
The entity-operation model for practical

multi-entity deployment⋆

Andrei Olaru, Gabriel Nicolae, and Adina Magda Florea

Department of Computer Science and Engineering, University Politehnica of
Bucharest, 313 Splaiul Independentei, 060042 Bucharest, Romania

{andrei.olaru,adina.florea}@upb.ro, gabriel.nicolae2907@stud.acs.upb.ro

Abstract. In the world of multi-agent system (MAS) frameworks, de-
velopers are many times forced into a �xed and reduced array of abstrac-
tions, with limited options in expressive modeling of all the components
of a MAS. For instance, in JADE, the most popular agent framework,
developers are limited to using agents as sole abstraction for all elements
of the MAS. These limitations hinder interoperability, the deployment of
open, heterogeneous systems, and the use of agents in complex scenarios
involving a great variety of elements such as physical devices, context
managers, services, and communication infrastructures.
We introduce the entity-operation model for multi-agent systems, as an
approach to integrate all elements in the MAS deployment as �rst-class
entities in the MAS model, to support heterogeneity and �exibility in
the implementation, and to achieve context-aware access control to the
functionalities o�ered by entities.
We present a formalization of the model, together with mechanisms for
authorizing operations and for routing operation calls in the MAS. We
discuss the entity-operation model in relation to other existing MAS
frameworks, and we give insight into implementation challenges which
arose when integrating the model with the Flash-mas framework.

Keywords: Multi-agent systems · Multi-agent frameworks · Communi-
cation infrastructure interoperability.

1 Introduction

Agents and multi-agent systems (MAS) are used in a great variety of domains,
including cloud computing, networks security and routing, social networks, robo-
tics, complex systems modeling, the Internet of Things (IoT), Ambient Assisted
Living (AAL), smart cities, smart grids, and simulation [1,6,8].

A MAS framework is meant to save the developer from the task of implement-
ing several functionalities such as inter-agent communication, resource discovery,

⋆ This work was supported by a grant of the Ministry of Research, Innovation and Dig-
itization, CNCS - UEFISCDI, project number PN-III-P1-1.1-TE-2021-1422, within
PNCDI III. This work has been partially funded by UEFISCDI project Cornet
(1/2018, PN-III-P3-3.6-H2020-2016-0120).



2 A. Olaru et al.

agent-oriented application application

agent-oriented programming language

agent-oriented abstractions framework

entity management and interaction routing

network transport protocol OS & libraries

Fig. 1. A view on the layers existing in a MAS framework. Agent-oriented abstractions
are entities accessible by the developer, such as agents, artifacts, and nodes.

agent mobility, internal agent event processing and internal agent organization,
as well as deployment, control and monitoring of agents.

There are several frameworks which facilitate the design, modeling, and simu-
lation or deployment of MAS [6,19]. Among them there are Jade, SPADE, JIAC,
JACK, JaCaMo, PLACE, FLAME, MASON, Repast, of which some allow the
deployment on distributed networks of devices, whereas others (such as the last
three) are Agent-Based Modeling Simulation (ABMS) platforms, which enable
high-performance simulation of large numbers of agents. Some frameworks, such
as SARL and MET4FoF [23,9], support both high-performance local simulation,
as well as distributed deployment.

A MAS framework normally o�ers to the developer an API that allows the
creation and management of various agent-oriented abstractions (such as nodes,
agents, artifacts), the de�nition of various aspects of the environment (such as a
physical space, tools agents can use, services available), as well as the interaction
between all those elements. For instance, Jade o�ers agents as sole abstraction
for the persistent components in a MAS agenti�cation, with containers available
as references to the nodes in the deployment. JaCaMo implements the Agent
& Artifacts (A&A) model and o�ers artifacts as abstractions for any aspect of
the environment [22]. ABMS frameworks generally split the modeling between
event-driven agents and a space-based environment model.

In terms of the infrastructure for communication and services, it is �xed in
most frameworks, some, such as SARL and JaCaMo, o�ering the choice between
local and network-distributed message or event routing. Figure 1 shows a per-
spective on the layers of a MAS framework: the MAS application is built on
top of agent-oriented abstractions o�ered by the framework, and potentially an
agent-oriented programming language (such as Jason or SARL); the framework
deals with the management of entity lifecycle and with the interaction between
entities.

