Load Balancing in <u>Distributed Multi-Agent Path Finder (DMAPF)</u>

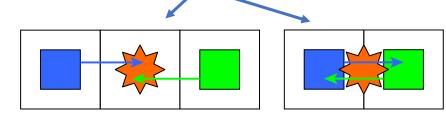
Poom Pianpak¹, <u>Jiaoyang Li²</u>, Tran Cao Son¹

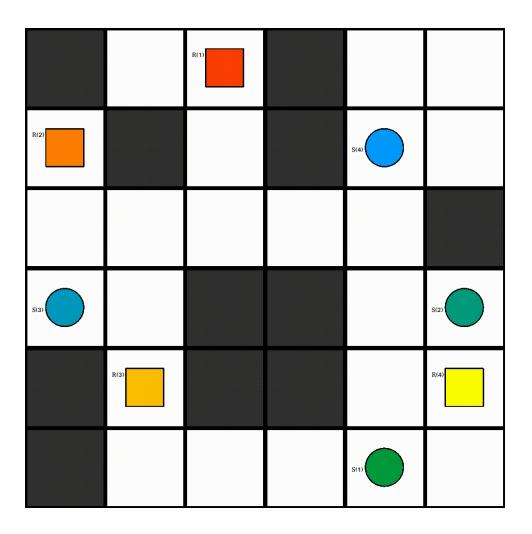
1. New Mexico State University

2. Carnegie Mellon University

EMAS 2023 May 29th, 2023

Multi-Agent Path Finding (MAPF)


Move


<u>Given</u>

- A map (graph): vertices & edges
- Agents
 - Start locations
 - Goal locations

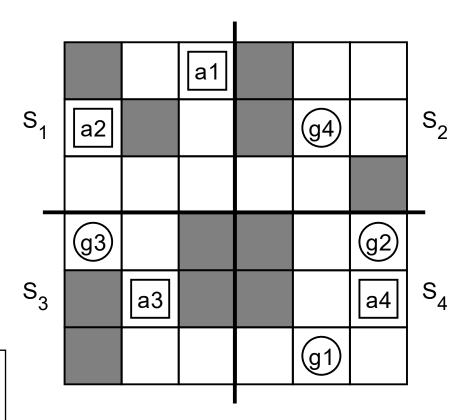
<u>Find</u>

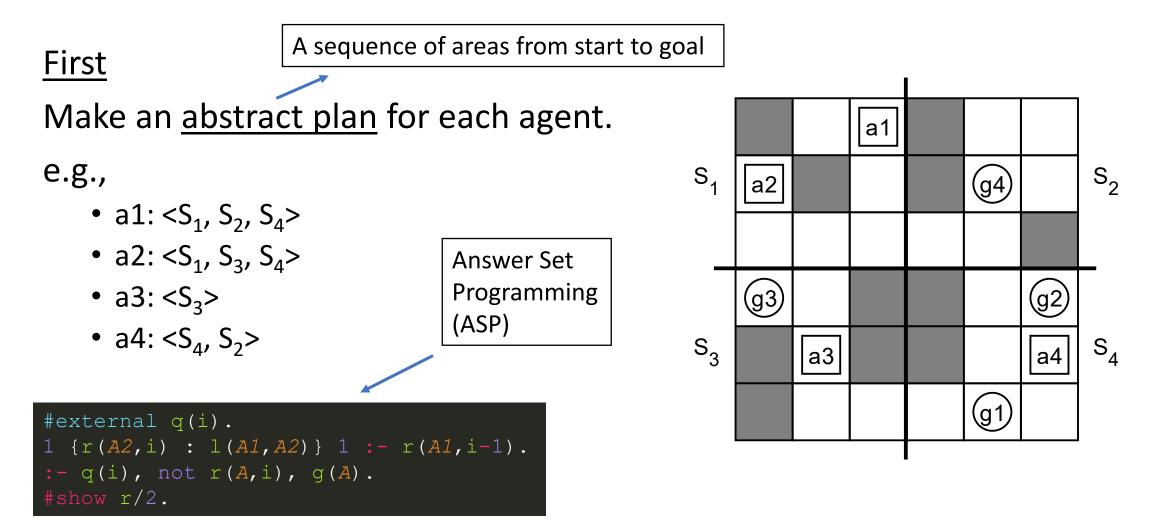
• A sequence of actions Wait that brings agents from I to O without conflicts.

