
BDI Agents in Natural Language Environments

Alexandre Yukio Ichida1, Felipe Meneguzzi1,2, and Rafael C. Cardoso2

1 Pontifical Catholic University of Rio Grande do Sul, Porto Alegre, Brazil
alexandre.yukio@edu.pucrs.br

2 University of Aberdeen, Aberdeen, United Kingdom
felipe.meneguzzi@abdn.ac.uk, rafael.cardoso@abdn.ac.uk

Abstract. Developing autonomous agents to deal with real-world prob-
lems is challenging, especially when developers are not necessarily spe-
cialists in artificial intelligence. This poses two key challenges regarding
the interface of the programming with the developer, and the efficiency
of the resulting agents. In this paper we tackle both challenges in an
efficient agent architecture that leverages recent developments in natu-
ral language processing, and the intuitive folk psychology abstraction of
the beliefs, desires, intentions (BDI) architecture. The resulting archi-
tecture uses existing reinforcement learning techniques to bootstrap the
agent’s reasoning capabilities while allowing a developer to instruct the
agent more directly using natural language as its programming interface.
We empirically show the efficiency gains of natural language plans over a
pure machine learning approach in the ScienceWorld environment.Please
note that this paper has been accepted to AAMAS 2024 main track, and
has only been submitted to EMAS 2024 for discussion at the workshop.
We will not publish this paper in the post-proceedings of EMAS.

Keywords: BDI agents · natural language · LLMs · reinforcement learning

1 Introduction

The increasing adoption of Artificial Intelligence (AI) algorithms in human-
facing applications creates two key problems in the development of the au-
tonomous agents that interact with humans in such applications. First, agents
must understand commands and respond to them in a human-understandable
way. Second, agent developers must be able to ensure the responses gener-
ated by such agents are appropriate, regardless of the availability of training
data.Specifically, modern AI applications communicate to a certain degree with
humans in their language in order to support their daily tasks. Such agents pro-
cess the natural language information provided by humans to make their own
decisions, which can yield a natural language response or an execution of sequen-
tial steps (plans). To ensure safety and avoid unintended behaviour from such
applications, a scrutable mental model is essential for an autonomous agent to
provide the transparency of the agent’s behaviour and explain its decisions [25].

Handling natural language is crucial for autonomous agents to communicate
and cooperate with humans. An agent should reason over the natural language

2 A.Y. Ichida et al.

information to understand the circumstances of human problems and take an
action that should be discernible to humans in order to support them. Processing
human language is a complex task for computers since information encoded by
natural language is unstructured and prone to ambiguity [15]. Recent deep learn-
ing approaches for natural language processing, such as Pre-Trained Language
Models (PTLM), achieve very high accuracy in text classification and genera-
tion tasks [26]. However, approaches that rely exclusively on a single PTLM have
limitations in reasoning tasks such as common-sense planning [33] and logical
consistency [23] over natural language information. In fact, the PTLM reasoning
process is opaque [29] since such approaches rely entirely on black-box models,
and hence, understanding the agent’s decisions remains a difficult task. An ex-
plicit mental model representation that describes the agent behaviour is essential
to understanding such reasoning limitations and dealing with them.

Traditional approaches to AI often model decision-making by borrowing ter-
minology from folk psychology, which describes human mental attitudes to im-
plement rational agents. The Belief-Desire-Intention (BDI) model [7,31] intro-
duces a conceptual framework to implement autonomous agents composed of
beliefs, desires, and intentions. We argue that incorporating plans designed by
humans is instrumental for the development of more controllable autonomous
agents, instructing them to avoid unintended behaviour. Natural language plans
allow humans to explicitly incorporate prior information which, in contrast to
pure machine learning agent approaches, does not necessarily need to retrain the
agent or adjust training data. Instructing the sequence of steps for an agent to
perform a task does not require a training phase where the agent needs to ex-
plore or exploit states in the environment (e.g., ϵ-greedy reinforcement learning
algorithms [5]). Instead, the agent can simply executes predefined plans supplied
by a human.

This paper introduces NatBDI, a new class of agent architecture that uses
the BDI reasoning cycle with components driven by natural language process-
ing. We leverage the advantages of modern machine learning models in natural
language (e.g., pretrained language models) by using them as black-box compo-
nents within the BDI model. Our contributions are threefold. First, we describe
the unstructured data from observations of human activities as agent’s beliefs
written in natural language and generate the natural language plan library of
the agent. Second, we develop an agent interpreter following the BDI mental
model that uses natural language information in its reasoning back-end. This
back-end uses natural language inference to find the entailment relations be-
tween the belief base and the context of the plans in the plan library during
plan selection. Finally, we rely on a fallback policy using black-box reinforce-
ment learning architectures to help our agents to act autonomously in cases
where the plan-selection mechanism finds no candidate (i.e., applicable) plans.
We use simulated textual environments from ScienceWorld [34] to validate and
evaluate the natural language understanding and decision-making capabilities of
NatBDI. Our results indicate that even adding a small amount of natural lan-
guage plans when combined with the modified BDI reasoning cycle for natural

BDI Agents in Natural Language Environments 3

language environments can dramatically increase the reasoning performance of
the agent over pure machine learning agents.

2 Background

This section briefly introduces the necessary background on the topics used in our
approach. We start with an overview of how the BDI model works and define a
simple BDI agent interpreter. Then, we discuss natural language inference and its
relevance in defining entailment relations, a crucial feature used in our approach
to allow BDI agents to operate in natural language environments. Finally, we
describe the ScienceWorld benchmark environment, which we use as an example
throughout the paper as well as in the experiments.

