

vGOAL: a GOAL-based Specification Language for Safe Autonomous Decision-Making

DistriNet Research Group Authors: Yi Yang, Tom Holvoet Presenter: Yi Yang

Motivating Example

- Safe Autonomous logistic system
 - Safe (high-level) decision-making
 - Safe (low-level) code execution
 - Safe computing hardware

Research Scope

- Autonomous System
 - Agent-based model
 - Cooperative to achieve goals
 - Competing for critical resources
- Safe autonomous decision-making[2]
 - Avoids deliberately pursuing unsafe behaviors based on its beliefs and goals.
- Safe autonomous decision-making component: [1]
 - High-level discrete controller
 - Work independently and closely with low-level continuous controller

2. Louise Dennis and Michael Fisher. 2021. Verifiable autonomy and responsible robotics. Software Engineering for Robotics (2021), 189–217.

^{1.} Louise A Dennis, Michael Fisher, Nicholas K Lincoln, Alexei Lisitsa, and Sandor M Veres. 2016. Practical verification of decision-making in agent-based autonomous systems. Automated Software Engineering 23 (2016), 305–359.

Safe Autonomous Decision-Making

vGOAL Interpreter[4, 5]

PCTL Model Checking Process [3]

- 3. Yi Yang, Tom Holvoet, Making Model Checking Feasible for GOAL, 10th International Workshop on Engineering Multi-Agent Systems, 10th International Workshop on Engineering Multi-Agent Systems, Auckland, New Zealand (Online), May 9-10, 2022
- 4. Yi Yang, Tom Holvoet, Generating Safe Autonomous Decision-making in ROS, Fourth Workshop on Formal Methods for Autonomous Systems, Proceedings FMAS2022 ASYDE2022, volume 371, pages 184-192, Berlin, Germany, September 26-27, 2022
- 5. Yang, Y., Holvoet, T.: Safe autonomous decision-making with vGOAL. In: Advances in Practical Applications of Agents, Multi-Agent Systems, and Cognitive Mimetics. The PAAMS Collection. Springer (2023)

Safe Autonomous Decision-Making

vGOAL Interpreter[4, 5]

PCTL Model Checking Process [3]

vGOAL Specifications

- 3. Yi Yang, Tom Holvoet, Making Model Checking Feasible for GOAL, 10th International Workshop on Engineering Multi-Agent Systems, 10th International Workshop on Engineering Multi-Agent Systems, Auckland, New Zealand (Online), May 9-10, 2022
- 4. Yi Yang, Tom Holvoet, Generating Safe Autonomous Decision-making in ROS, Fourth Workshop on Formal Methods for Autonomous Systems, Proceedings FMAS2022 ASYDE2022, volume 371, pages 184-192, Berlin, Germany, September 26-27, 2022
- 5. Yang, Y., Holvoet, T.: Safe autonomous decision-making with vGOAL. In: Advances in Practical Applications of Agents, Multi-Agent Systems, and Cognitive Mimetics. The PAAMS Collection. Springer (2023)

Why a new specification language?

- Safe-by-generation decisions
 - no extra formal verification to ensure safety
- A purely logical approach
 - No hard-encoded component for error handling
- Easy integration with ROS
 - More applicable to the existing ROS-based applications

vGOAL Specification Language

- A purely logical language (first-order logic)
 - Choose GOAL as the basis
 - Expressive for specifying autonomous decision-making
 - Logic-driven decision-making generation mechanisms
 - Suitable for formal verification
 - Verifiable GOAL
 - Safe-by-generation decisions
 - Automated PCTL model checking process
- Automated reasoning
 - No negative recursion
 - A finite domain of each variable
 - Quantified variables