This approach has some important limitations. First, any new type of entity
that the developer may need to model must be built on top of the abstractions



The entity-operation model 3

o�ered by the framework, adding complexity andleading to two levels of mod-
eling: the agent-oriented model of the framework and the agent-oriented model
of the application. For instance, if the developer of a distributed AOP applica-
tion implemented in Jade wishes to model artifacts, artifacts would have to be
implemented as agents, leading to having �agent� agents and �artifact� agents.
The alternatives are either to use JaCaMo, forcing the developer to use Jason
for agents, or to interoperate CArtAgO with Jade, which brings a di�erent
framework into the mix. Similarly, in JaCaMo, organizations are managed via
artifacts, such that an organization is not a �rst-class entity in itself. Other enti-
ties may be needed, such as context managers � entities managing an activity or
a smart space � which need to perform some proactive actions, such as sending
noti�cations or checking for overlaps, but do not have mental states, making
them di�erent from both agents and artifacts.

The second limitation relates to communication infrastructures in distributed
network deployments, which are also related to discovery of resources. Most
frameworks have the communication infrastructure �xed and it is impractical to
change it. In a complex distributed deployment, using di�erent communication
infrastructures in di�erent parts of the system brings challenges in modeling
and forces the developer into creating multiple models for multiple frameworks,
incurring overhead in interoperating them.

In this paper we introduce a model for the entity-interaction layer of a multi-
agent system framework, which relies on a uniform representation of entities
and their operations. We call it the entity-operation model. In this model, any
persistent component in the multi-agent system is explicitly modeled as an entity,
and its functionality is accessible via a number of operations, which can have
arguments and restrictions.

This way, the model of the MAS can contain, as �rst-class entities, not only
agents, artifacts, or organizations, but also communication infrastructures, di-
rectory services, context managers, entities at the sub-agent level (components
of agents, such as behaviors), and so on. All of these would be accessible to
other entities by means of a uniform underlying interface, while allowing each
type of entity its own set of speci�c operations. By using a uniform approach to
model any entity, a deployed system can welcome, at runtime, new entities of
new types, supporting openness and heterogeneity.

Abstractions that make up existing agent-oriented models can be imple-
mented using the entity-operation model. For instance, instead of implementing
organizations via artifacts (as in JaCaMo), an organization can be implemented
directly as an entity in its own right, potentially distributed over several nodes.
A developer using an agent framework can use �standard� entity types and in-
teractions (e.g., agents and artifacts) without needing to know about entities
and operations, but also has the possibility to create new types of entities, to
access other entities via operation calls, and to use the full capabilities of any of
the entities in the framework. The entity-operation model is interoperable with
other agent-oriented models but supports a �exible approach to the modeling of
individual entities.



4 A. Olaru et al.

A natural addition to the entity-operation model was a means to control
the access to operations. We have created a context-based access model, where
access is authorized to entities having speci�c relations to other, known, entities.

We have successfully implemented the entity-operation model in Flash-mas1

[17], reusing existing blocks and models and implementing a scenario demon-
strating how the entity-operation model can be used for context-based access to
elements in a smart environment.

We have devised an ambient intelligence scenario which we will use through-
out the paper, in which a person interacts with entities in a smart building:
Andreea is a master student at the Department of Computer Science and Engi-
neering. She is also working as a teaching assistant for undergraduate students
in the same department. It's the middle of January and Andreea is going to
teach an Operating Systems lecture on a Monday morning in the new smart
building in the campus. To reduce the energy bill, the heating is turned o� over
the weekend and it must be started by an authorized person in each room on
Monday. Andreea lives quite far from the university, and it takes her about an
hour to get there. Before leaving her home, she uses the mobile app to check
the temperature of the classroom and she remotely turns on the heating. When
she arrives in the building, she uses her smartphone to unlock the door to the
lecture room and turns on the lights. Being a second-year master student, An-
dreea has a cloud computing class in another room in the same building later on.
She resides in Room 308 where she has a desk. She prints some notes using the
printer in Room 308 and then goes to her class. This time she is a student, so
she won't be able to perform the same actions as before � for instance, she will
not be able to unlock the room where she has classes as a student. She needs to
present a semester project, so she temporarily receives control of the projector
in the room, to show her slides.