Applications of MAPF

Since 2000s

Since 1996

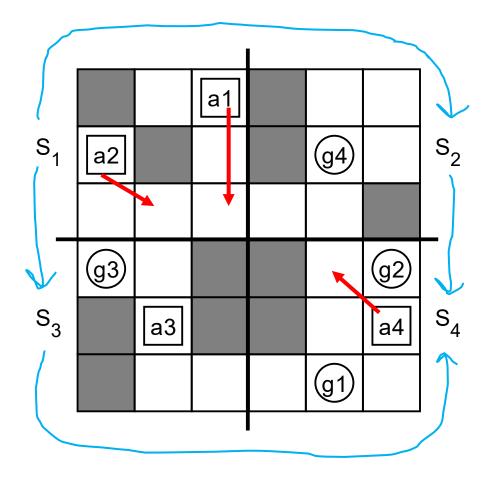

The industries keep growing!


Distributed Multi-Agent Path Finder (DMAPF)

<u>Idea</u>

- 1. Partition a given map into subproblems S₁, ..., S_n.
- 2. Assign each set of subproblems to a solving process.
- 3. Solving processes work together to solve the problem.

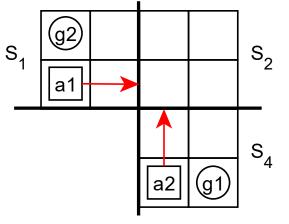
For simplicity, we are going to assume that each of the subproblems $S_1, ..., S_4$ is assigned to a distinct solving process.

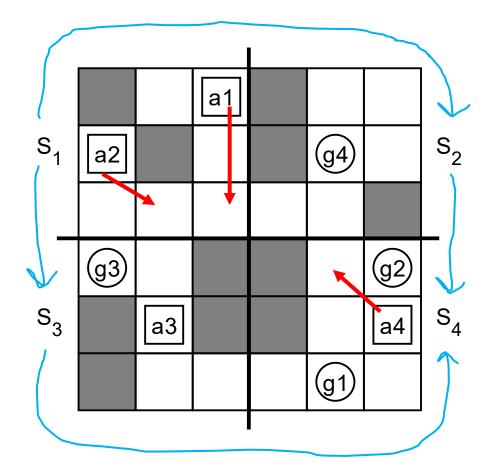


<u>Then</u>

Follow the 3-step protocol:

- 1. Negotiation
 - Decides which agent to migrate, and to which border location.
 - Prioritize agents with higher number of remaining steps in the abstract plans.

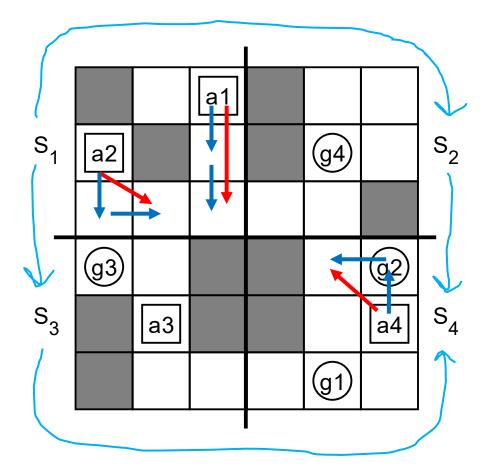



6/25

<u>Then</u>

Follow the 3-step protocol:

- 1. Negotiation
- 2. Rejection
 - Prevents possible conflicts from the negotiation.
 - Regulate the area.

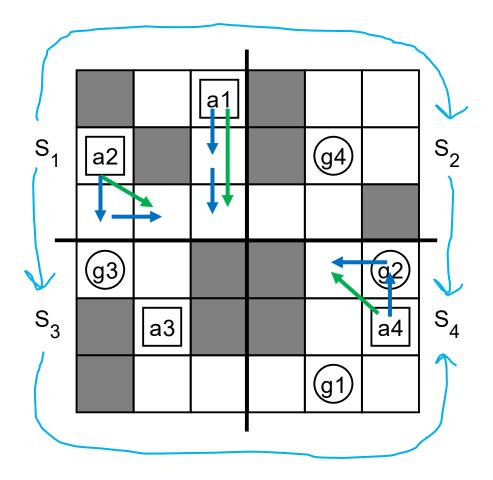


<u>Then</u>

Follow the 3-step protocol:

- 1. Negotiation
- 2. Rejection
- Solving MAPF + Relaxation.

