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Abstract. The Multi-Agent Systems (MASs) literature provides ab-
stractions, techniques, and development platforms to design and imple-
ment the virtual environment within which agents operate. However,
coupling such an environment with a physical counterpart is still cumber-
some, as existing approaches deal with the issue in an ad-hoc way, with-
out general purpose abstractions and methods. Recently, a new paradigm
could complement the agent-oriented one to deal with digitalisation of
physical environments in a more principled and interoperable way: the
Digital Twin (DT). In this paper, we propose a first principled integra-
tion between MAS and DTs for MAS environment engineering.

Keywords: Digital Twin · Multi-agent System · WDLT · JaCaMo.

1 Introduction

Multi-Agent Systems (MAS) are the premiere source of abstractions and meth-
ods (and programming and execution platform as well) to model and engineer
complex systems [7]. Examples include Cyber-Physical Systems (CPS) [5], e.g.
the monitoring and control software of a manufacturing factory, where agents
collect measurements from machinery and equipment (i.e. their digital repre-
sentations) to support human supervision and decision making; Web of Things
deployments [2], e.g. the software controlling energy consumption of smart ap-
pliances in a smart building like an hotel, where different agents are in charge
of negotiating the best settings to find the optimal trade-off against competing
interests (e.g. management’s cost saving policies and guests’ comfort).

The MAS literature provides plenty of agent models and development (and
execution) platforms, ranging from simple reactive agents mostly used for simu-
lation [25, 15], to pro-active cognitive agent architectures meant to autonomously
carry out sophisticated reasoning [8, 21]. There are also models and methods to
engineer the environment that agents must interact with to carry out their duties,
such as the A&A meta-model [17] providing artefacts as the first-class abstrac-
tion meant to digitally represent both physical resources and legacy software
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(e.g. databases or external services). However, the nuts and bolts of connecting
a digital representation to its physical counterpart (e.g. an individual sensor,
a manufacturing equipment, or even a whole production line), and the imple-
mentation of the process that keeps the two aligned at all times are not well
engineered. Indeed, often the focus is on the interface between the agent and
the artefact (or whatever other abstraction is provided), not between the arte-
fact and the physical thing. This forces programmers to “re-invent the wheel”
for every new development, or hides potentially reusable designs in each team
or organisation own implementations, leading to fragmentation.

A solution could come fromDigital Twins (DTs) [14], that is, digital represen-
tations of an (physical) entity of interest (e.g. object, location, person, process)
continuously reflecting its state and behaviour in a software object, meant to pro-
vide services to other software entities (e.g. business applications) [22]. Amongst
the many applications of the concept [27], that of exposing a uniform and in-
teroperable digital layer to applications and services, tightly coupled with the
physical world but hiding to such applications the heterogeneity and complexity
of managing resources and processes, is relevant for MAS engineering.

Accordingly, in this paper we propose DTs as a complement to existing mod-
els and methods for MAS environment engineering, with the goals of (i) achiev-
ing a principled way to couple digital representations of entities to their physical
counterparts, and (ii) decouple MAS environment engineering methods from the
intricacies and peculiarities of accessing to and interacting with physical devices.
We argue, in fact, that it is conceptually wrong, and technically inconvenient,
to model a DT, or a CPS component, as an agent. For the former, modelling
DTs as agents would clash with the definitions we adopt (see Section 3.1); for
the latter, DTs are better candidates to model them. MAS designers would gain
tangible benefits in terms of (i) separation of concerns, as they can engineer their
solution in terms of MAS abstractions without “polluting” them with devices or
protocol-specific technicalities, and (ii) independent evolution, as once the DTs
interface to the MAS is established, developers of the MAS functionalities and
those managing the physical layer can evolve their implementations separately.

2 State of the art

The vision we aim to realise with this paper is aligned with the view fostered
in [12], where agents and DTs are seen as complementary abstractions whose
principled integration can bring benefits to two tasks, mostly: (i) engineering
the MAS environment, and (ii) orchestrating and coordinating (e.g. dynamically
compose) agents and DTs’ offered services. In particular, we exploit the kind
of separation of concerns therein defined, where DTs are meant to operate (i.e.
perceive, act) within the boundaries set by the local context of their associated
physical twin, whereas agents are meant to pursue the application goals in the
global context of all the resources and services available to the whole MAS.
Figure 1 in Section 3 depicts our envisioned architecture aligned with this view.
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There are a few works in the literature about exploiting agents and DTs
synergistically in the perspective described above, that is, where DTs take care
of interacting with the environment on behalf of agents, and agents use and
orchestrate DTs for achieving their goals. For instance, in [3] DTs model envi-
ronment resources so as to support the agents’ decision making, while agents
gather knowledge from multiple DTs to achieve their goals. In [16] a specific
instance of the concept of DT, called “Asset Administration Shell” (AAS), en-
ables agents’ operations on a physical production system, by mediating access
to all the different physical devices. In [10] DTs are used in a manufacturing
CPS to better manage communication of data from the physical devices to the
MAS monitoring and controlling the system, for instance by performing proto-
col translation, buffering, etc. Even if restricted to communication issues, DTs
actually encapsulate the resources in the MAS environment (the manufacturing
CPS). Finally, in [28] a distributed simulation platform is shaped around DTs:
each DT simulates a specific asset or set of assets, and agents orchestrate such
DTs to dynamically compose them in a single coherent simulation. In a sense,
also here DTs encapsulate a portion of the environment, although in this case
such environment is purely simulated.