A second use-case that we address is a platform in which agents are able
to exchange pre-trained machine learning (ML) models, evaluate or train them
further, and exchange information about their experiences. In this scenario, ML
models and their descriptions are �rst-class abstractions, and act as sub-agent
entities that agents can use in their activity and that agents can send or receive.
They have a reactive aspect � answering to queries � but also a pro-active (but
not autonomous) aspect, as they can report on the status of their training process
or report problems with their functionality.

The paper is organized as follows. In the next section we discuss existing
frameworks and models for distributed multi-agent systems. After the presenta-
tion of the model in Section 3 and implementation challenges in Section 4, we
discuss the advantages and appropriateness of using the entity-operation model
for multi-agent frameworks in Section 5. The last section draws the conclusions.

1 The Fast and Lightweight Multi-Agent Shell. The source code is available at
https://github.com/andreiolaru-ro/FLASH-MAS



The entity-operation model 5

2 Related Work

Pal et al [19] survey the current state of framework development, detailing both
the application domains of frameworks and their implementation language, as
well as their development status and distribution license. An important distinc-
tion is between open-source and commercial platforms. A related work lists only
16 projects as in-development general-purpose platforms, combining platforms
for distributed deployment, platforms for ABM simulation, and AOP languages.
Kravari and Bassiliades [14] survey the development status, license, adherence
to standards, ease of deployment, and security for several agent frameworks,
concluding that Jade remains the most popular framework. They observe that
when choosing a framework for deploying MAS, developers and researchers must
select and be limited by application domain, programming language, and learn-
ability. This is why our intention is to develop a more general, easy to use MAS
framework.

Agent-based simulation tools are surveyed by Abar [1], Rousset [24] and
Lorig [15]. The most popular and giving a high level of performance are the
Repast suite and D-MASON. Jade is shown to have very little applicability for
ABMS, because of the lack of support for synchronization and for HPC-speci�c
communication. More �exibility in the interaction model could have made Jade
a valid option for AMBS.

Cardoso and Ferrando [6] provide a fresh systematic literature review on AOP
languages, which are many times related to their respective frameworks. Most
languages are based on AgentSpeak [20] (ASTRA, Jason and related languages)
or on Jade.

Jade [3] is, by far, the most popular framework for distributed deployment of
multi-agent systems. It o�ers communication, directory and discovery services,
agent migration, and a speci�c, behavior-based structure for agents. In terms
of communication, it relies on TCP/IP by default, but other communication
methods are available at deployment time, with agent code changes necessary
[7].Jade o�ers no abstraction other than the agents (potentially o�ering ser-
vices), with the framework also abstracted as standard agent instances. Nodes,
communication services, and directory services are accessed in di�erent manners
� nodes via direct methods, communication via methods in the agent, and di-
rectory services via FIPA-ACL messages with speci�c content [10]. Many other
frameworks are based on or inspired by Jade and strive to be FIPA-compliant.
Jadex [5] adds support for BDI agent modeling. SPADE [13] is developed in
Python and uses XMPP/Jabber as a communication method, featuring a GUI
for monitoring agents, giving the advantage of easier interoperation with ML
libraries. PADE [16,26] is also implemented in Python and uses Twisted for
communication, hence supporting multiple protocols. JACOSO is a Jade-based
implementation of the ACOSO Methodology for the development of IoT sys-
tems [11]. Apart from Smart Objects, which it agenti�es as Jade agents, it
builds additional abstractions for other elements in IoT scenarios, such as tasks
(as sub-agent entities), events, and a variety of managers and adapters whose
properties do not �t in the agent model, showing the need to be able to integrate



6 A. Olaru et al.

Fig. 2. A view on the object-oriented class hierarchy in a scenario using the entity-
operation model. There are several layers of abstraction, with the most abstract at the
bottom. See also Section 3.2. Dotted borders are used for application-speci�c models
and entities de�ned by the MAS developer.

new abstractions in the agent framework without the need to create additional
layers.