Canceling some migration


8/25

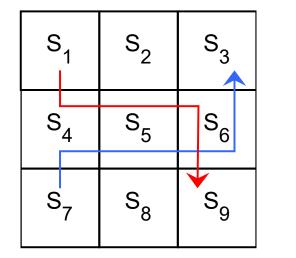
<u>Then</u>

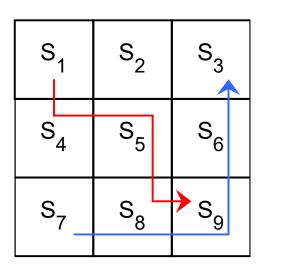
Follow the 3-step protocol:

- 1. Negotiation
- 2. Rejection
- Solving MAPF + Relaxation.
- 3. Confirmation
 - Confirms agents that can actually migrate.

Loop with new start locations.

Reducing Congestion in Abstract Level

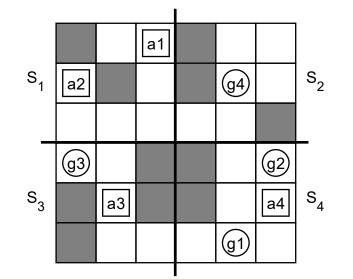

Observation

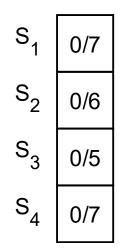

• Using blind search tends to cause congestion in some area.

#agents/#vertices

<u>Idea</u>

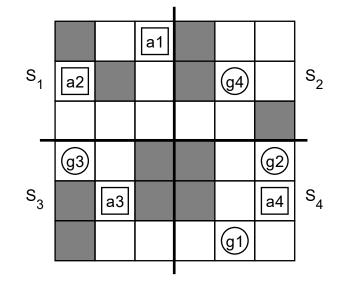
• Search while taking congestion into account.

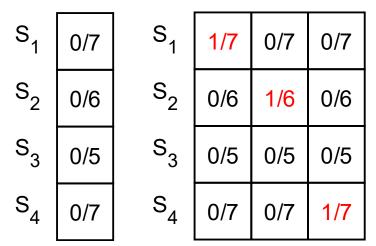



11/25

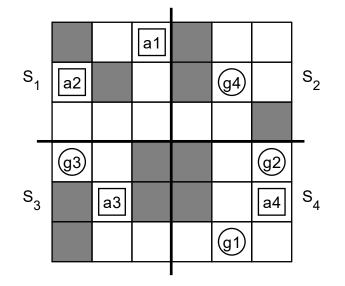
Abstract plans:

• N/A




Abstract plans:

• a1: <S₁, S₂, S₄>

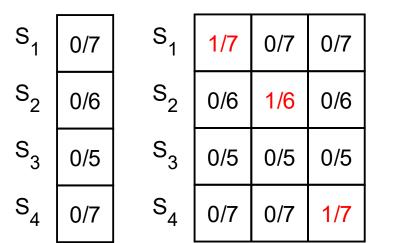

t = 0 1

2

Abstract plans:

- a1: <S₁, S₂, S₄>
- a2: <S₁, S₃, S₄>

t = 0

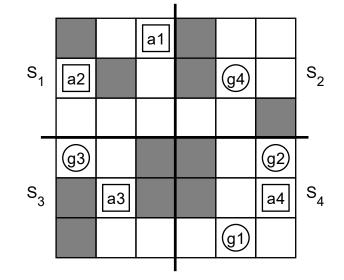

)

t = 0 1

2

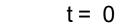
t = 0 1

2



S ₁	2/7	0/7	0/7
S ₂	0/6	1/6	0/6
S3	0/5	1/5	0/5
S ₄	0/7	0/7	2/7

Abstract plans:


- a1: <S₁, S₂, S₄>
- a2: <S₁, S₃, S₄>

• a3: <S₃>

t = 0

t = 0

0 1 2

0/7

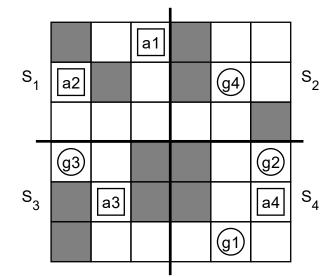
0/6

0/5

1/7

1

2 t = 0 1 2


 S_1 S₁ 1/7 0/7 0/7 S₂ S_2 0/6 0/6 1/6 S_3 S_3 0/5 0/5 0/5 S₄ S_4 0/7 0/7 0/7

S ₁	2/7	0/7	0/7
S ₂	0/6	1/6	0/6
S ₃	0/5	1/5	0/5
S ₄	0/7	0/7	2/7

S ₁	2/7	0/7	0/7
S ₂	0/6	1/6	0/6
S ₃	1/5	2/5	1/5
S ₄	0/7	0/7	2/7

Abstract plans:

- a1: <S₁, S₂, S₄>
- a2: <S₁, S₃, S₄>
- a3: <S₃>
- a4: <S₄, S₂>

t = 0

$$t = 0$$

$$S_{1} \quad \boxed{0/7}$$

t = 0

1 2

S ₁	2/7	0/7	0/7
S ₂	0/6	1/6	0/6
S3	0/5	1/5	0/5
S ₄	0/7	0/7	2/7

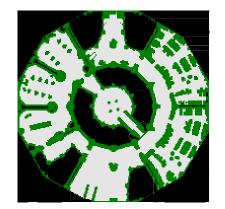
1

-	•	-	_
S ₁	2/7	0/7	0/7
S ₂	0/6	1/6	0/6
S ₃	1/5	2/5	1/5
S ₄	0/7	0/7	2/7

	2	t = 0	1	2	t = 0	1	2
--	---	-------	---	---	-------	---	---

S ₁	2/7	0/7	0/7
S ₂	0/6	2/6	1/6
S ₃	1/5	2/5	1/5
S ₄	1/7	0/7	2/7

Timeout Estimation Mechanism


Keep the time the problem is solved per agent; call this t_a .

- If the problem is solved within $n \cdot t_a \cdot \varepsilon$
 - If some agent reach its assigned location;
 - update $t_a \leftarrow t_s / n$
 - Otherwise;
 - update $t_a \leftarrow f \cdot t_a$
- Otherwise
 - If some migrating agent has a location assigned;
 - remove its assigned location.
 - Otherwise;
 - terminate.

n – the number of agents

- ε timeout tolerance factor
- f timeout penalty factor
- t_s solving time

Exp 1. The Numbers of Solving Processes

lak303d
194x194,
V =14,784

n	Runtime (s)							
n	p = 4	p = 8	p = 12	p = 16	p = 20	p = 24	p = 28	p = 32
200	32.1	25.1	21.8	20.0	19.4	18.9	20.5	19.6
400	97.0	75.1	63.1	66.2	52.8	56.2	53.8	63.5
600	214.2	158.7	129.3	127.5	110.7	113.3	116.0	120.0

Moving Al's Benchmark: https://movingai.com/benchmarks/mapf/index.html

Exp 2. The Size of Subproblems

random-64-64-20 64x64, |V|=3,270

n = 1000

Makespan = The last time step where every agent reach its goal. Sum-of-Cost (SoC) = The total arrival time.

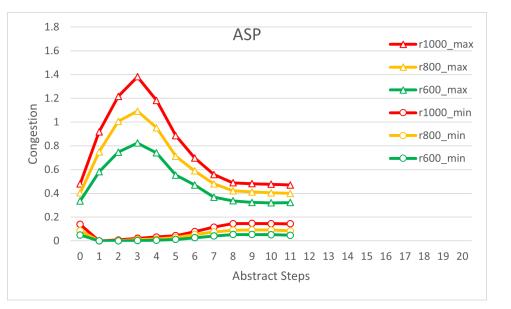
v	Runtime (s)	Makespan	SoC $(\times 1k)$	Success Rate
30	39.9	864	558.4	0.4
40	46.6	906	598.5	1.0
50	88.2	1041	627.9	0.8
60	80.0	1107	676.6	1.0
70	86.8	1070	633.6	1.0