vGOAL Specifications

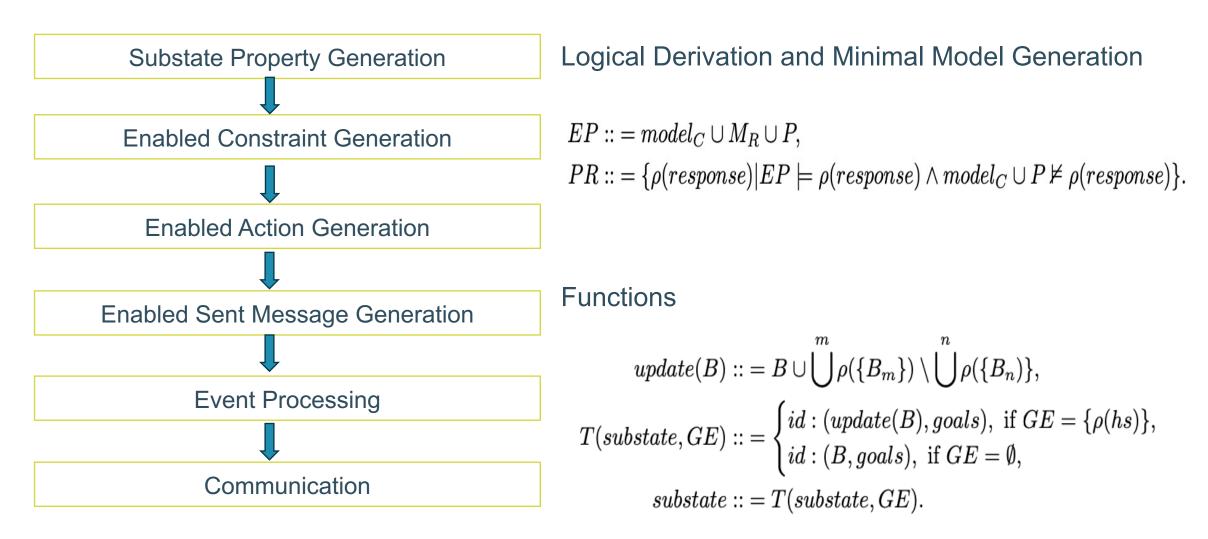
```
goal_base3 = ['delivered(2,3)']
goal_base4 = ["delivered(2,4)"]
goals3 = [goal_base3, goal_base4]
safety = {"A1": ["safe1","safe2"], "A2": ["safe1","safe2"], "A3": ["safe1","safe2"]}
A1 = DG.Agent("A1", belief_base1, goals1)
A2 = DG.Agent("A2", belief_base2, goals2)
A3 = DG.Agent("A3", belief_base3, goals3)
C = DG.Agent("C", belief_base4, goals4)
Agents = [A1, A2, A3, C]
"exists l. battery(l) and equal(l,1) implies safe1",
"exists l. battery(l) and equal(l,2) implies safe1",
"exists p. at(p) and not at(9) implies safe2",
```

vGOAL Specifications

```
"E1 implies nonfatal",
"E2 implies nonfatal",
```

"E3 implies nonfatal",

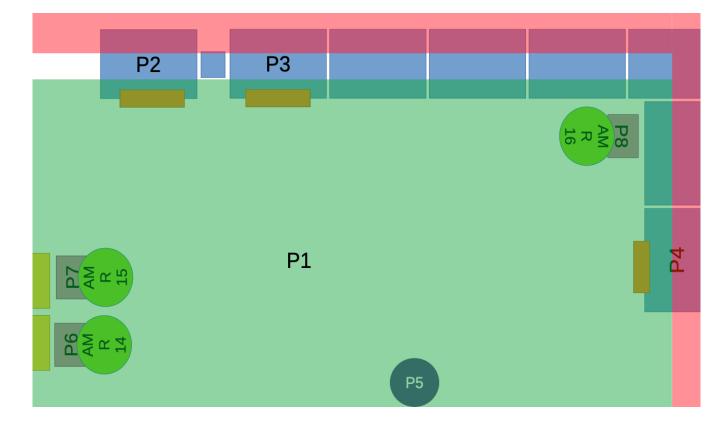
```
"E4 implies fatal",
```


```
"fatal implies drop all",
"fatal implies delete all",
"nonfatal and not goal_change implies drop all",
"nonfatal and not goal_change implies adopt located(charging)",
"nonfatal and not goal_change implies adopt at(5)",
"nonfatal and not goal_change implies insert goal_change",
"nonfatal and E1 implies delete E1",
"nonfatal and E2 implies delete E2",
"nonfatal and E3 implies delete E3",
```