However, in all the aforementioned works, either agents directly interact with
DTs [16, 10, 28], or the concept of DT is directly implemented with the abstrac-
tions (and techniques) made available by the MAS—in the case of [3], as a
CArtAgO artefact [24]. In next section, we propose an integration architecture
complementing, not replacing, MAS environment abstractions with DTs.

Besides these research works, there are others that do not explicitly men-
tion DTs but nevertheless aim at controlling CPSs with a MAS, while pursuing
a kind of separation of concerns similar to ours. For instance, authors of [26]
recognise that the agent is responsible for the high-level control functions, while
the physical asset’s “controller” ensures the execution of the agent’s high-level
decision. Furthermore, they advocate the added value brought by the concept of
AAS [16] as a way to provide a standardized description of the asset information.
In turn, this helps creating the agent’s local knowledge in a standard way and
thus ensures interoperability. However, such AAS is mostly a data repository,
and the physical controller is not further abstracted away. In [4], resource access
is identified as a common functionality provided by MAS when applied to CPS.
In fact, the RAMI reference architecture adopted in the paper deploys agents
mostly everywhere, there included the “asset” level. In this paper, we advocate
that (and motivate why) DTs should be adopted instead. In [19] there is only
Java as the abstraction layer towards the physical system. In [9] “agentification”
is heavily used, that is, wrapping of services and resources within an agent, and
no further abstraction is provided at the border with the physical layer.

Finally, Multi-Agent Robot Systems (MARS) could be considered as a spe-
cial case of CPSs, hence efforts to integrate MAS control in multi-robot systems
should be taken into account. In MARS architectures, intelligence, proactivity,
and social aspects are usually located within agents at the application layer,
whereas handling of all the hardware robotic devices and providing functional-
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ity for robotics algorithms is responsibility of the lower layers. However, in [6],
authors argue for a different separation of concerns, where agents are also used
in lower layers as they provide better abstractions for the intelligence required to
perform some functional tasks. At the same time, yet, they recognise that there
are still components for which the agent abstraction is “just too much”, but fail
to provide an alternative abstraction besides Robot Operating Systems (ROS)
nodes. In this paper, we argue and motivate why DTs could be better candidates
for this. In [13] a MARS architecture is proposed where cognitive and operative
layers implement separation of concerns between agents and robotic hardware,
but where between the agent runtime (JADE) and ROS there is pure Java, and
no further abstraction layer. The same happens in [11].

3 Integration architecture

First, we propose a conceptual architecture not tied to any particular imple-
mentation platform, but only to a MAS meta-model (i.e. A&A [17]), in Sec-
tion 3.1. Then, we follow-up with a technical instantiation of such a concep-
tual architecture with specific technologies (i.e. JaCaMo [1] and the WLDT
library [20]), in Section 3.2. The former shows how the different abstractions
provided by DTs and MAS fit together in a coherent paradigm for MAS en-
vironment engineering—and, engineering of any CPS. The latter clarifies how
such a conceptual framework can be realised with current technologies. WLDT
is a Java framework providing highly modular and re-usable code to create and
maintain DTs of physical world entities (https://github.com/wldt).

3.1 Conceptual

Our conceptual integration architecture is depicted in Figure 1. The definition of
terms “agent” and “artefact” that we adopt in this paper is taken from the A&A
meta-model [17]. The definition of DT is mostly taken from [14], that tries to
sort out the many different definitions already existing for DTs in a coherent one.
However, we also adopt the systemic view fostered in [22] about the modelling
of an ecosystem of DTs semantically interlinked.

The lowest layer is the physical world, where all the objects, resources, de-
vices, people, processes, and every other entity of interest in a given CPS, that
is not conceptually suitable to be modeled as an agent, resides. This is a highly
heterogeneous world, where virtually every entity has its own access protocol,
measurable properties, functionalities, behaviours, etc. With the purpose of mak-
ing such substrate more homogeneous (e.g. in terms of network access protocols)
a DT layer is placed on top, shielding applications from the technical intricacies
of the CPS. DTs are, in fact, perfectly suited to encapsulate physical resources
and make them accessible to applications. This two layers compose the CPS
layer, as the part of the system strictly intertwined with the physical world.

