Multi-armedBanditBasedTariffGenerationStrategyforMulti-AgentSmartGridSystems

Sanjay Chandlekar¹, Easwar Subramanian² and Sujit Gujar¹

2

Introduction

© "Overview of Smart Grid Technology And Its Operation and Application". https://www.elprocus.com/overview-smart-grid-technology-operation-application-existing-power-system. Accessed 7 June 2022.

Note that,

- Having all the customers under broker's portfolio doesn't lead to the highest profit
 - Having more and more customers under the portfolio increases broker's revenue; however ...
 - The higher market share attracts higher peakdemand penalties and grid-imbalance penalties
 - Such penalties are proportional to broker's market-share and huge monetary loss for broker
 - Thus, broker should not aim for full market-share

Research Questions

- 1. What is the optimal customer marketshare?
- 2. How to offer tariffs to achieve and maintain such optimal market-share?

Previous Work and Our Contribution

Previous Work

- In our previous work in IJCAI'22, we designed a tariff strategy inspired by the game theory literature that decides the optimal market share for various player configurations
- Using the knowledge of the optimal market-share, we constructed a heuristic-based techniques to achieve and maintain the optimal market share during the simulation
- This strategy was deployed in our broker VidyutVanika, which helped us to win the annual PowerTAC tournaments in 2021 and 2022 by maximizing our revenues in the tariff market
- In this work, we aim to follow a more scientific approach to offer tariffs to achieve and maintain the optimal market share, essentially replacing our heuristics-based strategy with a learning-based strategy to achieve similar performance

Game Theoretical Analysis (5 Player Game)

VV / Opp	(TT, VV18, VV20,C)	(TT, VV18, VV20,A)	(TT, VV18, A,C)	(TT, A, VV20,C)	(A, VV18, VV20,C)
0%	-0.893	-0.298	-0.169	-0.156	1.737
15%	-0.199	-0.017	-0.205	-0.146	1.581
30%	0.112	-0.049	0.106	0.044	1.898
45%	-0.083	0.041	0.159	0.143	1.808
60%	-0.312	0.027	-0.288	-0.102	1.741
75%	-0.493	-0.228	-0.373	-0.409	1.025
100%	-0.498	-0.561	-0.188	-0.188	0.996

The above utility matrix can be easily solved, and equilibrium strategy can be found.

For 2-Player, 3-Player, and 5-Player configurations, target optimal market shares for GenerateTariffs-EXP3 are 51%, 40.8%, and 32.3%, respectively. Formula to calculate utility values for $\forall s_i \in S_1 \text{ and } \forall s_{-i} \in S_2$

- x_i denotes the final cash of VV21 in game i
- y_{ik} denotes the final cash of opponent
 broker k in game i
- *n* denotes the number of opponent brokers
- *T* denotes the number of games in the set, *T* =
 5 for the current experiment

Tariff Module GenerateTariffs-EXP3

GenerateTariffs-EXP3

- The proposed strategy is modeled as a Markov Decision Process (MDP) consisting of a tuple <S, A, P, R>
 - State space S
 - Action space A
 - Transition Probabilities P
 - Reward R
- However, the model does not know the transition probabilities. To learn the optimal action in each state (called a policy) in the absence of transition probabilities, we use Contextual MAB techniques along with the EXP-3 algorithm.

State Space [7 States] (Market-share buckets)

OMS: Optimal Market Share

CMS : Current Market Share

- *OMS* = 0.85 * market share suggested by *GT* module
- $\mathbf{O} \qquad OMS CMS <= OMS^*0.1$
- $1 (OMS CMS) > OMS^*0.1 \& (OMS CMS) <= OMS^*0.4$
- **2** $(OMS CMS) > OMS^*0.4 \& (OMS CMS) <= OMS^*0.7$
- $3 (OMS CMS) > OMS^*0.7$
- $4 (-OMS + CMS) > OMS^{*}0.1 \& (-OMS + CMS) <= OMS^{*}0.4$
- **5** $(-OMS + CMS) > OMS^*0.4 & (-OMS + CMS) <= OMS^*0.7$
- **6** $(-OMS + CMS) > OMS^*0.7$

Action Space [5 Actions]

New Tariff = Old Tariff + **step**

Action O -	step = 0.0	[Maintain]
Action 1 -	step = -0.02	[Lower 1]
Action 2 -	step = -0.04	[Lower 2]
Action 3 -	step = 0.02	[Higher 1]
Action 4 -	step = 0.04	[Higher 2]

Reward

else			>	reward = 0
else If	<i>OMS</i> - <i>CMS</i> <=	0.35	>	reward = 0.25
else If	<i>OMS</i> - <i>CMS</i> <=	0.20	>	reward = 0.50
lf	<i>OMS</i> - <i>CMS</i> <=	0.05	>	reward = 1.00

EXP-3 Algorithm

EXP3: Exponential-weight algorithm for Exploration and Exploitation

1: Initialize/Load table[|S|][|A|]
2:
$$prob(s, i, t) = (1 - \gamma) \frac{table(s, i, t)}{\sum_{a=1}^{|A|} table(s, a, t)} + \frac{\gamma}{|A|}, \forall i \in \{1, 2, ..., |A|\}$$

3: Sample next action act stochastically from $[prob(s, 1, t), prob(s, 2, t), ..., prob(s, |A|, t)]$
4: Observe reward $r(s, act, t)$ for taking action act in state s at t

5: Update the reward:

$$\begin{aligned} \hat{r}(s, a, t) &= r(s, a, t) / prob(s, a, t), \text{ if } a = act_t \\ \hat{r}(s, a, t) &= 0, \text{ otherwise} \\ 6: \ table(s, i, t+1) &= table(s, i, t) * e^{\gamma * \hat{r}(s, i, t) / |A|}, \forall i \in \{1, 2, ..., |A|\} \end{aligned}$$

PowerTAC: Experiments and Results

Q-Tables

Action	Maintain	Lauran1	Lauran D	llisher 1	llish ar 2
State	Iviaintain	Lower1	Lowerz	Higheri	nigherz
0	33.64	16.99	10.35	28.90	14.85
1	361.41	30.35	11.11	18.30	167.86
2	18.07	4.04	3.59	22.95	32.24
3	2.02	1.74	1.32	3.66	7.94
4	40.02	27.96	19.82	20.95	10.69
5	4.33	7.35	15.81	4.31	2.36
6	1.17	2.46	4.47	1.13	1.32

Action Maintain Lower2 Higher1 Higher2 Lower1 State 31.88 31.01 12.77 31.08 16.02 0 1 56.31 31.82 9.31 46.91 60.29 11.92 5.25 3.81 10.75 35.35 2 4.11 1.20 1.30 4.82 24.37 3 26.51 46.61 49.11 23.80 11.94 4 2.91 6.58 2.74 5 4.56 1.43 1.45 8.40 1.32 6 2.68 1.96

Action	Maintain	Lower1	Lower2	Higher1	Lighor?
State		Lower1	Lowerz		nigherz
0	2.30	1.54	1.41	2.00	1.36
1	4.83	2.00	1.47	4.23	2.19
2	2.90	1.45	1.07	6.24	6.40
3	1.72	1.00	1.04	5.85	33.89
4	2.14	5.61	1.78	1.62	1.51
5	1.66	3.60	1.81	1.22	1.10
6	1.36	12.27	10.62	1.44	1.69

A

2-Player Configuration

3-Player Configuration

5-Player Configuration

Results

Market Share Maintained by GenerateTariffs-EXP3 w.r.t Number of Epochs of Training for 3-Player Configuration

Thank you

Contact: sanjay.chandlekar@research.iiit.ac.in