Formal Syntax

id ::= string $b ::= around_atom$ $q ::= ground_atom$ $B_{sensor} ::= B_{sensor} \cup \{b\} | \emptyset$ $B_{prior} ::= B_{prior} \cup \{b\} | \emptyset$ $B ::= B_{sensor} \cup B_{nrior}$ $G ::= G \cup \{q\} | \emptyset$ goals ::= G : goals [[]]p ::= predicate $neg_p ::= \neg p$ R ::= all | all other | id $msg_s ::= send:(R,p)|send!(R,p)|send?(R,p)$ $msg_r ::= sent:(R, p)|sent!(R, p)|sent?(R, p)$ $M_S ::= M_S \cup \{msg_s\} | \emptyset$ $M_R ::= M_R \cup \{msq_r\} | \emptyset$ Agent :: = $(id, B, goals, M_S, M_R)$ $MAS ::= MAS \cup \{Agent\}|\emptyset$

 $D ::= D \cup \{constant\} | \emptyset$ $hs ::= hs \wedge p | hs \wedge neg_p | True$ $rule_1 ::= hs \rightarrow p$ $qrule_1 ::= \forall x.qrule_1 | \forall x \in D.qrule_1 | \exists x.qrule_1 | rule_1$ $K ::= K \cup \{qrule_1\} | K \cup \{qround_atom\} | \emptyset$ $lh ::= a - qoal(p) \wedge hs$ $rule_2 ::= lh \rightarrow p$ $qrule_2 ::= \forall x.qrule_2 | \forall x \in D.qrule_2 | \exists x.qrule_2 | rule_2$ $C ::= C \cup \{qrule_2\} | \emptyset$ $A ::= A \cup \{qrule_1\} | \emptyset$ $rule_3 ::= hs \rightarrow hs$ $grule_3 ::= \forall x.grule_3 | \forall x \in D.grule_3 | \exists x.grule_3 | rule_3$ $E ::= E \cup \{qrule_3\} | \emptyset$ $rule_{A} ::= hs \rightarrow msg_{*}$ $qrule_4 ::= \forall x.qrule_4 | \forall x \in D.qrule_4 | \exists x.qrule_4 | rule_4$ $S ::= S \cup \{qrule_4\} | \emptyset$ update :: = insert(b)|delete(b)|adopt(g)|drop(g) $response ::= msg_s | update$ $rule_5 ::= msq_r \wedge hs \rightarrow response$ $qrule_5 ::= \forall x.qrule_5 | \forall x \in D.qrule_5 | \exists x.qrule_5 | rule_5$ $rule_6 ::= lh \rightarrow response$ $qrule_6 ::= \forall x.qrule_6 | \forall x \in D.qrule_6 | \exists x.qrule_6 | rule_6$ $rule_7 ::= hs \rightarrow response$ $qrule_7 ::= \forall x.qrule_7 | \forall x \in D.qrule_7 | \exists x.qrule_7 | rule_7$ $P ::= P \cup \{qrule_5\} | P \cup \{qrule_6\} | P \cup \{qrule_7\} | \emptyset$


Operational Semantics

Case Study: Autonomous Logistic System

Task

- Three autonomous mobile robots deliver four workpieces from one of the picking-up stations (P3 and P4) to the delivery station (P2).
- Requirements
 - Autonomous decision-making generation
 - Real-time information
 processing
 - Error-handling
 - Goal redistribution
 - Competing requests resolution
 - Safety assurance