2.1 BDI Model

The BDI model is a framework to develop autonomous rational agents in terms
of components that correspond to mental attitudes [31]. Inspired by Bratman’s
philosophical work [6], the BDI framework introduces a practical reasoning ap-
proach that consists of three basic mental attitudes: beliefs, desires, and inten-
tions. Beliefs represent the information about the environment according to the
agent’s perceptions, which describe its current state. During the agent execution,
the agent observes events from the environment and might include new beliefs or
update the existing ones in a belief base data structure. Desires represent states
of affairs that the agent aims to achieve to satisfy its design goals. Intentions rep-
resent the agent’s commitment to achieve a specific subset of its desires, acting as
a filter for the agent’s reasoning to account for practical decision-making made
by agents with physical limits to its computing power. As such, it serves not
only as a concrete explanation for how real humans (with limited brain power)
make decisions, but also as an overall blueprint to design computational agents
running with the limitations of a physical computer. The intention component is
a structure that often consists of a set of instantiated plans adopted by the agent
in order to achieve a subset of its desires. Such plans are a sequence of steps that
the agent executes to achieve a specific desire. Most practical agent architec-
tures use a plan library that includes either full plans available to the agent, or
planning rules that allow the agent to generate plans during runtime [28]. The
BDI model is arguably the most widely used model to implement rule-based
autonomous agents in the agent-oriented programming paradigm [8].

Implementations of the BDI architecture often encode the agent’s behaviour
as plan-rules to instruct it on achieving particular (implicit) goals given specific
context conditions [22]. In this context, plans represent a sequence of actions
the agent should perform given a set of conditions (i.e., the context of the plan)
entailed by the agent’s belief base, which are usually developed manually by
humans. Such terminology is useful in developing and debugging autonomous
agents in a variety of domains [24] since this architecture describes information
about the agent’s beliefs. Algorithm 1 illustrates a simple reasoning cycle for a

4 A.Y. Ichida et al.

Algorithm 1 A simple BDI Agent Interpreter.
1: procedure agentInterpreter(E ,B,L, I)
2: while true do
3: E ← updateEvents(E)
4: B ← updateBeliefs(E ,B)
5: I ← selectPlans(E ,B,L, I)
6: E ← executeIntention(I, E)

BDI agent interpreter [31] that includes four steps. Line 3 collects the events the
agent observes from the environment. The agent uses these events to update its
beliefs in Line 4. Given changes in its belief base, the agent proceeds to select
plans in Line 5 from its plan library based on the current events, beliefs, and
intentions. Plan selection also includes instantiation of intention structures that
help the agent keep track of its progress. Finally, in Line 6 the agent executes
intentions by selecting one of the instantiated intentions and executing the as-
sociated actions in the environment, which then leads to the generation of new
events, closing the agent-environment loop.

2.2 Natural Language Inference

Automated reasoning and inference are essential topics in AI in general, and
in autonomous agents in particular [11]. Natural Language Inference (NLI) is a
widely-studied natural language processing task that is concerned with deter-
mining the inferential relation between a premise p and a hypothesis h [20]. In
NLI, both p and h are sentences written in natural language. The challenge of
this task differs from formal deduction in logic since natural language deals with
informal reasoning [20]. The emphasis of NLI is on aspects of natural language
such as lexical semantic knowledge and dealing with the variability of linguistic
expression. Unlike the crisp relations between logical sentences in formal logic,
NLI can define the logical relation in multiple ways: entailment, neutral and con-
tradiction. Given a pair of premise-hypothesis p and h, the entailment relation
occurs when h can be inferred from p [20]. When h infers the negation of p, the
pair results in a contradiction. Otherwise, if none of these relations can be in-
ferred, the relation of p and h is neutral. In this paper, NLI serves as the critical
connection between the traditionally logic-based machinery of the BDI model
and the unstructured and often ambiguous world of natural language data.

Given the premise sentence “Several airlines polled saw costs grow more than
expected, even after adjusting for inflation” and the hypothesis “Some companies
in the poll reported cost increases” In the NLI context, this example is a valid
entailment inference because any person that interprets p would likely accept
that h implies in the information of p. Even though it is a valid NLI classification,
h is not a strict logical consequence of p due to the fact that p informs that airline
companies saw the growth of the cost, not necessarily reporting the growth
of the cost. This example reflects the informal reasoning of the task definition
which relates to the ambiguity found in natural language [20].

BDI Agents in Natural Language Environments 5

Agent Mental StateObservation

Belief
Base

Plan: take metal pot

If you see the cupboard
closed and you are in

the kitchen, then:

- open cupboard

- take the metal pot

Plan Selection

Candidate Plans:

- take metal pot

has candidate plan

No candidate plan

Intentions

Fallback

Policy

- open cubboard

- take the metal pot

Action Steps

Natural Language Inference

model

Plan
Library

This room is called the kitchen. In it, you
see:

	 a counter. On the counter is: a bowl
(containing a red apple, a banana, an
orange, a potato),

	 a cupboard. The cupboard door is
closed.

	 a freezer. The freezer door is closed.

	 a thermometer, currently reading a
temperature of 10 degrees celsius

You also see:

	 A door to the hallway (that is open)

	 A door to the outside (that is closed)

Fig. 1. Diagram illustrating the NatBDI architecture to handle and actuate over nat-
ural language environments.

2.3 ScienceWorld Text Environment

ScienceWorld is an interactive textual environment that simulates engines for
thermodynamics, electrical circuits, matter and chemistry reactions, and bio-
logical processes at the level of a standard elementary school science curricu-
lum [34]. Such challenge aims to evaluate the agent’s reasoning about transi-
tioning between locations and object interaction. It also aims to test the agent’s
understanding about combining distinct objects considering their state of mat-
ter. Current Large Language Models (LLM) can produce responses in question
answering tasks as an information-retrieval system. However, Wang et al. [34]
show that they still have limitations regarding reasoning about scientific knowl-
edge to act or to plan to solve a task. The ScienceWorld environment evaluates
the agent’s capacity to use declarative scientific knowledge to act or plan in
order to solve tasks that humans can perform with ease (e.g., melting ice). It
includes 30 benchmarks that are split into 10 topics such as the change of state
(boiling, melting, freezing), taking measurements (thermometer, boiling point),
classification (find a non-living thing, find a plant), etc. For example, in changing
matter state, one of the benchmarks is about boiling. In order to boil the water,
the agent should walk around the map to find a metal pot, search for water,
and use a stove. Here, the agent should use prior knowledge about an object’s
state to choose a metallic cup instead of a wooden one since it will contact fire.
Furthermore, the agent should use the thermometer object to be aware of the
boiling point of water since waiting too long can turn the water into vapour.

