment of Tasks in
a MAS

For a MAS that consists of several software agents, a coordination mechanism
such as the CNP [18, 23] is necessary that allows for the assignment of tasks
between several software agents. In each CNP-based task assignment, one agent
takes the role of a so-called manager. The manager broadcasts a notification
about the new task to all the other software agents. If a software agent wants
to take part in the assignment process, it takes the role of a contractor in the
CNP. The contractors send a certain value (e.g., a bid or marginal cost) back
to the manager. The manager consequently decides about the assignment based



4 D. Maecker et al.

on these received values and informs the winning contractor. To use the CNP
in a ROS2-based MAS, an implementation in Python or C++ is advantageous.
However, no such package was found that facilitates the assignment of tasks in
a MAS using the CNP and can be included in a ROS2-based software agent.

The implementation of the CNP in ROS2 follows the four phases of the CNP
mechanism [5]. For each phase, a ROS2 message entity [16, 11] has to be defined
containing information about the task to be assigned as well as relevant meta-
data, e.g., the sender and receiver of the message as well as a unique identifier
for each task assignment. The identifier ensures that multiple instances of CNP
mechanisms can run in parallel. Regarding the publish-and-subscribe protocol
of ROS2, a topic must be defined for each phase of the CNP. When the software
agents are initialized, they can subscribe to the relevant topics, depending on
the purpose of the software agent (manager or contractor). Moreover, callback
functions must be defined, which are triggered by the reception of a message on
a subscribed topic.

4 Sovereign and Secure Data Exchange in a Distributed
MAS

For a sovereign and secure data exchange in between ROS2-based software agents
across different local networks, we propose the use of a data connector provided
by the International Data Spaces Association (IDS connector) [9]. The IDS
connector has proven technical maturity and interoperability across domains,
making it an ideal choice. We propose deploying a data connector to represent
ROS2-based software agents within a single local network, enabling external data
exchange with connectors representing agents in other local networks.

A basic setup is depicted in Fig. 1, in which two agents are deployed in dif-
ferent networks and are connected via IDS connectors. A more detailed view
on this process can be found in the documentation of the IDS connectors [9].
The diagram in Fig. 1 shows the process of one agent offering data via its data
connector and the other agent subscribing to this data. First, the agent that
provides data (agent A) needs to create a resource at its respective data connec-
tor. Subsequently, the other agent (agent B) can subscribe to its data connector
and further initiate the subscription of its data connector to the one of agent
A. After this, agent A can push data to its data connector, e.g., the notification
about a new CNP task. This information then gets forwarded to all subscribed
connectors and their subscribed back-ends (here agent B). In order to enable the
communication flow in the reversed direction, i.e., enabling agent B to answer
to the CNP notification, an analogous setup needs to be executed. This involves
the creation of a data resource at the connector of agent B and the subsequent
subscription of agent A to its connector as well as the subscription of agent A’s
connector to the one of agent B. Hence, if one agent published a message to
its local connector, all subscribed external connectors are being notified of this
message. Subsequently, the respective agents subscribed to these connectors are
being updated on the new message.



A ROS2-based MAS with a CNP and IDS Connectors 5

Fig. 1. Simplified sequence diagram of the setup of two agents in different networks and
their respective IDS connectors. Depicted are the process for creating a data resource
at one of the connectors and the subsequent subscriptions of the other instances (1) as
well as the data flow covering the first step of a CNP process (2).

5 Example: ROS2-based Multi-Agent-System in the
Transport Logistics Domain

Based on the on-going research project GAIA-X 4 ROMS [6, 10], we created
a minimum viable demonstrator (MVD) to test the ROS2 framework and its
applicability to realize a MAS in the freight logistics domain. For the MVD, two
software agent types were created. The first type represents a freight agent that
focuses on a scheduled transport with a certain freight list between two depots.
The second type is a trailer agent that represents a trailer loaded with parcel
units and pulled by a truck.

Fig. 2. Minimal viable demonstrator set up in the GAIA-X 4 ROMS project to show
the applicability of ROS2, the IDS connector and Docker to create a distributed MAS.



