
Towards Forward Responsibility in Belief-Desire-Intention Agents

<u>Rafael C. Cardoso</u>, Angelo Ferrando, Joe Collenette, Louise A. Dennis, Michael Fisher

29th of May, 2023

1/14

29th of May, 2023

Forward-looking responsibilities: agents use responsibilities to aid in the process of task selection

Related Work

Backward-looking responsibilities

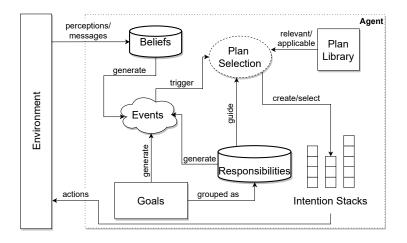
Yazdanpanah, V., Dastani, M., Jamroga, W., Alechina, N., Logan, B.: Strategic responsibility under imperfect information. In: AAMAS 2019

Accountability

 Baldoni, M., Baroglio, C., Micalizio, R., Tedeschi, S.: Robustness based on accountability in multiagent organizations. In: AAMAS 2021

Missions in JaCaMo

Boissier, O., Bordini, R.H., Hübner, J.F., Ricci, A., Santi, A.: Multi-agent oriented programming with JaCaMo. In: Science of Computer Programming 78(6), 747–761, 2013


Maintenance goals

Duff, S., Thangarajah, J., Harland, J.: Maintenance goals in intelligent agents. In: Computational Intelligence 30(1), 71–114, 2014 Introduction

Responsibility-Aware Agents

- Focus on extending the syntax, grammar, and operational semantics of AgentSpeak(L) and Jason
- Belief-Desire-Intention agents
 - Belief: knowledge about the world
 - Desire: goals to achieve
 - Intention: means of achieving committed goals
- Responsibility: task containing a collection of goals that relate to an overarching topic
- Agents can adopt/drop responsibilities, which in turn trigger events

Reasoning Cycle

Introduction

Grammar

agent	::= bb rb pl
bb	$::= belief_1 \dots belief_n (n \ge 0)$
	$::= \operatorname{resp}_1 \ldots \operatorname{resp}_n h$ $(n \ge 0)$
pl	$::= \operatorname{plan}_1 \ldots \operatorname{plan}_n \qquad (n \ge 1)$
belief	::= at
g	::= at
\mathbf{at}	$::= P(t_1,\ldots,t_n) \qquad (n \geq 0)$
resp	$::= P([g_1,, g_n], na, rec) (n \ge 1)$
h	::= hierarchy($[hl_1 \dots hl_n]$) $(n \ge 1)$
hl	$::= [P_{resp_1} \dots P_{resp_n}] \qquad (n \ge 1)$
plan	$::=$ te : {context} \leftarrow body
te	::= +!g +belief -belief
	+/resp $-/resp$
$\operatorname{context}$	$::= \operatorname{ct1} op$
$\operatorname{ct1}$::= belief ¬belief <u>resp</u>
	$\neg resp$ $ct1 \land ct1$
body	$::= \operatorname{bd1}, op = op$
bd1	::= +!g action bbupdate
	$\underline{rbupdate} = bd1; bd1$
	$::= \operatorname{A}(\operatorname{t}_1,\ldots,\operatorname{t}_n) \qquad (\operatorname{n} \geq 0)$
bbupdate	$::= + belief \mid - belief$
rbupdate	::= +/resp $-/resp$

Domestic robot with BDI agent for decision-making

Example of a responsibility: cleaning([clean(bathroom), clean(bedroom)], 0, 1)

Corresponding plan:

+/cleaning : { ⊤ } ← +!clean(bathroom), +!clean(bedroom), -/cleaning.

Operational Semantics

 Inference rules define transitions between agent configurations

$$Conf = \langle agent, C, M, T, rule \rangle$$

- agent = belief base, responsibility base, and plan library
- C = \langle Intention stacks, Events, Actions \rangle
- M = messages (in and out)
- T = various temporary information (e.g. relevant plans, a particular event, intention selected for execution, etc.)
- rule = current reasoning cycle step

Inference Rules

(

Adopting a responsibility:

$$(\mathsf{AResp}) \underbrace{\begin{array}{l} T_{si} = i[\mathit{head} \leftarrow +/\mathit{resp}; \mathit{body}] \\ \hline \langle \mathit{agent}, C, M, T, \mathit{AResp} \rangle \rightarrow \langle \mathit{agent'}, C', M, T', \mathit{ClrInt} \rangle \\ where & \mathit{agent'_{rb}} = (\mathit{agent_{rb}} \setminus \mathit{resp}) \cup \mathit{UpdateAdopt(resp)} \\ C'_E = C_E \cup \{+/\mathit{resp}\} \\ C'_I = C_I \setminus \{T_{si}\} \\ T'_{res} = \mathit{resp} \end{array}}$$

Dropping a responsibility:

$$(\mathsf{DResp}) \frac{T_{si} = i[head \leftarrow -/resp; body]}{\langle agent, C, M, T, DResp \rangle \rightarrow \langle agent', C', M, T', DropInt \rangle}$$

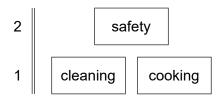
$$where \qquad agent'_{rb} = (agent_{rb} \setminus resp) \cup UpdateDrop(resp)$$

$$C'_E = C_E \cup \{-/resp\}$$

$$C'_I = C_I \setminus \{T_{si}\}$$

$$T'_{res} = resp$$

Hierarchy of Responsibilities


- Defines priority ordering between responsibilities
- Implicit values, starts at 1 at the bottom-most hierarchical order, and increases by 1 at each hierarchical level
- Changes to the intention selection function to prioritise intention stacks that have responsibilities at a higher hierarchical level
- Can lead to starvation

Hierarchy Example

Domestic robot example

cleaning ([clean(bathroom), clean(bedroom)],0,1)
safety ([locks(frontdoor), search(triphazards)],0,2)
cooking ([cook(breakfast), makelist(grocery)],0,1)

hierarchy ([[safety],[cleaning,cooking]])

Shared responsibilities

- Shared responsibilities are responsibilities that appear in more than one agent's responsibility base
- Agents keep up-to-date information about shared responsibilities using broadcast communication via *tell(adopt(resp))* or *tell(drop(resp))* speech act
- Agents that try to adopt a responsibility after the recommended number has been reached will be added as backup
- Backup agents add the respective responsibility to the idle hierarchical level

Conclusion

- Individual agent view of forward-looking responsibilities
 - Hierarchy of responsibilities and its impact in intention selection
 - Shared responsibilities using communication

Future Work

- Implementation in a BDI language
- Consider different relations between responsibilities, such as conflicts

rafael.cardoso@abdn.ac.uk

29th of May, 2023