3 Agent Architecture Overview

This section describes the NatBDI architecture for natural language environ-
ments. We focus on the three key components of the BDI architecture and how
we link them to a knowledge representation using pretrained language models.
Section 3.1 describes a novel reasoning cycle to select and execute plans written
in natural language using NLI to connect plan descriptions to the knowledge
stored in the belief base. Section 3.2 describes belief formulation from natural

6 A.Y. Ichida et al.

language observations. Key to the operation of NatBDI is the way in which a
designer writes plans in natural language for NatBDI’s plan library, which we
describe in Section 3.3. Finally, we describe a fallback mechanism in Section 3.5
that allows an agent to select plans when the plan library fails to provide appli-
cable plans.

3.1 Reasoning Cycle

At each interaction with the environment, the agent perceives the state as a
natural language description of the agent’s current location. The agent stores
such natural language descriptions of the environment in its belief base, which
it then uses to make inferences over its course of action. Once the agent updates
its belief base, it selects plans from its plan library, which can generate plans in
one of two ways. Either the plan library contains human-designed plans to react
to new perceptions, which we call plan-rules, or the agent resorts to fallback
plans that the agent learns using reinforcement learning. Plan-rules react to
user-defined context conditions that the agent checks using natural language
inference. Figure 1 summarises the components of the agent reasoning cycle and
their interaction.

We leverage the BDI event-driven approach to develop our agent reasoning
cycle organised in the following steps. First, the agent receives the task descrip-
tion representing the main goal similar to the goal-addition event. Second, the
agent then search in its plan library a plan that has the received goal as the
triggering event and compares whether the current belief base entails the plan
context. In this phase, the agent retrieves plan options from the plan library
based on its current belief base. Given a plan selected by the agent, the in-
terpreter analyses the steps contained in the plan body, which can be another
goal-addition event or an action to be executed. In cases where no candidate plan
is available, or the agent did not achieve the main goal, the reasoning cycle gen-
erates a failure in the decomposition process. Finally, at the end of Algorithm 1,
if such execution returns a failure to the main reasoning cycle, the agent then
starts to use fallback plans to attempt to deal with the failure.

3.2 Belief Base

Our approach to represent the natural language belief base follows the traditional
BDI model, which organises the information perceived into literals in its mental
model, except that our agent receives observations written in natural language
instead of symbols. Since the belief base comprises simple sentences in natural
language, it helps humans scrutinise the agent’s mental state and understand
the behaviour of the agent.

In our work, the agent maintains its belief base as a list of natural language
sentences describing its observations about the current environment state. Ob-
servations consist of perceptions from the environment described in natural lan-
guage. Specifically, our approach splits the full textual observation into distinct

BDI Agents in Natural Language Environments 7

phrases to associate each sentence to a particular belief to be added in the be-
lief base. Such sentences describe environment effects perceived from previous
actions, objects seen by the agent in the current location, and items carried in
the agent’s inventory (these are all common observations in the ScienceWorld
text environment). For instance, the textual observation described in Figure 1
is a paragraph that informs multiple facts of the current state of the environ-
ment. The agent represents each sentence as a single belief through splitting
the text into a list of sentences. Given that, “You see a freezer” and “You see a
thermomether” represent two distinct beliefs. In contrast with traditional BDI
approaches where the agent checks for belief additions or deletions in the belief
base, our agent simply rewrites the old belief base state with the new textual
information perceived after performing an action. The belief base integrity relies
on how the textual environment represents the effects of performed actions. Since
ScienceWorld provides full state descriptions, our agent updates its belief base
by overwriting old beliefs with ones perceived to avoid inconsistencies caused by
action effects.

3.3 Natural Language Plan Library

Besides interacting with a world described in natural language, our agent ar-
chitecture relies on a natural language interface for agent developers to encode
plan-rules using natural language in order to facilitate the plan development for
humans who are non-expert in an agent programming language (e.g., AgentS-
peak [28]). We represent natural language plans in a controlled natural lan-
guage [13] that contains clearly described conditions and beliefs. A controlled
natural language is a subset of a natural language more amenable to automated
processing, which we use to allow programmers to intersperse unrestricted natu-
ral language within the structure of a plan rule. In contrast with approaches that
translate the controlled natural language plans into a symbolic representation
(i.e., Prolog clauses) [13], our architecture reasons directly over natural language
plan-rules during plan selection.

While NatBDI uses a controlled natural language in its definition, we in-
terpret this language as following a similar structure to AgentSpeak plan-rules.
Thus, each plan rule consists of a statement for the intended goal, a statement
of the plan context, and a set of sentences defining the plan body. The goal is a
sentence describing the task that the agent intends to perform. The plan context
consists in a set of natural language sentences linked with the word “AND” to
represent the logical conjunction between such statements. More formally, plans
in our controlled natural language follow the template in Listing 1.1:

Listing 1.1. Template for a plan written in NatBDI controlled natural language.

IF <goa l statement>
CONSIDERING <plan context statements>
THEN:
<plan body>

8 A.Y. Ichida et al.

In order to accept hierarchical plans, the agent interpreter accepts sentences
representing actions or subgoals in the plan body. Here subgoals work similarly
to goal addition events in AgentSpeak. In the plan body section, we include
the keyword “PLAN TO” to distinguish sentences that encode a goal addition,
which is analogous to a goal addition event, with sentences describing actions.
Much like in AgentSpeak, an agent keeps track of subgoals in a stack data
structure. As the agent adopts new goals, they are stacked, and as it achieves
them, they are unstacked. Such keyword helps the agent interpreter disambiguate
between actions sent to the environment, and the internal reasoning for recursive
subgoals. Actions consist of an imperative sentence that describes what the agent
should perform in the environment.

For example, the natural language plans described in Listing 1.2 shows how
a human can explicitly instruct the agent to achieve particular tasks. In the first
plan, a human knows that the metal cup is in the cupboard which is initially
closed and instructs the agent on how to obtain the metal cup using a natural
language plan. The triggering event is the goal “get the metal pot” and it should
be considered as plan candidate if the context of the plan is true, that is, if the
agent is in the kitchen and it is seeing a closed cupboard. The plan body consists
of two actions written in natural language instructions that will be interpreted
by the textual environment. First the agent should open the cupboard and then
it should take the metal pot. The second plan triggers when the goal is to melt
water. This illustrates part of a plan that requires a subgoal (get the metal pot).