Case Study: Autonomous Mobile Robots

- Initial Goal Distribution
 - Agent 1: 1 delivery goal
 - Agent 2: 1 delivery goal
 - Agent 3: 2 delivery goal
- Error Handling
 - Non-fatal error: abandon the current delivery goal, and go to P5.
 - Fatal error: redistribute the remaining goals of the agent to other active agents.
- Safety Requirements
 - Safe battery level
 - Safe location
- Demo Video:
 - Error-free run: <u>Demo_No_Error_Run.mp4</u>
 - A run including a non-fatal error: <u>Demo_including_a_non_fatal_errror.mp4</u>
 - A run including a fatal error: <u>Demo_including_a_fatal_error.mp4</u>

Efficiency (vGOAL Interpreter)[5]

• Experiments

- over 100 runs
- Each run: 6-8 min
- Sensor updates: every 0.5s
- Total decisions: 72000-96000

Phenomena

- The sensor updates are mostly repeated compared with the last sensor information.
- In most cases, 0 or 1 decision is generated.

Repeated	Active Agent	Decision	Error	Safety Checking(s)	Execution Time(s)
Yes	-	-	-	0	4.28E-5
No	3	2	No	2.10E-6	0.82
No	3	1	No	1.02E-6	0.64
No	3	0	No	0	0.69
No	2	1	No	1.02E-6	0.49
No	2	0	No	0	0.48
No	1	1	No	1.02E-6	0.38
No	1	1	Fatal	1.02E-6	0.36
No	1	1	Non-Fatal	1.02E-6	0.41
No	1	0	No	0	0.35

Observation

- Handles repeated information quickly
- Execution time increases almost linearly with the number of active agents.
- Not much time difference to generate 0 or 1 decision.
- Time cost for safety checking is little.
- The specification order affects execution time.

5. Yang, Y., Holvoet, T.: Safe autonomous decision-making with vGOAL. In: Advances in Practical Applications of Agents, Multi-Agent Systems, and Cognitive Mimetics. The PAAMS Collection. Springer (2023) Note: The information on this slide is sourced from [5].

Discussion

- Compared with GOAL, Gwendolen, and AgentSpeak (Jason)
 - No extra formal verification process for safety checking
 - Little additional computation for safety checking.
 - No hard-encoded component for error handling.
 - Python implementation (easy integration to ROS).
 - The least performatives in the communication.
 - Efficiency?

Future Work

- Correctness of the interpreter for vGOAL (program verification, partly proved using SAT solver)
- Investigate how to integrate safe reinforcement learning (safe shielding) with the vGOAL interpreter, focusing on safe motion planning.
- Empirical analysis with GOAL, Gwendolen, and AgentSpeak (Jason)

Reference

- 1.Louise A Dennis, Michael Fisher, Nicholas K Lincoln, Alexei Lisitsa, and Sandor M Veres. 2016. Practical verification of decision-making in agent-based autonomous systems. Automated Software Engineering 23 (2016), 305–359.
- 2.Louise Dennis and Michael Fisher. 2021. Verifiable autonomy and responsible robotics. Software Engineering for Robotics (2021), 189–217.
- 3.Yi Yang, Tom Holvoet, Making Model Checking Feasible for GOAL, 10th International Workshop on Engineering Multi-Agent Systems, 10th International Workshop on Engineering Multi-Agent Systems, Auckland, New Zealand (Online), May 9-10, 2022
- 4.Yi Yang, Tom Holvoet, Generating Safe Autonomous Decision-making in ROS, Fourth Workshop on Formal Methods for Autonomous Systems, Proceedings FMAS2022 ASYDE2022, volume 371, pages 184-192, Berlin, Germany, September 26-27, 2022
- 5.Yang, Y., Holvoet, T.: Safe autonomous decision-making with vGOAL. In: Advances in Practical Applications of Agents, Multi-Agent Systems, and Cognitive Mimetics. The PAAMS Collection. Springer (2023)