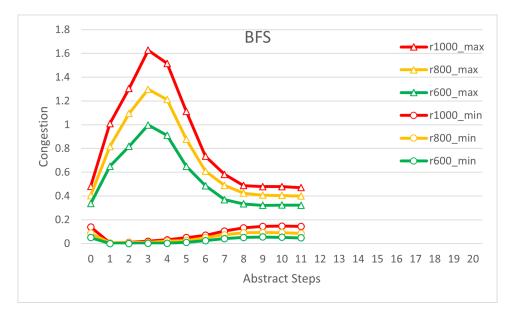
Exp 3. Timeout Sensitivity

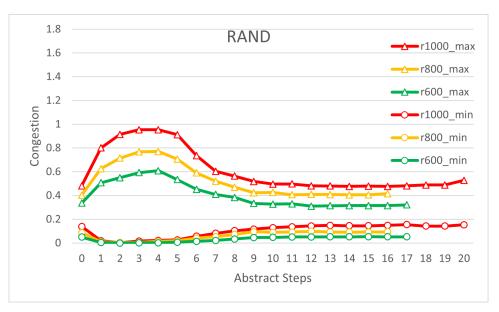
random-64-64-20 64x64, |V|=3,270

n = 1000

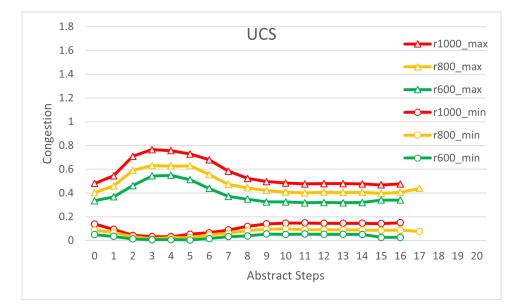
timeout tolerance factor

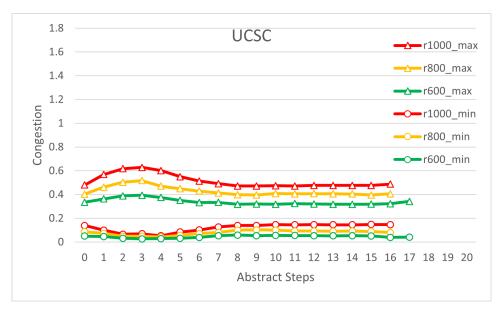

ϵ	Runtime (s)	Makespan	SoC $(\times 1k)$	# Stops
4	51.9	906	611.9	25
6	49.2	906	600.1	13
8	48.6	903	607.3	7
10	46.6	906	598.5	3
12	46.3	906	603.2	1
14	49.1	908	606.8	2


Exp 4. Congestion


Blind searches...

random-64-64-20 64x64, |V|=3,270




Exp 4. Congestion

Not-so-blind searches...

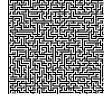
random-64-64-20 64x64, |V|=3,270

Exp 4. Congestion

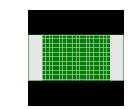
random-64-64-20 64x64, |V|=3,270

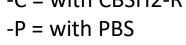
n	Method	Runt Abs.	ime (s) Total	Makespan	SoC $(\times 1k)$	Success Rate
	ASP	0.3	48.4	914	247.3	1.0
	BFS	0.0	110.2	1185	265.6	0.8
600	RAND	0.0	19.8	673	236.8	1.0
	UCS	0.0	28.2	779	258.4	1.0
	UCSC	0.0	16.1	564	207.2	1.0
	ASP	0.4	106.6	1241	511.7	0.6
	BFS	0.0	162.1	1367	525.3	0.1
800	RAND	0.0	74.2	893	424.8	0.8
	UCS	0.0	56.1	934	451.0	0.4
	UCSC	0.0	26.1	757	379.1	1.0
	ASP	0.5	-	-	-	0.0
	BFS	0.0	-	-	-	0.0
1000	RAND	0.0	204.6	1058	703.9	0.1
	UCS	0.0	103.8	1109	740.2	0.1
	UCSC	0.0	46.6	906	598.5	1.0

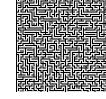
Exp 5. Comparisons


DMAPF

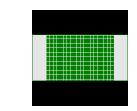
-A = with ASP; -C = with CBSH2-RTC -E = with EECBS;