Listing 1.2. Plans in natural language to pick the metal pot and melt water in Sci-
enceWorld.

IF your task i s to get the metal pot
CONSIDERING you are in the k i t chen

AND you see the cupboard c l o s ed
THEN:
open the cupboard ,
take the metal pot

IF your task i s to melt water
THEN:
PLAN TO get the metal pot
p ick up thermometer
. . .

3.4 Entailment with Natural Language Beliefs

Most implementations of the BDI architecture select plans based on a context
condition that, when entailed by the agent’s belief base, trigger plan adoption.
This creates a filter for options to be executed by the agent afterwards [22].
Concretely, if the belief base logically entails the conditions described in a plan,
then the agent commits to executing its steps within an intention structure.
Since the agent deals with natural language information, computing entailment

BDI Agents in Natural Language Environments 9

within natural language becomes a key challenge. We leverage an NLI model
grounded by machine learning to emulate the entailment operation over natural
language information.

In the BDI model, the plan-selection mechanism assumes that the entailment
inference consists of a Boolean value indicating whether a plan is candidate/ap-
plicable or not. Recent approaches develop natural language inference models as
a three-way classification method generating the following three logical relations:
entailment, contradiction, and neutral [36]. Since our main objective is to infer
whether the beliefs entail a specific plan context, we unify the contradiction and
neutral classes as a non-entailment relation. Thus, we use the natural language
inference model as a binary classifier (i.e., returning a Boolean signal) under a
closed-world assumption.

In practice, to infer whether the belief base entails a plan context, we need to
compare if each sentence in the plan context has at least one belief that entails
it. Specifically, the agent needs to compare every belief in belief base with all
plan contexts to decide if such plan should be selected. Since beliefs and the plan
context consist of multiple sentences, NatBDI processes the entailment inference
between these two structures by creating the Cartesian product between both
sentence sets. Formally, given two set of sentences representing the belief base
B and C respectively, we create a matrix represented as C × B in Equation 1.
For each belief b ∈ B and plan context c ∈ C pair contained in the C × B, we
employ the natural language inference represented as nli function in Equation 2
resulting in a Boolean matrix Ei,j . Matrix Ei,j contains all inference results for
each i-th plan context and j-th belief.

Mi,j = C × B = {(ci, bj) | c ∈ C ∧ b ∈ B} (1)

Ei,j = {nli(ci, bj) | (ci, bj) ∈ Mi,j} (2)

To check whether a plan is a candidate to be selected by the agent, we apply the
disjunction given the Boolean values in Ei,j for each i-th context with all j-th
beliefs. Given each Boolean generated by the disjunction, we apply the conjunc-
tion for each c resulting in a single Boolean value. Thus, we define entailment of
a plan context from the belief base in NatBDI as in Equation 3.

B |= C .
=

∧
ci∈C

ci
∨
bj∈B

bj (3)

For example, consider a state with a belief base that contains the following sen-
tences: “this room is called the kitchen” and “you see a cupboard, the cupboard
door is closed”. An inference between such belief base and the plan with context
composed of the sentences “you are in the kitchen” and “you see a closed cup-
board” works as follows. First, we compute the values of matrix Ei,j with i-th
row representing context sentences and j-th column representing belief sentences
as follows:

[
T F
F T

]
. Belief “this room is called the kitchen” entails context “you are

in the kitchen” while “you see a cupboard, the cupboard door is closed” entails
“you see a closed cupboard”. The first disjunction operation between all beliefs

10 A.Y. Ichida et al.

Algorithm 2 Fallback policy plan formulation.
1: procedure fallbackPolicy(E ,B,LFB , I)
2: bd ← LFB(E ,B)
3: I ← I ∪ ⟨E0, bd⟩
4: return I

with each context results in the following matrix:
[
T
T

]
and, consequently, the con-

junction operation results in the scalar Boolean
[
T
]
, which is the final result of

the entailment inference, and therefore we can conclude that the information in
the belief base entails the plan context. Consequently, this is a candidate plan.

3.5 Fallback Policy

Previous research on dealing with BDI plan selection as a learning problem
includes learning context conditions [32], as well as modelling a BDI agent as one
interacting in a Partially Observable Markov Decision Process (POMDP) [30]. A
POMDP is a model of stochastic environment in which the agent perceives states
indirectly via observations. Both models work with belief concepts to represent
the agent state since POMDP agents store the states in a set of belief states while
BDI agents use their belief base component for the same role. Such work shows
that the BDI procedure of selecting and executing a plan can be implemented as a
POMDP state estimator. Given such correspondence, we integrate a mechanism
for plan selection trained by reinforcement learning to generate a plan when
there is no candidate plan in plan library (i.e., the natural language inference
fails to produce candidates).

To produce plans consistent with the plan-rules format we use for the plan
library, we train a fallback policy that can generate, for each possible context, a
plan body consisting of a single action. Thus, at each turn the agent either runs
steps from a human-defined plan-rule, or an action from the fallback policy. Since
the fallback policy might contain ineffective plans due to training limitations,
we keep track of the number of times the agent responds with the same plan for
the same event, which we control with an l parameter. Given a predefined step
limit l, the agent uses the policy LFB with the current events E and belief base
B to predict which action should be executed, and create a single-action plan
body resulting in a new intention. Algorithm 2 details how we use the fallback
policy to generate new intentions.

4 Evaluation

In this section, we describe our experiments to evaluate NatBDI in reason-
ing tasks within a textual environment. We conduct the experiments using a
Python implementation of the architecture3 on the ScienceWorld environment.

3 Available at https://github.com/yukioichida/nat-bdi

https://github.com/yukioichida/nat-bdi

BDI Agents in Natural Language Environments 11

First, we detail the implementation settings to execute our experiments. Second,
we compare the effects of using plan-rules to help agents in reasoning tasks con-
sidering prior knowledge introduced by humans through plans written in natural
language. Finally, we show how different NLI models affect the inference perfor-
mance in sentence pairs.

