Agents & Artifacts at the Knowledge Level

Samuele Burattini! Andrei Ciortea 2 Meshua Galassi !
Alessandro Ricci !

Dipartimento di Informatica - Scienza e Ingegneria,
Alma Mater Studiorum, Universita di Bologna, Cesena Campus, ltaly
meshua.galassi@studio.unibo.it,
{samuele.burattinila.ricci}@unibo.it

School of Computer Science,

University of St.Gallen, Switzerland
andrei.ciortea@unisg.ch

29th May, 2023

Table of Contents

1. Agents & Artifacts

The Agents & Artifacts meta-model

Agents dimension

The Agents & Artifacts (A&A) O
meta-model! is a way to define the O Agent
environment in MAS based on: \ D

® Artifacts as resources and tools

observed and used by agents

—

~
" Artifact AN

that can be created, shared, Workspace /
\ /

® Workspaces as logical -) A

~ ~)

containers of Artifacts T N P

Environment dimension

'Ricci A., Viroli M. and Omicini A., 2007. Give agents their artifacts: the A&A approach for engineering

working environments in MAS.
1/13

Agents & Artifacts: current limitations

Artifacts are inspired by how humans use tools and have:

® Observable properties that can be perceived by agents
e QOperations that are exploitable by agents’ actions

e Events that can notify the agents of changes

2/13

Agents & Artifacts: current limitations

Artifacts are inspired by how humans use tools and have:
® Observable properties that can be perceived by agents
e QOperations that are exploitable by agents’ actions

e Events that can notify the agents of changes

. in the real world, human agents also leverage their domain knowledge
and the relationships among artifacts to efficiently use them.

2/13

For example...

Building a smart-room system:

® an agent has the goal of turning on a Lamp

® the domain knowledge is that Lamp and Switches exist in rooms and Switches control
Lamps

Then we would like to program the agent behaviour to:

1. enter a room 1. joinWorkspace("room-001", WP)
2. find a lamp 2. ~ lookupArtifactByType ("LampClass", L)
3. find the switch that controls it 3. 7777

4. use the switch to achieve its goal 4. turnOn() [artifact_id(S)]

3/13

Table of Contents

2. Proposed extension

Extending A&A

Agents benefit from having a common level of abstraction to describe both their internal
knowledge and the domain entities in the environment, including their relationships.

With this explicit description they could:

Query Observe Manipulate
the environment to find the environment and be the environment
Artifacts notified of changes e using domain
® of a given kind ® of a single Artifact operations
® in a given state ® of connected ones ® without dealing with
e following relationships ® of new connections low-level details
V.

4/13

A& A at the Knowledge Level

Knowledge-level systems

We identify the common level of abstraction e Princimieet Rationality
as the Knowledge Level proposed by Newell? Program-level systems
to be the highest level in the hierachy of Medium: Data structures, programs

Laws: Sequential interpretation of programs

computer systems

Register-transfer system

Medium: Bit vectors
Laws: Parallel logic

As done by Jennings? for the social dimension
of MAS we further extend this to include the N
environment dimension. Laws: Boolean algebra

Electric circuits

Logic circuits

H H Medium: Voltage/ t
We do that following some design e O o hhoffs law
principles. Electronic devices

Medium: Electrons
Laws: Electron physics

ZNewell A., 1982. The knowledge level.

3 Jennings N.R., 2000. On agent-based software engineering
5/13

Design principle |

Artifacts are Domain Entities

Artifacts should be semantically ground to domain entities: their affordances and their
manuals should be described at that same level of abstraction.

lamp-001

[>

Represents

6/13

Design principle Il

Explicit Relationships

Relationships among entities at the domain level should be explicitly represented and reified at
the artifact level so that agents can reason about them

switch-001

pressed

O turnOn

O turnOff L >

Represents
controls

|
\
\
N
controls ™ _ >

lamp-001

7/13

Design principle 1lI

Vocabulary consistency

Workspaces can be used to define logical (bounded) contexts that share the same domain
vocabulary to describe the entities within them.

room-001 workspace

N\ room-002 workspace

connectedTo

_— light-002

8/13

Table of Contents

3. Prototype and Supporting Technologies

Supporting Technologies

User Interface & applications

We looked into how knowledge is represented ’ Trust ‘
in the Semantic Web:
Proof
¢ Knowledge Graphs (KG) allow to convey
knowledge about entities in the world and
relationships among those entities o e
® RDF is the standard way to represent KGs SomnL | LowL RIF
on the Web RDF-S | | Crypto
® SPARQL is the standard language for ‘ T = e s T ‘
querying RDF graphs
’ XML ‘
URI ‘ ‘ Unicode ‘

9/13

CArtAgO extension

We developed a prototype adding an explicit semantic layer on top of CArtAgO*:

One KG for Workspace Artifact RDF description Agents can query the KG
Each workspace manages a Each Artifact generates and Using an API to express
centralized KG containing mantains up-to-date its SPARQL queries and

all its Artifacts RDF description in the KG acquire new knowledge

“the reference implementation of A&A
10/13

1
2
3

4
5
6
7
8
9

... back to our Lamp Agent

Artifacts will automatically populate the Workspace's KG with their RDF description:

@prefix : <http://example.org/>
@prefix owl: <http://www.w3.o0rg/2002/07/owl#>

:lamp -001 a owl:NamedIndividual, :Lamp ;
:state "off"

:switch-001 a owl:NamedIndividual, :LightSwitch ;
:controls :lamp-001 ;
:pressed false

At runtime, the agent will be able to query the KG and achieve its goal.

11/13

A solution using Knowledge

Here a Jason agent performs SPARQL queries on the environment to find a Lamp and then
the Switch that controls it.

[N ¢ N

+!turnOnLamp : true

< -

joinWorkspace ("room-001", WP)

query ("SELECT 7?1 WHERE { 7?1 rdf:type :Lamp }", R1);
getValue (0, "1", R1, LampID);

.concat ("SELECT ?s WHERE { ?s :controls :", LampID, "}", Q);
query (Q, R2);

getValue (0, "s", R2, SwitchID);

turnOn () [artifact_id (SwitchID)]

Note how, differently from before, the agent deals only with the domain knowledge and does
not need to know any implementation details about the artifacts (e.g. the class name)

12/13

Table of Contents

4. Conclusions and Future Directions

The Road Ahead

This vision introduces many challenges and open issues.
Among those, we highlight:

® How to support querying in large, distributed artifact graphs?
® How to work with multiple existing domain ontologies?
How to bring all the MAS dimensions to the Knowledge Level in a coherent fashion?

How to devise or adapt methodologies to build MAS at the Knowledge Level?

We look forward to continue researching solutions to these problems!

13/13

	Agents & Artifacts
	Proposed extension
	Prototype and Supporting Technologies
	Conclusions and Future Directions