JaCaMo [4] is another popular MAS framework, which combines the Jason
AOP language, based on AgentSpeak and Prolog, with the CArtAgO implemen-
tation of the Agents & Artifacts (A&A) model for the environment, and with
the MOISE implementation for roles and organizations. JaCaMo rests on strong
theoretical foundations and can be deployed both locally and in Jade-based
distributed setups. The distinction made between agents and artifacts is very
strong, and their development paths diverge from modeling phase. Workspaces
exist as virtual entities spanning multiple nodes, but do not have an embodi-
ment with its own code. No new abstractions can be created in JaCaMo, without
basing them on existing entities. Initial steps have been taken towards making
JaCaMo BDI compatible with ABM simulation, via JaCaMo-SIM [21].

Janus [12] is a language-independent platform, but targeted mainly at exe-
cuting the SARL [23] AOP language. It supports event-driven interaction, and
in deployments over a local computer network (via the Janusnode variant) it
broadcasts these events to all agents. While combining the A&A approach with
the distributed approach, it is not adequate for message-based applications, nor
does it o�er services such as directory or service discovery.

Met4FoF [9] is a recent, in-development MAS framework oriented towards
streaming data from sensors, written in Python. It o�ers specialized modules for
stream management, bu�ering, and redundancy. It o�ers only agents as abstrac-
tions for persistent entities, with additional data- and stream-related abstrac-
tions.

3 The entity-operation model

When implementing complex scenarios using an agent-based approach, a ques-
tion that is raised frequently is �what should this be modeled as? �. This is some-



The entity-operation model 7

what related to the question that arises in an open system when a new entity
is introduced and the other entities in the system ask questions like �what is
this? how should I interact with this? �. When using a MAS framework, the set
of possible entity types is �xed to what the framework o�ers. New entity types
will have to be implemented via existing entity types.

A framework using the entity-operation model does not restrict the developer
in this way and allows the deployment of any type of entity as a �rst-class entity.
The framework itself is very thin � it only speci�es an interaction model, with
all the rest being modules that can have various implementations.

Entities. The model that we propose posits that all persistent elements in
a MAS are represented as entities. The central principle is that entities are
persistent. Secondly, entities need, in general, to be accessible; as such, they
expose operations, which other entities may call ; not every operation is available
to any entity, as we will detail further on. Third, entities are autonomous, in
that they can decide how they react to operation calls. All entities should have
a unique identi�er. In a complex deployment, although mechanisms for name
shortening and caching can be used, any entity should be uniquely identi�ed by
its URI.

Entities may be local to (running inside) a physical node, or may be dis-

tributed across multiple nodes. Distributed entities must have a local embodi-

ment on each node where they are present. For instance, in Jade, containers
are the embodiment of the Jade platform.

Our goal is to use this model to describe all elements in a running, deployed
MAS. That means that, beside agents and components representing aspects of
the environment, elements such as nodes and communication infrastructures
should also be implemented as entities; similarly, any interaction between enti-
ties, be it an interaction between two agents, but also an interaction between an
agent and a node, or an agent and an organization, should be performed via oper-
ations. Communication infrastructures are also accessed via operations, allowing
for more uniformity and for �exibility in the implementation of communication
mechanisms.

We do not model in any way the inside of entities. We look for interoperability
and mutual understanding, but an entity may work in various manners on the
inside. Of course, one has the possibility to model the inside of an entity using
other entities, as for instance some agents in Flash-mas are composed of shards,
which are also modeled as entities. Flash-mas o�ers an implementation for
composite agents, whose behavior is modeled by the shards that are added to
the agent [17].

Using entities does not mean we forfeit existing models based on agents or
on agents and artifacts. Rather, we o�er a uniform underlying model (or meta-
model) that underpins the actual model used by the application. This brings
unity to the technical implementation of the entities and the opportunity to
easily switch between di�erent approaches to modeling.

In our scenario, we model as user's agent as an agent entity, the smart lock,
the smart light, the heating appliance, and the temperature sensor as artifacts,



8 A. Olaru et al.

Fig. 3. A perspective on the relations in the running scenario, at the moment when
Andreea teaches the undergraduate class on operating systems.

and the entities managing the room and the two teaching activities as context
managers � non-autonomous agents with a more complex behavior.