Above them, the MAS layer begins, composed by two sub-layers. The lower
one, closer to DTs, is the MAS environment layer, where everything that is
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Fig. 1. Conceptual integration architecture. DTs complement artefacts in mediating
agents’ access to physical resources, by shielding artefacts (and agents in turn) from the
heterogeneity of communication protocols, data exchange formats, etc., while providing
additional services (e.g. fault tolerance, simulation, prediction, etc.).

not an agent is represented. In this paper, non-agent entities are represented
as artefacts according to the A&A meta-model [17], that is the most principled
solution to date [23]. An artefact represents any environmental resource (physical
or virtual, such as a database or external service) in terms of admissible actions
and available perceptions, perfectly matching most of agent models from reactive
to cognitive ones—where an agent is usually defined as an autonomous entity
situated in an environment that it can perceive through sensors and act upon
through actuators [25]. However, any other environment engineering abstraction
would be fine to adopt, as long as it brings the level of abstraction and the
programming paradigm closer to the agent-oriented one.

Now, it should be already clear why we crossed the line between CPS and
MAS here, at the frontier between DTs and artefacts: the former still promote a
development paradigm centred around the physical twin properties and functions
– closer to devices –, whereas the latter abstracts them away into perceptions
and actions—closer to the agents. In other words, here is where most of the
separation of concerns happen.

The highest layer of our conceptual architecture is thus the agents one, where
multiple agents cooperate towards the system goals. Such agents actually form
a (more or less structured) society, that is, a population of agents with roles and
missions to accomplish, competing or collaborating within the rules (or “laws”)
set by the system designer or enforced by some institutional entity that oversees
the society as a whole. For instance, in a MAS deployed to control automation
of a manufacturing factory, multiple agents can be deployed with different re-
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sponsibilities, but is likely that they need to interact in a well structured way to
achieve complex system goals (e.g. automate assembly, pick up, and packaging
of a product). Structuring the inter-dependencies between these responsibilities
can be done via the abstraction of a society, where each agent has a certain
role (e.g. the assembler, the collector) and commits to meet others’ expectations
regarding a specific task or deliverable (e.g. assemble the product correctly, pick
up the right parts). Here, agents exploit artefacts as extensions or augmentations
of their innate capabilities, or as the mediators of interaction with the resources
in their environment—while still reasoning in terms of actions and perceptions.
At this level, agents may be completely unaware that artefacts are actually en-
capsulating DTs, in the same way as DTs may be unaware that their services
are being exposed as actions and perceptions to agents. This is the whole point
of the principle of separation of concerns and independent evolution brought
forward in this paper: they don’t need to, and probably don’t want to. Agents
(as well as their developers) want to think in terms of actions and perceptions
on artefacts, whereas DTs (and their developers) need to deal with the physical
world technicalities, and do not want to be casted into any specific development
framework or mindset dictated by higher layers of the architecture.

However, at the interface between artefacts and DTs, there needs to be a
way to “connect” an artefact to a DT and viceversa, while still maintaining
loose coupling. How this can be achieved in practice is detailed in next section.

3.2 Technical

Figure 2 depicts the technical integration architecture we propose in this paper,
as a practical design of the conceptual one described in previous section. As
such, it is a zoom-in of the frontier between the MAS environment layer and
the DTs layer of Figure 1. The main components of the integration layer are:
the DTDescriptor and WLDTDiscoveryService, that are included in the WLDT
library; the DTWorkspace and DTDiscoveryArtefact, that are newly introduced
as part of our technical integration design.

The DTDescriptor is a complete description of a given DT provided by the
WLDT library: (i) the list of properties available for inspection (name-datatype
pairs), (ii) the list of actions than can be requested to the DT (name, input
and output parameters as name-datatype pairs), (iii) the list of behaviours that
the DT can carry out (name, input parameters, stop condition), (iv) the list
of relationships the DT has with other DTs (kind, target DT unique identi-
fier), (v) as well as all the metadata needed to interact with the DT—such
as an address where to push actions and pull data, the supported protocol(s)
(e.g. websocket vs. plain REST CRUD operations), the supported representation
format(s) (e.g. JSON, YAML), and any other information needed by external
components to directly interact with the DT. Such a descriptor is published by
the WLDTDiscoveryService to a well known address as soon as a DT is created
and bound to its physical twin by the WLDT platform. External components
can query it for a list of available DTs, and get the descriptor of any of them.