6 D. Maecker et al.

We developed each type of our ROS2-based software agents using Python. The
transitions package [24] was used to create the software agents’ internal state
machines. In our use case, the scheduled transports need to be assigned to the
trailer equipment. We implemented a CNP mechanism in Python that allows
the assignment of a scheduled transport initiated by a freight agent to one out
of several trailer agents. Each of these ROS2-based software agents runs in its
own Docker container. We have successfully tested the combination of ROS2,
Docker, IDS connectors, and the CNP with up to 100 software agents. The IDS
connectors ensure a sovereign and secure data exchange between the freight agent
and the trailer agents during the CNP. Figure 2 illustrates the components of
our MVD.

6 Discussion

In our study, we examined the integration of ROS2, the CNP, Docker, and IDS
connectors as a foundation for building a fully decentralized MAS for manag-
ing fleet assets. The use of IDS connectors in this setup ensures secure and
autonomous data exchange across distributed agents, making it suitable for sce-
narios where a central management or communication instance is undesirable.
Our initial exploration, as presented in the MVD within this paper, marks the
beginning of applying this framework to practical uses.

In the MVD, we successfully implemented the CNP among up to 100 software
agents based on ROS2, demonstrating the feasibility of standard coordination
techniques within our proposed system. This experiment serves as a proof of con-
cept for the underlying architecture’s capability to support scalable, large-scale
interactions within our MAS. Our future research will extend this framework
to include robots and the corresponding agents, aligning with Wahlster’s archi-
tecture for autonomous systems. This approach will allow for a more detailed
examination of the system’s applicability to robotic tasks, assessing its scalabil-
ity, flexibility, and efficiency in real-world scenarios.

To thoroughly evaluate the practicality and effectiveness of our MAS frame-
work, future research will involve scaling up the test scenarios and conducting
comparative analyses with established MAS frameworks such as SPADE [15] or
JADE [20]. This comprehensive approach will help in identifying the strengths
and limitations of our system, guiding the refinement of the architecture for en-
hanced performance and applicability in controlling agents managing physical
assets within a decentralized network.

Acknowledgements. This paper was written as part of the project Gaia-X 4
ROMS - Support and Remote Operation of Automated and Networked Mobility
Services (FKZ: 19S21005C). The joint project is funded by the German Fed-
eral Ministry of Economics and Climate Protection (BMWK). The authors are
responsible for the content of this article



A ROS2-based MAS with a CNP and IDS Connectors 7

References

1. Cardoso, R.C., Ferrando, A., Dennis, L.A., Fisher, M.: An interface for program-
ming verifiable autonomous agents in ROS. In: Bassiliades, N., Chalkiadakis, G.,
de Jonge, D. (eds.) Multi-Agent Systems and Agreement Technologies - 17th Eu-
ropean Conference, EUMAS 2020, and 7th International Conference, AT 2020,
Thessaloniki, Greece, September 14-15, 2020, Revised Selected Papers. Lecture
Notes in Computer Science, vol. 12520, pp. 191–205. Springer (2020)

2. Cashmore, M., Fox, M., Long, D., Magazzeni, D., Ridder, B., Carrera, A., Palom-
eras, N., Hurtos, N., Carreras, M.: Rosplan: Planning in the robot operating sys-
tem. Proceedings of the International Conference on Automated Planning and
Scheduling 25(1), 333–341 (Apr 2015), https://ojs.aaai.org/index.php/ICAPS/
article/view/13699

3. DiLuoffo, V., Michalson, W.R., Sunar, B.: Robot operating system 2: The need
for a holistic security approach to robotic architectures. International Journal of
Advanced Robotic Systems 15(3), 1729881418770011 (2018)

4. Erős, E., Dahl, M., Bengtsson, K., Hanna, A., Falkman, P.: A ROS2 based com-
munication architecture for control in collaborative and intelligent automation sys-
tems. Procedia Manufacturing 38, 349–357 (2019)

5. FIPA: FIPA Contract Net Interaction Protocol Specification. FIPA (2001), http:
//www.fipa.org/specs/fipa00029/, Retrieved on Feb 28, 2024