Operations. The model that we propose posits that any interaction between
two entities is performed via operations, with one entity calling an operation
of the other entity. Moreover, any interaction between a core element of the
framework and an entity should be performed via an operation of the entity.

Entities are expected to have a list operation, which returns a description
of all the operations available to any other entity. While this can, in the future,
be used to semantically search for an appropriate operation, it can currently be
used to duck type an entity, based on its available operations.

In keeping with the concepts in the A&A and web services models, operations
can also have return values, which are returned to the initiator of the operation
call.

In our scenario, the user's agent can query the temperature sensor to �nd
the temperature in the room, can instruct the smart lock to unlock the room,
and can connect to a wireless projector. All of these, of course, if the user is
authorized to perform the operations. For instance, the print operation of the
printer in Room 308 may be available to people who are physically in the room,
or are in general residing in that room.

Relations. Access to operations can be restricted by using relations. Rela-
tions link entities in a similar manner to semantic triples in RDF2. Relations
can express, for instance, that a certain device is in a particular room, or that
a user has a role in a particular activity, or that a service runs on a particular
node. Once initiated, relations must be accepted by entities at both ends, and
can be canceled by any of the two entities.

Relations can be used to restrict which entities are allowed to call a given
operation. For instance, a door for a room in a smart building can only be
unlocked by the personal agent of a user who is teaching the lecture taking place
in that room in that given interval.

2 Semantic triple https://en.wikipedia.org/wiki/Semantic_triple



The entity-operation model 9

In our example, relations describe the placement of devices, the location
of the user, and the role of the user in the current context. See Figure 3 for
a perspective on the relations in the scenario, at the moment when Andreea
teaches the undergraduate class.

Context tokens. An entity calling an operation which has restrictions must
prove that it indeed has the required relations to other entities. As such, we
introduce the idea of context tokens � tokens which are a proof of context. Each
token is a document containing the statement of a relationship, the timestamp
of the document, and an expiration time. To ensure authenticity, tokens can be
required by the callee to be cryptographically signed by an authorized entity
involved in the relationship.

An entity will receive context tokens periodically from other entities, proving
their relationship. As a caller of an operation, it will send, in the operation call,
all relevant tokens, proving that it is indeed authorized to call the operation. The
tokens must still be valid for successful authorization. The expiration period of
context tokens is related to the nature of the relation and is proportional to
the time a relation is expected to last. The quality of being employed by an
organization can be re-certi�ed (by the emission of a context token) once every
month, whereas the property of being in a given room should be recerti�ed
once every minute. It is the entity managing a given context that decides the
expiration period of context tokens.

For instance, in our scenario, there is a printer in Room 308. When a user
with a device enters the room, a relation is created by the local access point
between the user's agent / device and the entity managing the room. While
the user remains in the room, the user's agent receives, periodically, a context
token proving the relation. When the user wishes to call the print operation,
the user's agent will know that the operation is restricted to users in the room,
so the operation call that is sent will also contain the most recent context token
proving that the user is in the room; the token is signed by the room manager.
The printer already has the public key of the room manager, since one of the
restrictions on one of the operations of the printer involves the room manager.
It can check the context token and approve the operation.

In the example with Andreea unlocking the door as a teacher, the smart
lock entity lists an operation unlock, with the restriction that the caller must
have the role current_teacher in the current room and at the current time. In
a di�erent exchange, the entity managing the lecture informs the room who will
be teacher in the current time slot. The entity managing the room creates a
current_teacher relation with the agent of the user, periodically sending to the
user a context token proving the relation. When calling the unlock operation,
this context token will be included, and it will be veri�ed by the smart lock.

