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Motivation

Causal models [Pearl, 2000, Halpern and Pearl, 2005, Halpern, 2016] provide us a good tool
for reasoning about causal dependencies.

While multi-agent interaction is usually modelled via Action semantics, i.e. Concurrent Game
Structures.
We’d like to use causal models for modeling multi-agent interaction in complex organizational
settings, where agents’ decisions may depend on other agents’ decisions as well as the
environment.
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Preliminaries: Causal Models

Definition (Causal Model)

A signature is a tuple S = (U ,V,R), where U is a finite set of exogenous variables, V is a
finite set of endogenous variables, and R associates with every variable Y ∈ U ∪ V a finite
nonempty set R(Y ) of possible values for Y , also called range of Y . A causal model over a
signature S is a tupleM = (S,F), where F associates with every endogenous variable X ∈ V
a function FX such that FX maps ×Z∈(U∪V−{X})R(Z) to R(X ). That is, FX describes how
the value of the endogenous variable X is determined by the values of all other variables in
U ∪ V. The values of exogenous variables U are determined outside of the model and usually
referred to as a context u⃗.
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Preliminaries: Causal Models

Intuitively, FX describes some structural equation that specifies how the value of the
endogenous variable X is determined by (and depends on) the values of all other variables in
(U ∪ V) − {X}. For example, in a causal model with three variables X ,Y and Z , the function
FX (Y ,Z) = Y + Z defines the structural equation X = Y + Z , while FY (X ,Z) = Z defines the
structural equation Y = Z , etc. The later equation demonstrates that Y does not depend on
X .

In this work, we deal with recursive models only. Intuitively, a causal modelM is recursive, if
for any context there is a unique solution of the equations inM.
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Preliminaries: Causal Models

Example (Rock-throwing)

Suzy and Billy both pick up rocks and throw them at a bottle (encoded as ST=1 and BT=1
respectively). Suzy’s rock gets there first, shattering the bottle. We denote the fact that
Suzy’s rock hits the bottle as SH=1. Similarly, BH=0 denotes the fact that Billy’s rock does
not hit the bottle. Finally, BS=1 means ’the bottle shatters’. We also know that because both
throws are perfectly accurate, Billy’s would have shattered the bottle had it not been
preempted by Suzy’s throw.

Here our endogenous variables V are {ST ,BT ,SH,BH,BS}. Our exogenous variables
U = {UST ,UBT} determine the values of ST and BT variables respectively. For all
Y ∈ (U ∪ V), R(Y ) = {0,1}. Structural equations are defined as follows:

● SH=ST;

● BH=(BT∧¬SH);
● BS=(SH∨BH).
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Preliminaries: Dependency graphs

Causal models can be represented as a dependency graph. The nodes of such graph represent
variables U ∪ V (we usually omit exogenous variables from the figures), and edges represent
the dependencies between the variables.

BS

SH

BH

ST

BT

Figure: A dependency graph for the Rock-throwing example.
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Preliminaries: Interventions

Causal models allow us to reason not only about an actual context, but also about
counterfactual scenarios. These counterfactual scenarios can be described by interventions of
the form [Y⃗ ← y⃗](Z = z), where Y⃗ ← y⃗ abbreviates (Y1 ← y1, . . . ,Yk ← Yk) for
Y1, . . . ,Yk ∈ V. We read these formulas as ”if Y⃗ were set to y⃗ , then Z would have a value z”.

The intervention Y⃗ ← y⃗ in a modelM results in an updated modelMY⃗←y⃗ = (S,F Y⃗←y⃗).

Definition (Updated Model)

Given a modelM = (S,F) and intervention Y⃗ ← y⃗ , an updated modelMY⃗←y⃗ = (S,F Y⃗←y⃗) is
such that for all (Y = y) ∈ Y⃗ ← y⃗ and for any assignment Z⃗ = z⃗ of all variables other than

Y ,F Y⃗←y⃗
Y (z⃗) = y . So, F Y⃗←y⃗

Y is a constant function returning y for any input and all F Y⃗←y⃗
X for

X ∉ Y⃗ remain unchanged.
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Definition (Syntax)

Given a signature S = (U ,V,R), a primitive event is a formula of the form X = x , for X ∈ V
and x ∈R(X ). A causal formula (over S) is one of the form [Y1 ← y1, . . . ,Yk ← yk]φ, where
φ is a Boolean combination of primitive events, {Y1, . . . ,Yk} ⊆ V, yi ∈R(Yi).
Language L(C(S)) for S = (U ,V,R) consists of all Boolean combinations of causal formulas,
where the variables in the formulas are taken from V and the sets of possible values of these
variables are determined by R.