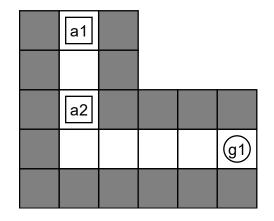

-P = with PBS

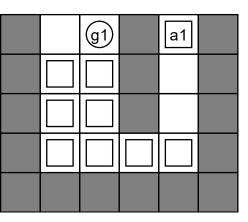


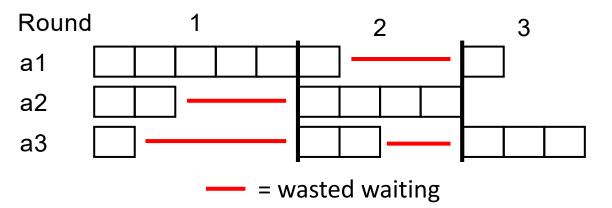

Solver	den3	12d (2)	2445)	random (3270)			$maze \ (10858)$			lak303d (14784)			warehouse (38756)		
	200	300	400	600	800	1000	100	200	300	200	400	600	600	800	1000
	— Runtime (seconds) —														
DMAPF-A	6.9	18.4	39.3	16.1	26.0	46.6	20.7	40.7	-	15.6	37.9	75.9	32.5	42.4	52.3
DMAPF-C	-	-	-	-	-	-	8.5	-	-	35.7	-	-	14.2	19.8	35.2
DMAPF-E	170.6	-	-	-	-	-	9.8	-	-	10.7	-	-	14.8	20.4	62.9
DMAPF-P	3.1	-	-	-	-	-	8.1	-	-	7.5	44.2	-	13.1	17.0	20.8
EECBS	0.4	1.4	6.4	2.5	21.4	141.7	2.6	135.8	279.6	1.2	6.5	42.6	5.8	13.1	22.0
PBS	15.1	217.5	-	-	-	-	50.5	-	-	17.2	266.9	-	9.4	26.1	57.2
	— Success Rate —														
DMAPF-A	1.0	1.0	0.7	1.0	1.0	1.0	1.0	0.8	0.0	1.0	1.0	0.6	1.0	1.0	1.0
DMAPF-C	0.0	0.0	0.0	0.0	0.0	0.0	0.8	0.0	0.0	1.0	0.0	0.0	1.0	1.0	0.7
DMAPF-E	0.4	0.0	0.0	0.0	0.0	0.0	0.9	0.0	0.0	1.0	0.0	0.0	1.0	0.9	0.6
DMAPF-P	0.6	0.0	0.0	0.0	0.0	0.0	0.9	0.0	0.0	1.0	0.4	0.0	0.6	0.5	0.3
EECBS	1.0	1.0	1.0	1.0	0.9	1.0	0.9	0.9	0.1	1.0	1.0	1.0	1.0	1.0	1.0
PBS	1.0	0.8	0.0	0.0	0.0	0.0	1.0	0.0	0.0	1.0	0.3	0.0	1.0	1.0	1.0

Exp 5. Comparisons




Solver	den 312d (2445)			random~(3270)			$maze \ (10858)$			lak303d (14784)			warehouse (38756)		
	200	300	400	600	800	1000	100	200	300	200	400	600	600	800	1000
	— Makespan —														
DMAPF-A	475	722	980	564	757	906	3075	3704	-	1014	1794	2774	748	774	795
DMAPF-C	-	-	-	-	-	-	3091	-	-	1017	-	-	753	781	804
DMAPF-E	643	-	-	-	-	-	3072	-	-	1033	-	-	780	828	893
DMAPF-P	477	-	-	-	-	-	3069	-	-	1016	1690	-	761	779	803
EECBS	180	288	377	145	218	302	1474	1571	1702	483	511	583	451	455	457
PBS	132	158	-	-	-	-	1475	-	-	482	479	-	451	455	457
	$- \text{Sum-of-Cost} (\times 1000) - $														
DMAPF-A	51.8	117.3	248.9	207.2	379.1	598.5	181.4	511.8	-	112.9	362.2	794.9	233.1	331.3	448.3
DMAPF-C	-	-	-	-	-	-	187.2	-	-	110.7	-	-	230.7	335.8	443.2
DMAPF-E	56.4	-	-	-	-	-	175.4	-	-	110.4	-	-	236.7	356.6	498.8
DMAPF-P	54.1	-	-	-	-	-	176.2	-	-	111.8	358.7	-	231.8	334.8	449.1
EECBS	13.8	28.0	46.9	34.8	60.6	101.6	56.1	119.7	191.4	38.2	78.6	131.1	109.6	146.4	181.1
PBS	11.6	19.1	-	-	-	-	56.4	-	-	37.9	74.1	-	109.5	146.2	180.9


24/25


Comparing with EECBS and PBS...

- DMAPF can find a solution faster in problems with a lot of agents.
- DMAPF has a trouble when the map is not decomposed nicely.

 The solution quality from DMAPF is about 2-6 times worse.