3.1 Formalization sketch

From an omniscient point of view, we de�ne a fully modeled multi-entity system,
using the entity-operation model, as a tuple ⟨EE ,RR⟩, where EE is the set of



10 A. Olaru et al.

entities and RR is the set of relations. We have:

EE = {E | E = ⟨IDE , OperationsE⟩}

RR = {⟨from, relation, to⟩},with from, to ∈ EE

An operation O ∈ OperationsE , with E ∈ EE , is de�ned as:

O = ⟨NameO, DescriptionO, ArgumentsO, ResultO, RestrictionsO⟩

The tuple contains the name of the operation, its description, the descrip-
tion of the arguments, return value, and restrictions on the entities which may
call it. The description of the operation can have any form, but a semantic
description is more suitable. The description of the arguments is of the form
ArgumentsO = {⟨Name,Description⟩}. In the simplest implementation of the
model, the Description can be as simple as the type of the argument, and the
description of the result the type of the returned value.

The restrictions on an operation are de�ned as a logical operation on rela-
tions. Take, for example, the printer located in Room 308 in our running sce-
nario. It has one operation (print), which should be available to any entity E
in the same room (E ≺located Room308 , and to anyone who is a resident in that
room (E ≺resides Room308 ). So, for an entity E to be allowed to call the print

operation, it should be true that E ≺located Room308 ∨ E ≺resides Room308 .
The restrictions can be formalized as a disjunctive normal form on positive

literals, each literal representing a relation, but replacing the formula E ≺⟨⟩ E1
with the pair (≺⟨⟩, E1). That is, for an operation O:

RestrictionsO ⊆ {Conjunction | Conjunction ⊆ R× EE},with

R = {relation | ⟨∗, relation, ∗⟩ ∈ RR} � the set of all relation names

As such, the print operation has a restriction that looks like: {{(≺located,
Room308}, {(≺resides,Room308 )}}

Of course, no single entity in a distributed system has an omniscient view on
all other entities (or else it would be a bottleneck and a single point of failure),
so, in practice, the system is formed of the set of entities EE , each entity keeping
track of its relation to other entities:

∀E ∈ EE . E = ⟨IDE , OperationsE , OutgoingE , IncomingE⟩,with

OutgoingE = {(relation,Eto) | ⟨E, relation,Eto⟩ ∈ RR}
IncomingE = {(relation,Efrom) | ⟨Efrom, relation,E⟩ ∈ RR}

An operation call is an object containing the caller, the callee, the name of
the operation, the arguments for the operation, relevant information about the
relations of the caller, and whether a return value should be sent back to the
caller (if the operation supports it):

call = ⟨ESource, EDestination, NameOp, {Arguments}, {Tokens}, send -result⟩

where ESource, EDestination ∈ EE , NameOp is an identi�er for the operation,
Arguments are the argument values for the operation, send -result is a boolean
value, and Tokens are the context tokens.



The entity-operation model 11

3.2 Prede�ned entities and relations

As stated in the Introduction, a developer does not need to create new types of
entities or to call operations directly. A layer of prede�ned entities may prove
su�cient for many MAS applications (see also Figure 2). This has several ad-
vantages: (1) a framework based on the entity-operation model can be used
exactly like a �normal�, existing framework; (2) given enough prede�ned entities,
a framework based on the entity-operation model can be used like any of the
standard frameworks; and (3) is needed, the developer can still de�ne new types
of entities or new implementations of existing entities. Entities in existing MAS
models can be represented in the entity-operation model as follows.

An agent has a receive operation, which allows it to receive messages from
any other entity. The implementation of agents can de�ne a send method which
constructs an operation call directed at another agent. In the A&A model, the
implementation can also contain methods for accessing artifacts and operations
to allow noti�cations from artifacts. As there are many approaches to what an
agent is, multiple �agent� entity types can be de�ned depending on the appli-
cation, each with its own set of operations, de�ning what an agent is in that
approach.

An artifact works just as in the A&A meta-model, exposing operations to
any entity in the appropriate workspace. Workspaces are distributed entities,
and entities are bound to workspaces by means of dedicated relations.

A pylon that is the embodiment of a communication infrastructure, can
receive route operation calls from any entity, and it can attempt to route the
operation call to its target entity, which may be on a di�erent machine.

A pylon that o�ers directory and discovery services presents the register

and search operations.
A node o�ers a load&start operation to any entity which executes on the

node or which has authority over the node. Nodes supporting migration o�er a
receive_agent operation which enables agents to migrate to that node.