4.1 Experiment Setup

Our experiments use two different types of tasks based on the performance of
current approaches in the ScienceWorld environment (Section 2.3) to evaluate
NatBDI. These tasks consist of the melt task, which requires the agent to melt
an element, and the find-non-living-thing task, which requires the agent to take
a non-living object and put it into a container detailed in the task description.
All current approaches [27,38,1,9,14,34] perform poorly on the “melt” task since
it requires more sophisticated reasoning than “find-non-living-thing”. The first
usually requires the agent to find and take the target element, put it into the
appropriate container (e.g., metal pot) and find a device to melt the element (e.g.,
stove or blast furnace). By contrast, the second task only requires the agent to
take a non-living thing and put it into a container, requiring simpler reasoning
skills. We choose such tasks to evaluate the agent’s performance in a simple task,
which even using a reinforcement learning agent can result in a reasonable score,
and a hard task to show the gains of including natural language plans to deal
with the limitation of current machine learning techniques. Each task variation
contains different environment settings, which varies from having objects placed
in different locations to having different objects in task description (i.e., “melt
water”, “melt mercury”, etc).

For each experiment, we initialise the plan library by analysing annotated
sequence of steps provided by the ScienceWorld authors in both tasks. Since
the agent can begin a task in different locations, we generate navigation plan-
rules automatically by running multiple navigation tasks where we use heuristic
search to find nearly optimal trajectories, and collecting all trajectories found
into plan-rules. In these navigation plan-rules, we use the location at turn t− 1
as plan context and include in the plan body a move action to the next location
at turn t. We use the task description provided by the environment as the main
goal, which is analogous to the initial goal-addition event in AgentSpeak.

In order to evaluate our approach, we integrate into NatBDI existing LLMs
pretrained with NLI datasets. For the experiments described in Section 4.2 we
use the roberta-large language model [18] trained using the MultiNLI [36] dataset
provided by the HuggingFace repository [37]. We explore the use of other LLMs
such as Bert [12] and MiniLM [35] to evaluate the effects of using smaller lan-
guage models in Section 4.3. We execute all the inference steps described in
Section 3.4 in a batch approach to leverage the computational resources using a
single NVIDIA RTX 3060 GPU.

Our fallback policy uses Deep Reinforcement Relevance Network (DRRN) [14],
the current state-of-the-art for ScienceWorld. We trained a DRRN policy for each
task following the Wang et al. method [34] to use it as a fallback policy when

12 A.Y. Ichida et al.

Table 1. Comparison of our natural language BDI agent in two tasks in the Sci-
enceWorld environment with different plan library sizes. We show the average scores
obtained and the average number of actions performed in each phase out of all task
variations (Var). The task “find” represents the “find-non-living-thing” task The bold
font identifies which approach (BDI or DRRN) contributed more to the total score.

Task Var Episodes Number
plan-rules

Score
(Total)

Score
(BDI)

Score
(DRRN)

Number
BDI actions

Number
RL actions

0 0.66 0.00 0.66 0.00 50.00
8 0.75 0.30 0.45 3.33 38.00

find 75 242 15 0.84 0.58 0.26 6.25 24.00
23 0.91 0.79 0.12 7.64 13.33
30 0.98 0.98 0.00 9.19 4.00
0 0.03 0.00 0.03 0.00 50.00
4 0.14 0.11 0.03 5.11 44.44

melt 9 457 7 0.36 0.34 0.02 10.89 33.33
10 0.57 0.56 0.01 17.11 22.22
13 0.67 0.67 0.00 20.89 16.67

no candidate plan-rule can be found. To avoid infinite execution of ineffective
plans from a poorly learned policy, whenever we select a fallback plan, we keep
track of the number of times the agent repeatedly recurs to the fallback policy
for the same event. If the agent keeps recurring to the fallback policy over a fixed
number of times, we deem the intention to have failed. In our experiments we
define a 50 turn limit for the fallback policy phase.

4.2 Experiment Results

In this section, we describe the scores that our natural language BDI agent
obtains. First, we measure the BDI agent performance when varying the number
of plan-rules in the agent’s plan library for each of the two tasks we selected from
the ScienceWorld environment. We show the effects in the overall score and its
progress by adding natural language plans designed by humans. Second, we
evaluate the trade-off between plan-rules and the DRRN fallback policy, and the
impact that the fallback policy can have depending on the size and quality of
the plan-rules library. Finally, we evaluate using a DRRN by itself, that is, an
agent with no plan-rules that relies only on the fallback policy.

Table 1 shows the metrics collected when executing the agent in multiple
variations for each task, 75 variations for the first task and 9 for the second. The
number of episodes seen in DRRN training for “find-non-living-thing” and “melt”
are 242 and 457 respectively. The total score represents the accumulated reward
received by the agent averaged over a number of variations of the task in the same
environment, which we then break down the score obtained from using plan-rules
and from using fallback policy. The agent achieves a large improvement in score
by adding natural language plan-rules when compared to the score obtained
by using only the DRRN policy (i.e., setup with 0 plan-rules). Even a small
number of plan-rules leads the BDI agent to outperform the DRRN alone by a
large margin in the hardest task (melt). Introducing natural language plan-rules

BDI Agents in Natural Language Environments 13

also leads to fewer actions to achieve a goal as a result of our natural language
plan-rules encoding nearly optimal trajectories in their plan body to solve the
task.

Our experiment shows that DRRN policy by itself could not deal with im-
portant aspects of the environment or reason over the task in both tasks, which
corroborates the results presented in [34]. Particularly, in the “melt” task, the
DRRN-only agent receives a score greater than zero due to random move ac-
tions that send the agent to the exact location of the target element. Although
the trained policy could achieve better scores in the “find-non-living-thing”, its
performance is due to the environment which rewards the agent with a 0.5 score
by solely taking a non-living-object, which is more predominantly featured in
the environment than living objects.

The BDI agent achieves good scores relying on manually designed natural
language plan-rules, but it does not obtain a perfect score since we use a limited
number of plan-rules, which do not cover all possible variations of the tasks. This
is a more realistic setting, as we would not expect the developer to be able to
create all possible plan-rules. For example, in the task “melt”, there are variations
in which some objects are not working (i.e., broken stove), which requires the
agent to plan more dynamically to find an alternative plan at runtime. Our
expectation here was that the fallback policy could be useful, however, due to
the low performance of DRRN in the “melt” task this was not the case. If future
reinforcement learning algorithms improve the performance over the state-of-
the-art, then they can be used as a fallback policy in NatBDI to achieve even
better performance.

