
Agents & Artifacts at the Knowledge Level

Samuele Burattini 1 Andrei Ciortea 2 Meshua Galassi 1

Alessandro Ricci 1

Dipartimento di Informatica - Scienza e Ingegneria,
Alma Mater Studiorum, Università di Bologna, Cesena Campus, Italy

meshua.galassi@studio.unibo.it,

{samuele.burattini|a.ricci}@unibo.it

School of Computer Science,
University of St.Gallen, Switzerland

andrei.ciortea@unisg.ch

29th May, 2023



Table of Contents

1. Agents & Artifacts

2. Proposed extension

3. Prototype and Supporting Technologies

4. Conclusions and Future Directions



The Agents & Artifacts meta-model

The Agents & Artifacts (A&A)
meta-model1 is a way to define the
environment in MAS based on:

• Artifacts as resources and tools
that can be created, shared,
observed and used by agents

• Workspaces as logical
containers of Artifacts

Environment dimension

Agents dimension

Agent

Workspace

Artifact

1Ricci A., Viroli M. and Omicini A., 2007. Give agents their artifacts: the A&A approach for engineering
working environments in MAS.

1 / 13



Agents & Artifacts: current limitations

Artifacts are inspired by how humans use tools and have:

• Observable properties that can be perceived by agents

• Operations that are exploitable by agents’ actions

• Events that can notify the agents of changes

But...

... in the real world, human agents also leverage their domain knowledge
and the relationships among artifacts to efficiently use them.

2 / 13



Agents & Artifacts: current limitations

Artifacts are inspired by how humans use tools and have:

• Observable properties that can be perceived by agents

• Operations that are exploitable by agents’ actions

• Events that can notify the agents of changes

But...

... in the real world, human agents also leverage their domain knowledge
and the relationships among artifacts to efficiently use them.

2 / 13



For example...

Building a smart-room system:

• an agent has the goal of turning on a Lamp

• the domain knowledge is that Lamp and Switches exist in rooms and Switches control
Lamps

Then we would like to program the agent behaviour to:

1. enter a room

2. find a lamp

3. find the switch that controls it

4. use the switch to achieve its goal

1. joinWorkspace("room-001", WP)

2. ≃ lookupArtifactByType("LampClass", L)

3. ????

4. turnOn()[artifact id(S)]

3 / 13



Table of Contents

1. Agents & Artifacts

2. Proposed extension

3. Prototype and Supporting Technologies

4. Conclusions and Future Directions



Extending A&A

Why?

Agents benefit from having a common level of abstraction to describe both their internal
knowledge and the domain entities in the environment, including their relationships.

With this explicit description they could:

Query
the environment to find

Artifacts

• of a given kind

• in a given state

• following relationships

Observe
the environment and be
notified of changes

• of a single Artifact

• of connected ones

• of new connections

Manipulate
the environment

• using domain
operations

• without dealing with
low-level details

4 / 13



A&A at the Knowledge Level

We identify the common level of abstraction
as the Knowledge Level proposed by Newell2

to be the highest level in the hierachy of
computer systems

As done by Jennings3 for the social dimension
of MAS we further extend this to include the
environment dimension.

We do that following some design
principles.

Knowledge-level systems

Medium: Knowledge
Laws: Principle of Rationality

Program-level systems

Medium: Data structures, programs
Laws: Sequential interpretation of programs

Register-transfer system

Medium: Bit vectors
Laws: Parallel logic

Logic circuits

Medium: Bits
Laws: Boolean algebra

Electric circuits

Medium: Voltage/current
Laws: Ohm's law, Kirchhoff's law

Electronic devices

Medium: Electrons
Laws: Electron physics

2Newell A., 1982. The knowledge level.
3Jennings N.R., 2000. On agent-based software engineering

5 / 13



Design principle I

Artifacts are Domain Entities

Artifacts should be semantically ground to domain entities: their affordances and their
manuals should be described at that same level of abstraction.

Represents

state "off"

move

lamp-001

6 / 13



Design principle II

Explicit Relationships

Relationships among entities at the domain level should be explicitly represented and reified at
the artifact level so that agents can reason about them

controls

pressed false

turnOn

turnOff

controls

switch-001

state "off"

move

lamp-001

Represents

7 / 13



Design principle III

Vocabulary consistency

Workspaces can be used to define logical (bounded) contexts that share the same domain
vocabulary to describe the entities within them.

room-002 workspace

room-001 workspace

lamp-001

controls
switch-001

light-002

connectedTo
button-002

8 / 13



Table of Contents

1. Agents & Artifacts

2. Proposed extension

3. Prototype and Supporting Technologies

4. Conclusions and Future Directions



Supporting Technologies

We looked into how knowledge is represented
in the Semantic Web:

• Knowledge Graphs (KG) allow to convey
knowledge about entities in the world and
relationships among those entities

• RDF is the standard way to represent KGs
on the Web

• SPARQL is the standard language for
querying RDF graphs

URI Unicode

XML

Data-interchange: RDF

Query:
SPARQL

Ontology:
OWL

RDF-S

Rules:
RIF

Unifying Logic

Proof

Trust

Crypto

User Interface & applications

9 / 13



CArtAgO extension

We developed a prototype adding an explicit semantic layer on top of CArtAgO4:

One KG for Workspace

Each workspace manages a
centralized KG containing
all its Artifacts

Artifact RDF description

Each Artifact generates and
mantains up-to-date its
RDF description in the KG

Agents can query the KG

Using an API to express
SPARQL queries and
acquire new knowledge

4the reference implementation of A&A
10 / 13



... back to our Lamp Agent

Artifacts will automatically populate the Workspace’s KG with their RDF description:

1 @prefix : <http :// example.org/> .

2 @prefix owl: <http :// www.w3.org /2002/07/ owl#> .

3

4 :lamp -001 a owl:NamedIndividual , :Lamp ;

5 :state "off" .

6

7 :switch -001 a owl:NamedIndividual , :LightSwitch ;

8 :controls :lamp -001 ;

9 :pressed false .

At runtime, the agent will be able to query the KG and achieve its goal.

11 / 13



A solution using Knowledge

Here a Jason agent performs SPARQL queries on the environment to find a Lamp and then
the Switch that controls it.

1 +! turnOnLamp : true

2 <- joinWorkspace("room -001", WP)

3 query("SELECT ?l WHERE { ?l rdf:type :Lamp }", R1);

4 getValue(0, "l", R1, LampID);

5 .concat("SELECT ?s WHERE { ?s :controls :", LampID , "}", Q);

6 query(Q, R2);

7 getValue(0, "s", R2, SwitchID);

8 turnOn ()[artifact_id(SwitchID)]

Note how, differently from before, the agent deals only with the domain knowledge and does
not need to know any implementation details about the artifacts (e.g. the class name)

12 / 13



Table of Contents

1. Agents & Artifacts

2. Proposed extension

3. Prototype and Supporting Technologies

4. Conclusions and Future Directions



The Road Ahead

This vision introduces many challenges and open issues.
Among those, we highlight:

• How to support querying in large, distributed artifact graphs?

• How to work with multiple existing domain ontologies?

• How to bring all the MAS dimensions to the Knowledge Level in a coherent fashion?

• How to devise or adapt methodologies to build MAS at the Knowledge Level?

We look forward to continue researching solutions to these problems!

13 / 13


	Agents & Artifacts
	Proposed extension
	Prototype and Supporting Technologies
	Conclusions and Future Directions