Sub-agent entities, for instance shards in Flash-mas [17], must have a fast
two-way means of interaction with their container agent. As such, a shard must
o�er a signal_agent_event operation to receive events from the agent, and an
agent supporting shards must o�er a post_event operation to receive events
from its shards. The same mechanisms can be used to build holonic systems. In
a model similar to Jade, behaviors could also be modeled as sub-agent entities.

Machine learning models (pre-trained) can be represented as entities having
a get_result operation. As sub-agent entities, they can be sent from one agent
to another, they can be cloned, or they can migrate with an agent from one
node to another, using the same migration mechanism as agents. They can have
a pro-active aspect which allows them to notify other entities about the status
of the training process.

Entities are expected to have a list operation, which returns the names and
descriptions of operations available to other entities.

Any entity should o�er a set of operations which allows it to interact easily
with the framework, while also abiding to the model. These operations � start,



12 A. Olaru et al.

Fig. 4. The path taken by an operation call between entities situated on di�erent nodes.

stop, and isRunning, should only be available to entities authorized to control

that entity (e.g., the node on which the entity is executing, or the owner of the
entity).

4 Implementation challenges and results

We have implemented the entity-operation model in Flash-mas, a Java-based
framework which o�ers tools for the deployment of complex, distributed multi-
agent scenarios, in which the implementation of any entity is customizable. We
have re-written the core code of Flash-mas so that all entities use the entity-
operation model. As such, some challenges arose, and we will present in this
section how we solved them.

To abide to the entity-operation model, any object which represents an entity
must implement the EntityAPI interface, which speci�es a minimal number of
methods:

� connectTools gives the entity a reference to the EntityTools instance which
will connect it to the framework. Using the EntityTools instance, the entity
can register (or obtain) and ID with the framework.

� getID returns the ID of the entity.
� handleIncomingOperationCall is called whenever an operation call is sent to
the entity. The method is called by the EntityTools instance associated with
the entity, which has previously checked if the operation is correctly accessed.

� handleRelationChange is called by the EntityTools instance whenever a rela-
tion involving this entity is created or destroyed.

While representing all persistent things in a MAS as entities, and since entities
can be implemented in any way by the developer, there is a need for something
to bind the entities together, help manage them, and ensure that operation
calls reach their intended destination. Hence, on any JVM where Flash-mas is
running there is a singleton object called FMAS, representing the framework. To
ensure correct encapsulation and to restrict access to powerful FMAS functionality
we take example from the internal implementation of Jade and create, for each
entity integrated into the system, an instance of the EntityTools class, which
helps entities interface with the framework. The EntityTools instance manages



The entity-operation model 13

the list of the entity's operations, the access to those operations, and the relations
incoming to or outgoing from the entity.

Entities interact via operation calls. There are, however, other types of in-
teractions, which are not direct interactions between entities, and cannot be
represented as operation calls. These are: the return value sent as a result of an
operation call; the initiation or removal of a relation between two entities; and
the acceptance or rejection of a new relation between entities. All these interac-
tions have a destination and a source or a return path, so we can model them
collectively as a concept that we call wave.

Waves must be routed so that they reach their destination, sometimes across
the local network or the Internet. In keeping with the �exibility o�ered by
Flash-mas, there is no restriction on the communication method used, as long
as the communication infrastructure can deliver a wave to the node where a
destination entity is located. In line with the principles of the entity-operation
model, interaction infrastructures are embodied by pylons, which are also enti-
ties. Routing waves is handled by an entity which is directly linked to the FMAS

instance, called the Local Router.
To route a wave, the Local Router uses the following algorithm:

� if the destination is registered with the local FMAS instance, the wave is routed
directly to its destination (via the EntityTools instance associated with the
destination);

� otherwise, the list of local entities which o�er the route operation is used to
look for an appropriate router;

� the wave is sent via the �rst of these entities that executes the route operation
successfully.

A detailed view of this process is shown in Figure 4. While the wave passes
through several entities, the only decision points are in the Local Router in-
stances, the rest being only method calls. The advantage of this process is,
however, that routing waves can be done using no matter which communication
infrastructure. Currently, Flash-mas has implementation for communication
via WebSocket, RESTful web services, distributed region-based mesh, and ROS.
Having an implementation for entities which is agnostic to the communication
mechanism opens the path towards using the same codebase for performing
high-performance simulations and deploying entities in a distributed setup. In
Flash-mas we have already performed experiments with using MPI-based com-
munication.