100 200 300 400 500 600
Episodes

0.2

0.4

0.6

0.8

1.0

Av
g

Sc
or

e

Task: find-non-living-thing
plan-rules

0
8
15
23
30

100 200 300 400 500 600
Episodes

0.0

0.2

0.4

0.6

Av
g

Sc
or

e

Task: melt
plan-rules

0
4
7
10
13

Fig. 2. Scores per episodes when scaling the number of plan-rules.

Figure 2 illustrates the score evolution throughout training episodes, given a
specific number of natural language plan-rules. In this experiment, we generate
multiple DRRN-trained policies, distinguishing them by the number of trained
episodes to evaluate the training efficiency and compare it within NatBDI as a
fallback policy component. Regarding the “find-non-living-thing” task, the policy
efficiency improves throughout the training phase, but it is prone to overfitting.
This is apparent in the dip in performance shown in the results with more train-
ing episodes. In the “melt” task, the number of training episodes do not seem

14 A.Y. Ichida et al.

Table 2. Results of using different LLMs for NLI. The following columns describe
them: model size (Params); accuracy on MultiNLI matched test set (MNLI-m); score
obtained using NatBDI; average number of actions performed, errors raised and plan-
rules (Plans) used; lexical overlap computed on entailment pairs (LO(E)); average word
number in belief (|B|) and context (|C|) sentences; and total sentence pairs processed.
The task “find” represents the “find-non-living-thing” task. We highlight the best scores
in bold font.

Model Params MNLI-m Task Score Actions Errors Plans LO(E) |B| |C| Pairs
MiniLM 22M 82.2 find 0.69 7.65 0.37 2.57 0.64 7.84 4.20 1076

(L6) melt 0.23 8.78 1.00 3.59 1.34 10.96 4.83 691
Bert 110M 84.6 find 0.84 9.61 0.20 2.72 0.60 8.40 4.16 1075

(base) melt 0.33 11.44 0.67 3.56 1.16 11.12 4.80 690
Roberta 355M 90.8 find 0.98 9.19 0.08 2.84 0.40 7.30 4.19 1076
(large) melt 0.67 20.89 0.33 5.67 1.21 11.06 5.25 790

to affect the performance of DRRN. This makes sense since we have seen in
previous results that DRRN performs very poorly in this task, and therefore
increasing the number of training episodes here has no discernible effect.

4.3 Natural Language Inference Model Analysis

As a final set of experiments, we measure the impact of using different LLM im-
plementations for NLI in NatBDI. We evaluate three LLMs with distinct num-
ber of parameters fine-tuned with the MultiNLI dataset to analyse the effects of
the model size in ScienceWorld tasks. We organise the NLI model experiment
in the following points: First, we provide details about each LLM by describ-
ing their sizes and performance on NLI dataset used in its pretraining process.
Second, we detail the scores obtained in each ScienceWorld task for each LLM.
Finally, we discuss the use of sentences processed using lexical overlap to mea-
sure the contrast between beliefs and plan context sentences. Table 2 shows the
performance obtained by NatBDI using all plan-rules for each task, that is,
with the configuration described in the last row of each task from Table 1.

NatBDI executes plans hierarchically, following the traditional reasoning
cycle of BDI agents. Therefore, errors encountered during plan decomposition
will abort the plan-selection process, which turns later subgoals unreachable.
Incorrect inferences between beliefs and plan contexts results in incorrect plan
selection, which leads the agent to select irrelevant plans or to an early stop
due to not finding any candidate plan. In fact, the roberta-large results score
higher than smaller language models such as bert-base and MiniLM, in both
the MultiNLI matched test set and in the two tasks from the ScienceWorld
text environment. This indicates that larger models can provide better NLI, and
consequently, lead to more successful plan selection and execution when used for
NLI in NatBDI. In contrast, the use of bert-base and MiniLM models result in
fewer inferences since such models could not progress as well as roberta-large in
the plan decomposition, which translates to fewer plans executed in general.

To measure the difficulty in inferring entailment between the belief base and
the plan context, we compute the lexical overlap between sentences used as

BDI Agents in Natural Language Environments 15

premise and hypothesis to count the number of identical words between the
pair. Given a sentence pair consisting of a belief and a context, we compute
the number of words contained in beliefs that are absent in the plan context.
In cases where lexical overlap is high between the premise and the hypothesis,
the inference tends to easily infer entailment relation since both sentences are
similar and may express the same idea. For example, it is trivial for an NLI
model to infer entailment between the belief-context pair “you see a pot” and
“you see a container” due to the large lexical overlap (i.e., 3 words). Hence, in
such cases, sophisticated language models exploit shallow syntactic heuristics
to infer logical entailment between sentences [21]. Our results show that the
amount of lexical overlap is low when comparing to the average word number in
both sentences considering our manually designed plan-rules. The average lexical
overlap in entailment sentence pairs is lower than the average number of plan
context words since most beliefs contain more words.

5 Related Work

This section covers related work on NLI, the use of natural language in BDI
agents, and natural language representation of beliefs.

There is a wide-range of pretrained NLI models openly available that are
trained on well-known datasets such as SNLI [4] and MNLI [36]. Both datasets
consist of premises and hypotheses represented exclusively at the sentence level.
Regardless of the assumptions of these common datasets, state-of-the-art ap-
proaches to NLI fine tune pretrained language models that process a diverse
range of text lengths in the pretraining task. Clark et al. [10] introduce a model
that leverages pretrained language models to make inferences over facts consist-
ing of multiple sentences. In this case, the model informs whether a statement
is true given a set of facts and rules described in natural language. While tra-
ditional NLI models classifies pairs of sentences into either having entailment/-
contradiction or an undetermined relation (neutral), we enforce the closed-world
assumption. Thus, whenever we fail to find entailment, we assume the context
query is false.