Causal formulas from L(C) can be evaluated on a causal settings (M, u⃗) as follows:

Definition (Semantics)

Given a causal settings (M, u⃗), and L(C) formula φ we define ⊧HP relation inductively as
follows:
(M, u⃗) ⊧HP (X = x) iff (X = x) in the unique solution of equations inM for a context u⃗,
(M, u⃗) ⊧HP ¬φ iff (M, u⃗) ⊭HP φ,
(M, u⃗) ⊧HP (φ ∧ ψ) iff (M, u⃗) ⊧HP φ and (M, u⃗) ⊧HP ψ,

(M, u⃗) ⊧HP [Y⃗ ← y⃗]φ iff (MY⃗←y⃗ , u⃗) ⊧HP φ.
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Preliminaries: Action Semantics

Definition (CGS, pointed)

A concurrent game structure (CGS) is a tuple Γ = (AG,Q,Π, π,Act,d ,o), comprising a
nonempty finite set of all agents AG = {1, . . . , k}, a nonempty finite set of states Q, a
nonempty finite set of atomic propositions Π and their valuation π ∶ Q Ð→ P(Π), and a
nonempty finite set of (atomic) actions Act. Function d ∶ AG ×Q Ð→ P(Act)/{∅} defines
nonempty sets of actions available to agents at each state, and o is a (deterministic) transition
function that assigns the outcome state q′ = o(q, (α1, . . . , αk)) to a state q and a tuple of
actions (α1, . . . , αk) with αi ∈ d(i ,q) and 1 ≤ i ≤ k , that can be executed by AG in q. A
pointed CGS is given by (Γ,q), where Γ is a CGS and q is a state in it.

We use Concurrent Game Structures semantics for reasoning about causal models’
transformations, through which agents’ decision-making dependencies (and thereby
organisational structure) may change, and strategic abilities of the agents controlling such
transformations. In order to do this, we need to distinguish agents from the environment in
causal models.
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Translation of Causal Model into CGS

We assume V = Va ∪ Ve , where Va is the set of agent variables and Ve is the disjoint set of
environment variables. A causal modelM = (S,F), given a context u⃗, is translated to a CGS
ΓM = (AG,Q,Π, π,Act,d ,o), as follows

● AG = Va;
● Q = {MX⃗←x⃗ ∣ X⃗ ⊆ Va & x⃗ ∈ ×R(X⃗ )};
● Π = {Y = y ∣ Y ∈ V & y ∈R(Y )};
● π is defined as (Y = y) ∈ π(M′) iff (M′, u⃗) ⊧HP (Y = y) for anyM′ ∈ Q;

● Act = {X ← x ∣ X ∈ Va & x ∈R(X )} ∪ {⊺X ∣ X ∈ Va}, where ⊺X denotes ’no intervention
on X ’;

● d ∶ Va ×Q Ð→R(Act) is defined as d(X ,M′) ⊆ {X ← x ∣ x ∈R(X )} for any X ∈ Va and
M′ ∈ Q;

● o ∶ Q × (ActX1 × ⋅ ⋅ ⋅ ×ActXk
)Ð→ Q for ActXi

= {Xi ← x ∣ x ∈R(Xi)} and {X1, . . . ,Xk} = Va
is such that for anyM1,M2 ∈ Q,M2 ∈ o(M1,ActX⃗ ) iffM

ActX⃗
1 =M2.
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CGS for the Rock-throwing Example

BS

SH

BH

ST

BT

MM
ST←0,BT←0

M
ST←0

M
BT←0

M
ST←0,BT←1

M
ST←1,BT←0

M
ST←1,BT←1

M
BT←1

M
ST←1
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Problems with Interventions

Note that such an intervention (updates) X⃗ ← x⃗ make the agents in X⃗ independent of other
agents as their decision-making functional specifications are now reduced to a constant
function.

It is also clear that interventions [X⃗ ← x⃗] are not the only possible operations modifying F . In
other words, there are more ways to update F instead of replacing some FX ’s with a constant
functions. For example, we can allow agents to modify the value of FX (z⃗) on a specific input
z⃗ . We denote it as X (z⃗)← x , where X ∈ V, x ∈R(X ) and z⃗ is the assignment of all variables
in V except X .
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Arbitrary updates

Definition (Generally updated model)

For any X ∈ Va, any assignment z⃗ of all variables other than X and any x ∈R(X ), let
X (z⃗)← x be a generalized intervention that results in the update FX(z⃗)←x

X of function FX ,

such that FX(z⃗)←x
X (z ′) =

⎧⎪⎪⎨⎪⎪⎩

x if z⃗ ′ = z⃗ ,
FX (z⃗ ′) otherwise;

Let X⃗ (z⃗)← x⃗ denote X1(z⃗)← x1, . . . ,Xk(z⃗ ′)← xk , where same variable from Va can occur
multiple times in X1, . . . ,Xk . For any general intervention X⃗ (z⃗)← x⃗ , an updated model is a

pairMX⃗(z⃗)←x⃗ = (S,F X⃗(z⃗)←x⃗).
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Arbitrary updates

Assume that in the Rock-throwing example we allow Suzy to make an additional action
(act∗): to update FST in such a way that Fact∗

ST (z⃗) = 1 on all inputs z⃗ containing (UST = 1).
Now we can generate a new CGS Γ′ which contains more possible transitions.