Towards developing Digital Twin enabled Multi-Agent Systems 7

DTs
layer

MAS
environment

layer

DT DT

DT

DT

Art. Art. Art. Art.

Descr. Descr. Descr. Descr.

properties
behaviours
actions

relations

DTDA

observations
operations

DT
Discovery
Artefact

DTDA

required

provided

creation
& mapping

Descr. DT descriptor

Translation
&

forwarding

integration
layer

WLDT
Discovery

Service

DTWorkspace

Fig. 2. Technical integration architecture. The DTDiscoveryArtefact (i) reads the
DTDescriptors advertised by the WLDT platform on known endpoints, (ii) dynam-
ically instantiates the corresponding CArtAgO artefacts by mapping entities in de-
scriptors to CArtAgO artefacts’ observable properties and operations, and (iii) sets up
a persistent bi-directional connection to keep synchronised the artefact and the DT.

Thanks to this service, our DTDiscoveryArtefact can automatically create the
artefacts corresponding to the available DTs by simply retrieving their descrip-
tors and mapping elements therein to the appropriate CArtAgO abstraction: DT
properties to artefacts observable properties, DT actions to artefacts operations,
DT behaviours to both (each behaviour is an operation with additional life-
cycle related observable properties), and DT relationships to links with other
artefacts [18]. Metadata regarding the interaction protocol(s) are used to dy-
namically create a dedicated bi-directional communication “channel” between
the artefact and the corresponding DT (e.g. a websocket or a sequence of REST
request-response calls), so that the DTDiscoveryArtefact won’t be a bottleneck
by having to handle (collect and forward) all the interactions between all the
DTs and all the artefacts. Such a link is meant to improve the scaling capabili-
ties by decentralising the execution of communication action, without imposing
a tight coupling between components. First, such a coupling only happens at run-
time and fully automatically, without requiring design-time knowledge. Second,
whenever such a bi-directional link fails (e.g. due to disconnections, components
crashing, etc.), both the artefact and the DT may fall back to the mediation
of the DTDiscoveryArtefact for the time needed to recover (e.g. restoring the
communication link, replacing the faulty DT, etc.).
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Each artefact dynamically created by the DTDiscoveryArtefact is added
to the ad-hoc JaCaMo workspace DTWorkspace so that any agent in the MAS
can discover and exploit them. The focal point of the whole integration just
described is the DTDiscoveryArtefact, as it is the component that synergis-
tically exploits existing JaCaMo and WLDT services (e.g. dynamic artefacts
creation, in-workspace discovery, DT descriptors and their publication) to make
totally transparent to the MAS developers the existence and utilisation of DTs.
In fact, MAS developers need only to (i) configure the DTDiscoveryArtefact

we designed with the well known address of WLDTDiscoveryService, and (ii)
start the automatic “creation & mapping” process described above, by launch-
ing the dedicated operation provided by this library artefact. If the DTs layer
is already up & running, the MAS environment will be automatically shaped
accordingly. Moreover, as the DTDiscoveryArtefact is subscribed to changes
in the WLDTDiscoveryService, newly created DTs will be promptly discovered
and mapped to JaCaMo at run-time. Even agents with no prior knowledge (e.g.
because some DTs are later added to the CPS) can discover what the envi-
ronment has to offer by exploiting Jason reasoning capabilities and CArtAgO
inspection services (e.g. get a list of available artefacts, get observable properties
of an artefact, get its operations, etc.).

This openness and dynamism gives benefits in terms of separation of concerns
and independent evolution, as MAS developers and DTs engineers can deal with
their own part of the system using their preferred abstractions: MAS designers
can think at the application as agents cooperating towards a given goal while
interacting with available artefacts – regardless of how artefacts interact with
physical entities –, whereas CPS engineers model physical resources and devices
as DTs, and make their services (e.g. observing properties and requesting op-
erations) available in a standard way (e.g. with web ready protocols and data
formats).

4 Conclusion

In this paper, we outlined an integration architecture between MASs and DTs,
to improve the way environment engineering is carried out in agent-oriented
development practice, by exploiting the notion of DTs and their natural coupling
with physical entities. In particular, we described such integration from both the
conceptual and technical design perspective, relying on the A&A meta-model for
the former, and on JaCaMo and WLDT development platforms for the latter.

With our proposal, greater separation of concerns both at run-time (between
software components) and during design (between developers) is enabled, and
system engineers can develop their own part of the system, the MAS and the
CPS, independently. Implementation of the proposed design is already ongoing,
as both JaCaMo and WLDT already offer most of the needed mechanisms. The
DTDiscoveryArtefact will be release as a sort of “library artefact” ready to be
used in any JaCaMo deployment.
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