Few approaches combine BDI agents and natural language, such as in [17],
and more recently in [19] and in [16]. In [17], the authors propose using sEnglish
(system-English, a controlled natural language) to provide a natural language
environment for programming BDI agents to be deployed in robotic applications.
Their approach relies on ontologies and translations from sEnglish to agent pro-
grams in the Jason [3] implementation of AgentSpeak. In [19], they combine
natural language processing for translating natural language sentences into a
logical form, first-order logic as a cognitive reasoner, and BDI agent as a reac-
tive reasoner in a cognitive chatbot framework called AD-Caspar. Neither [17]
nor [19] use LLMs or exploit natural language inference for plan selection as we
do in NatBDI.

In [16], they leverage component correspondences between task-oriented di-
alogue systems and BDI architecture to develop a BDI conversational agent. In

16 A.Y. Ichida et al.

contrast with our approach, which infers logical entailment directly over natural
language information through LLMs, they use a function to translate utterances
into symbolic beliefs.

As an agent interacts with the environment over time, its belief base can
grow arbitrarily large with newly perceived information. However, since the ob-
servations are natural language information, it is difficult to detect whether a
belief overwrites information about previous states. Atzeni’s work [2] applies
case-based reasoning in textual environments by memorising past problems and
their solutions to solve new problems. Similar to this approach, in future work
we envision a memory component within the belief base to store temporal infor-
mation perceived by the agent. This component must deal with the scalability
issue, since the belief base can grow, at best, linearly throughout time. Since our
agent stores vectorised information of natural language beliefs, summarising text
by pruning irrelevant past information can alleviate problems in the expansion
of the belief base.

6 Conclusion

In this paper, we develop the seminal approach for an entire class of BDI-based
agent architectures that use machine learning components to deal with natural
language information. Combining a natural language interface and reasoning ca-
pabilities with the folk psychology abstraction of mental states in the BDI model
provides the dual benefit of improving human understanding of the underlying
machine learning models and the agent’s handling of noisy information. We lever-
age the BDI model, a well-known approach to agent-oriented programming, to
develop agents with mental states amenable to being scrutinised. The natural
language plan library allows humans to create plans to customise the agent’s be-
haviour and helps avoid unintended conduct. Unlike modern PTLM approaches
that solely use a black-box model approach to reason over natural language, we
explored the BDI architecture to uncover the agent’s mental state to understand
its behaviours. Our empirical results show that even a few manually designed
plan-rules in natural language can substantially improve performance of agents
working in textual environments. This is especially true for tasks that require
longer horizon reasoning or complex causality.

Future work includes a number of extensions. First, our experiments currently
comprise a subset of the ScienceWorld benchmarks, given the need to develop
plans for each task. Thus, we will expand our experimentation to the entire
ScienceWorld suite, as well as to other textual environments such as Jericho [14].
Second, given the fast pace of development in reinforcement learning, we aim
to improve fallback policies. Finally, while fallback policies help mitigate the
need to develop a plan library for every single situation faced by the agent, our
key direction for future work lies on learning plan-rules from data. This should
allow human developers to co-design an agent’s plan library in an efficient and
transparent way.

BDI Agents in Natural Language Environments 17

References

1. Ammanabrolu, P., Hausknecht, M.: Graph constrained reinforcement learning for
natural language action spaces. In: International Conference on Learning Repre-
sentations (2020)

2. Atzeni, M., Dhuliawala, S.Z., Murugesan, K., Sachan, M.: Case-based reasoning
for better generalization in textual reinforcement learning. In: International Con-
ference on Learning Representations (2021)

3. Bordini, R.H., Wooldridge, M., Hübner, J.F.: Programming Multi-Agent Systems
in AgentSpeak using Jason. John Wiley & Sons, Chichester, UK (2007)

4. Bowman, S.R., Angeli, G., Potts, C., Manning, C.D.: A large annotated corpus
for learning natural language inference. In: Proceedings of the 2015 Conference on
Empirical Methods in Natural Language Processing. pp. 632–642. Association for
Computational Linguistics (Sep 2015)

5. Brafman, R.I., Tennenholtz, M.: R-MAX - A general polynomial time algorithm
for near-optimal reinforcement learning. Journal of Machine Learning Research 3,
213–231 (2002)

6. Bratman, M.E.: Two faces of intention. Philosophical Review 93, 375–405 (1984)
7. Bratman, M.E., Israel, D.J., Pollack, M.E.: Plans and resource-bounded practical

reasoning. Computational Intelligence 4(4), 349–355 (1988)
8. Cardoso, R.C., Ferrando, A.: A review of agent-based programming for multi-agent

systems. Computers 10(2), 16 (2021)
9. Chen, L., Lu, K., Rajeswaran, A., Lee, K., Grover, A., Laskin, M., Abbeel, P.,

Srinivas, A., Mordatch, I.: Decision transformer: Reinforcement learning via se-
quence modeling. In: Advances in Neural Information Processing Systems. vol. 34,
pp. 15084–15097 (2021)

10. Clark, P., Tafjord, O., Richardson, K.: Transformers as soft reasoners over lan-
guage. In: Proceedings of the Twenty-Ninth International Joint Conferences on
Artificial Intelligence. pp. 3882–3890 (2020)

11. Cohen, P.R., Levesque, H.J.: Intention is choice with commitment. Artificial Intel-
ligence 42(2-3), 213–261 (1990)

12. Devlin, J., Chang, M.W., Lee, K., Toutanova, K.: BERT: Pre-training of deep
bidirectional transformers for language understanding. In: Proceedings of the 2019
Conference of the North American Chapter of the Association for Computational
Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers).
pp. 4171–4186. Association for Computational Linguistics (Jun 2019)

13. Fuchs, N.E., Schwitter, R.: Specifying logic programs in controlled natural lan-
guage. arXiv (arXiv:cmp-lg/9507009) (1995)

14. Hausknecht, M., Ammanabrolu, P., Côté, M.A., Yuan, X.: Interactive fiction
games: A colossal adventure. In: Proceedings of the AAAI Conference on Arti-
ficial Intelligence. pp. 7903–7910 (2020)