MM
ST←0,BT←0

M
ST←0

M
BT←0

M
ST←0,BT←1

M
ST←1,BT←0

M
ST←1,BT←1

M
BT←1

M
ST←1

Now, Suzy can return to the initial state after [ST ← 0] intervention.
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Arbitrary updates

Example

Suppose that there are two agents a1 and a2 who can give an order to the third agent a3.
There are three alternative decisions a1 and a2 may choose: order ’1’, order ’-1’ and not to
give an order ’0’. The only environmental variable P determines the priority of a1’s or a2’s
order. Finally, a3 must choose one of three possible actions: 1, -1 or 0 (to ’wait’).
More formally, our variables are Va = {a1, a2, a3},Ve = {P}. Their ranges are
R(a1) =R(a2) =R(a3) = {−1,0,1},R(P) = {1,2}. The values of a1, a2 and P depend on the
context u⃗, while a3 depends on all of them. The values for a3 are determined as follows
Fa3(z⃗) = 1 if ((P = 1) ∈ z⃗ and (a1 = 1) ∈ z⃗) or ((P = 2) ∈ z⃗ and (a2 = 1) ∈ z⃗), Fa3(z⃗) = 0 if
((P = 1) ∈ z⃗ and (a1 = 0) ∈ z⃗) or ((P = 2) and (a2 = 0)), Fa3(z⃗) = −1 if ((P = 1) ∈ z⃗ and
(a1 = −1) ∈ z⃗) or ((P = 2) ∈ z⃗ and (a2 = −1) ∈ z⃗). So, agent a3 checks who has a priority and
follows the order.

a1

a3

a2

P
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Arbitrary updates

a1

a3

a2

P

Assume that in our context u⃗, a1’s order has a priority over a2’s according to FP , so a3 follows
the a1’s order. Decisions of a1 and a2 are determined by the context, but each of them can

enforce a desirable order by intervention on their variables. So, each of the agents can modify
her response to the environment by updating Fai (in our case by making it a constant

function). Agent a3 depends on all other variables a1, a2 and P. But standard interventions
[X ← x] does not allow a3 to adjust its behavior while staying dependent on a1’s or a2’s orders.
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Arbitrary updates

a1

a3

a2

P

For example, assume that a3 no longer trusts a1 and decides to ignore him completely and
always follow the a2’s order. This situation is clearly not expressible by standard interventions.
But if we extend possible actions of a3 with any combination of a3(z⃗)← x , where x ∈R(a3)
and z⃗ is the assignment of all variables expect a3, then we can encode much more complex

behavior. In particular, let trusta2 be an action encoded as

⋃
z⃗,s.t.(a2=1)∈z⃗

(a3(z⃗)← 1) ∪ ⋃
z⃗ ′,s.t.(a2=0)∈z⃗ ′

(a3(z⃗ ′)← 0) ∪ ⋃
z⃗ ′′,s.t.(a2=−1)∈z⃗ ′′

(a3(z⃗ ′′)← −1)
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Arbitrary updates

For extended set of operations on models we can generate a new CGS Γ∗M as follows:

● AG = Va;
● Q∗ = {MX⃗(z⃗)←x⃗ ∣ X⃗ ⊆ Va & x⃗ ∈ ×R(X⃗ ) & z⃗ ∈ ×Y ∈U∪VR(Y )};
● Π∗ = {Y = y ∣ Y ∈ V & y ∈R(Y )};
● π∗ is defined as (Y = y) ∈ π(M′) iff (M′, u⃗) ⊧′ (Y = y) for anyM′ ∈ Q;

● Act∗ = {X (z⃗)← x ∣ X ∈ Va & z⃗ ∈ ×Z∈(U∪V)/{X}R(Z) & x ∈R(X )} ∪ {⊺X ∣ X ∈ Va}, where
⊺X denotes ’no intervention on X ’;

● d∗(X ,M′) ⊆ {X (z⃗)← x ∣ x ∈R(X ), z⃗ ∈ ×Z∈(U∪V)/{X}R(Z)} for any X ∈ Va andM′ ∈ Q;

● o∗(M′, X⃗ (z⃗)← x⃗) =M′′ iffM′′ =M′X⃗(z⃗)←x⃗ for anyM′,M′′ ∈ Q∗;
This CGS differs from our previous construction, because the set of general interventions
X (z⃗)← x generates a different set of actions Act∗ and a set of possible states Q∗ comparing
to standard interventions X ← x .

27 / 33



Future Work

The presented translation into CGS allows us to deploy a well-studied machinery of ATL- or
SL- style logics for reasoning about agents’ choices of organisational structure (and their
decision making policy).

It also allows us to reason about strategic responsibility or blameworthiness
[Yazdanpanah et al., 2019], [Friedenberg and Halpern, 2019], [Alechina et al., 2017] with
respect to the choices of organisational structures.
Various restrictions of the set of available actions for agents require closer study. The choice of
these restrictions affects the strategic power of the agents and thus determines what these
agents can achieve, which may obviously affect responsibility statements.
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The End
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