6. Gaia-X 4 Future Mobility (n.d.): Die Projektfamilie. Gaia-X 4 Future Mobility,
https://www.gaia-x4futuremobility.dlr.de/, Retrieved on Feb 28, 2024

7. Heinbach, C., Gösling, H., Meier, P., Thomas, O.: Smart managed freight
fleet: Ein automatisiertes und vernetztes flottenmanagement in einem föderierten
datenökosystem. HMD Praxis der Wirtschaftsinformatik (2022)

8. International Data Spaces Association: Dataspace Connector - Manual and Doc-
umentation (2021), https://international-data-spaces-association.github.
io/DataspaceConnector/, Retrieved on Feb 28, 2024

9. International Data Spaces Association: IDS Components (2023), https://
internationaldataspaces.org/use/ids-components/, Retrieved on Feb 28, 2024

10. Kremer, M., Pohling, L., Gösling, H., Heinbach, C., Sachweh, T., Gogineni, S.,
Berger, K.: An Intelligent Arrival Time Prediction Service in a Federated Data
Ecosystem: The Minimum Viable Demonstrator of the GAIA-X 4 ROMS Research
Project. SSRN Electronic Journal (2023)

11. Macenski, S., Foote, T., Gerkey, B., Lalancette, C., Woodall, W.: Robot Operating
System 2: Design, architecture, and uses in the wild. Science Robotics 7(66) (2022)

12. Maecker, D., Gösling, H., Heinbach, C., Kammler, F.: Exploring multi-agent sys-
tems for intermodal freight fleets: Literature-based justification of a new concept.
In: Wirtschaftsinformatik 2023 Proceedings. p. 97 (2023)

13. Martín, F., Clavero, J.G., Matellán, V., Rodríguez, F.J.: Plansys2: A planning sys-
tem framework for ros2. In: 2021 IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS). pp. 9742–9749 (2021)

14. Onyedinma, C., Gavigan, P., Esfandiari, B.: Toward campus mail delivery using
bdi. Electronic Proceedings in Theoretical Computer Science 319, 127–143 (Jul
2020)

15. Palanca, J.: SPADE (2020), https://spade-mas.readthedocs.io/en/latest/
readme.html, Retrieved on Feb 28, 2024

16. Quigley, M., Conley, K., Gerkey, B.P., Faust, J., Foote, T., Leibs, J., Wheeler, R.,
Ng, A.Y.: ROS: an open-source Robot Operating System. In: ICRA Workshop on
Open Source Software (2009)



8 D. Maecker et al.

17. Shi, L., Marcano, N.J.H., Jacobsen, R.H.: A review on communication protocols for
autonomous unmanned aerial vehicles for inspection application. Microprocessors
and Microsystems 86, 104340 (2021), https://www.sciencedirect.com/science/
article/pii/S014193312100497X

18. Smith: The contract net protocol: High-level communication and control in a dis-
tributed problem solver. IEEE Transactions on Computers C-29(12), 1104–1113
(1980)

19. St-Onge, D., Herath, D.: The Robot Operating System (ROS1 &2): Programming
Paradigms and Deployment, pp. 105–126. Springer Nature Singapore, Singapore
(2022)

20. Telecom Italia SpA: Java Agent DEvelopment Framework (2023), https://jade.
tilab.com/, Retrieved on Feb 28, 2024

21. Wahlster, W.: Künstliche Intelligenz als Grundlage autonomer Systeme.
Informatik-Spektrum 40(5), 409–418 (2017)

22. Woodall, W.: ROS on DDS (2014), https://design.ros2.org/articles/ros_on_
dds.html, Retrieved on Feb 28, 2024

23. Wooldridge, M.J.: An introduction to multiagent systems. John Wiley & Sons
(2009)

24. Yarkoni, T.: transitions (2022), https://pypi.org/project/transitions/, Re-
trieved on Feb 28, 2024

25. Zhang, J., Keramat, F., Yu, X., Hernández, D.M., Queralta, J.P., Westerlund,
T.: Distributed robotic systems in the edge-cloud continuum with ros 2: a review
on novel architectures and technology readiness. In: 2022 Seventh International
Conference on Fog and Mobile Edge Computing (FMEC). pp. 1–8 (2022)