15. Hirschberg, J., Manning, C.D.: Advances in natural language processing. Science
349(6245), 261–266 (2015)

16. Ichida, A.Y., Meneguzzi, F.: Modeling a conversational agent using bdi framework.
In: Proceedings of the 38th ACM/SIGAPP Symposium on Applied Computing. p.
856–863 (2023)

17. Lincoln, N., Veres, S.M.: Natural language programming of complex robotic BDI
agents. Journal of Intelligent & Robotic Systems 71(2), 211–230 (2013)

18. Liu, Y., Ott, M., Goyal, N., Du, J., Joshi, M., Chen, D., Levy, O., Lewis, M.,
Zettlemoyer, L., Stoyanov, V.: Roberta: A robustly optimized bert pretraining
approach. arXiv (arXiv:1907.11692 [cs.CL]) (2019)

18 A.Y. Ichida et al.

19. Longo, C.F., Riela, P.M., Santamaria, D.F., Santoro, C., Lieto, A.: A framework
for cognitive chatbots based on abductive–deductive inference. Cognitive Systems
Research 81, 64–79 (2023)

20. Maccartney, B.: Natural Language Inference. Ph.D. thesis, Stanford University,
Stanford, CA, USA (2009)

21. McCoy, T., Pavlick, E., Linzen, T.: Right for the wrong reasons: Diagnosing syn-
tactic heuristics in natural language inference. In: Proceedings of the 57th Annual
Meeting of the Association for Computational Linguistics. pp. 3428–3448. Associ-
ation for Computational Linguistics (Jul 2019)

22. Meneguzzi, F., de Silva, L.: Planning in bdi agents: a survey of the integration of
planning algorithms and agent reasoning. Knowledge Engineering Review 30(1),
1–44 (2015)

23. Nye, M., Tessler, M., Tenenbaum, J., Lake, B.M.: Improving coherence and con-
sistency in neural sequence models with dual-system, neuro-symbolic reasoning.
In: Advances in Neural Information Processing Systems. vol. 34, pp. 25192–25204
(2021)

24. Padgham, L., Winikoff, M.: Developing intelligent agent systems: A practical guide,
vol. 13. John Wiley & Sons, Inc. (2005)

25. Qian, P., Unhelkar, V.: Evaluating the role of interactivity on improving trans-
parency in autonomous agents. In: Proceedings of the 21st International Confer-
ence on Autonomous Agents and Multiagent Systems. p. 1083–1091 (2022)

26. Qiu, X., Sun, T., Xu, Y., Shao, Y., Dai, N., Huang, X.: Pre-trained models for nat-
ural language processing: A survey. Science China Technological Sciences 63(10),
1872–1897 (2020)

27. Raffel, C., Shazeer, N., Roberts, A., Lee, K., Narang, S., Matena, M., Zhou, Y., Li,
W., Liu, P.J.: Exploring the limits of transfer learning with a unified text-to-text
transformer. The Journal of Machine Learning Research 21(1), 5485–5551 (2020)

28. Rao, A.S.: AgentSpeak(L): BDI agents speak out in a logical computable language.
In: Proceedings of the 7th European Workshop on Modelling Autonomous Agents
in a Multi-agent World. vol. 1038, pp. 42–55 (1996)

29. Rudin, C., Radin, J.: Why are we using black box models in ai when we don’t need
to? a lesson from an explainable ai competition. Harvard Data Science Review 1(2)
(2019)

30. Schut, M., Wooldridge, M., Parsons, S.: On partially observable mdps and bdi
models. In: Foundations and Applications of Multi-Agent Systems, pp. 243–259.
Springer (2002)

31. de Silva, L., Meneguzzi, F., Logan, B.: Bdi agent architectures: A survey. In: Pro-
ceedings of the Twenty-Ninth International Joint Conference on Artificial Intel-
ligence. pp. 4914–4921. International Joint Conferences on Artificial Intelligence
Organization (7 2020)

32. Singh, D., Sardina, S., Padgham, L., Airiau, S.e.p.: Learning context conditions
for bdi plan selection. In: Proceedings of the 9th International Conference on Au-
tonomous Agents and Multiagent Systems. pp. 325–332 (2010)

33. Valmeekam, K., Marquez, M., Olmo, A., Sreedharan, S., Kambhampati, S.: Plan-
bench: An extensible benchmark for evaluating large language models on planning
and reasoning about change. arXiv (arXiv:2206.10498 [cs.CL]) (2023)

34. Wang, R., Jansen, P., Côté, M.A., Ammanabrolu, P.: Scienceworld: Is your agent
smarter than a 5th grader? arXiv (arXiv:2203.07540 [cs.CL]) (2022)

35. Wang, W., Wei, F., Dong, L., Bao, H., Yang, N., Zhou, M.: Minilm: Deep self-
attention distillation for task-agnostic compression of pre-trained transformers. In:
Advances in Neural Information Processing Systems. vol. 33, pp. 5776–5788 (2020)

BDI Agents in Natural Language Environments 19

36. Williams, A., Nangia, N., Bowman, S.: A broad-coverage challenge corpus for sen-
tence understanding through inference. In: Proceedings of the 2018 Conference of
the North American Chapter of the Association for Computational Linguistics: Hu-
man Language Technologies, Volume 1 (Long Papers). pp. 1112–1122. Association
for Computational Linguistics (Jun 2018)

37. Wolf, T., Debut, L., Sanh, V., Chaumond, J., Delangue, C., Moi, A., Cistac, P.,
Rault, T., Louf, R., Funtowicz, M., Davison, J., Shleifer, S., von Platen, P., Ma, C.,
Jernite, Y., Plu, J., Xu, C., Scao, T.L., Gugger, S., Drame, M., Lhoest, Q., Rush,
A.M.: Transformers: State-of-the-art natural language processing. In: Proceedings
of the 2020 Conference on Empirical Methods in Natural Language Processing:
System Demonstrations. pp. 38–45 (Oct 2020)

38. Yao, S., Rao, R., Hausknecht, M., Narasimhan, K.: Keep CALM and explore:
Language models for action generation in text-based games. In: Proceedings of
the 2020 Conference on Empirical Methods in Natural Language Processing. pp.
8736–8754 (2020)

	BDI Agents in Natural Language Environments