In Flash-mas we have strived not only to have the ability to select the
communication infrastructure at deployment, and make agent (and, in general,
entity) code agnostic of the mechanism used for communication, but also to be
able to support the deployment and interoperation of multiple communication
infrastructures in the same system. This is also possible in the entity-operation
model. Following the principles in previous work [18,25], bridge entities can o�er
the route operation, the same as pylons of communication infrastructures. A
bridge will register in two (or more) communication infrastructures and will act
in each one as a sink for the other(s), ensuring waves can travel between any



14 A. Olaru et al.

two nodes in the bridged infrastructures, in a transparent manner for the other
entities.

Some MAS frameworks, including Jade, support mobile agents, which can
migrate from one node to another. This poses a particularly di�cult challenge
to the framework, as the agent needs to interrupt its activity, get serialized,
transferred to another node, deserialized, and resume execution. In Flash-mas,
entity mobility needs support from both inside and outside the entity. The entity
must ensure that it suspends its activity correctly, and serialization is also done
inside the entity. Once serialized, the entity sends the package as the argument
of an operation call to the destination node, which, if it supports migration,
deserializes the entity and registers it with the local FMAS instance, leaving to the
entity to resume its activity in the correct manner.

It is arguable that, when using cryptographically signed context tokens,
checking the tokens can incur a signi�cant performance penalty. We have de-
veloped, however, a mechanism to avoid this penalty for the cases where per-
formance is essential. First, many scenarios do not require at all that access to
the most used operations is controlled, for instance in a scenario using agents
which exchange messages. Secondly, the most important performance penalty is
brought when operation calls are routed inside the same node. This is particu-
larly of issue in the case of sub-agent entities (shards in Flash-mas) to which
only their container agent has access, but which are expected to exchange calls
with their agent frequently. Let us take the example of a shard which should
post an event to its agent. The shard calls the agent's operation and attaches
a context token proving that the shard belongs, indeed, to that agent; but the
context token has been generated by the agent, on the same node. This means
that the local FMAS instance can check the token only by hashing it and compar-
ing the result against a list of active tokens and their hashes, without needed
to verify the signature. Full veri�cation is still needed, however, when calls are
exchanged between di�erent network nodes.

We have validated the viability of the entity-operation model by implement-
ing the scenario presented in the Introduction. Our goal was to verify that we
can use the entity-operation model to implement all the described processes and
to perform functional testing of the context-based access model. This stage of
validation was successful.

In the implementation of the scenario, we have created agents for Andreea
and other students, context managers for the two lectures, for the smart building,
and for the three rooms, and artifacts for the various devices � smart lock, heater,
lights, and printer. Relations have been created, especially the ones representing
the role of Andreea as a teacher for one course and as a student for the other
course. When, in simulated time, Andreea's lecture as a teacher approached,
a relation was created by the course manager between Andreea and the room
manager. She was now authorized to control some of the devices in the room.
When a relation was created between Andreea and the smart building, the unlock
operation of the smart lock became available to her. After the end of the lecture,



The entity-operation model 15

her relation with the room was removed, so the operations became unavailable
again.

The implementation shows that, indeed, a variety of entities can be imple-
mented using the proposed model, more properly than just implementing them
all as �agents�. It showed that the context-based access model can be used to
limit the availability of operations.

5 Discussion

The idea of having objects distributed across the network, o�ering operations
that can be called, is not new. However, our model is directed speci�cally to-
wards autonomous entities. Compared, for instance, to Java RMI, the entity-
operation model, and the various implementations for actual communication
between nodes, increases �exibility as it avoids reliance on a single interaction
mechanism.

Having entities and operations is similar, and can be replicated by, having
agents which send messages from one to another. It o�ers, however, a lot more ex-
pressivity in modeling the entities in the system, reserving the agent abstraction
for truly pro-active, autonomous entities, without abusing them to implement
any of the persistent entities in a deployment.

Especially when using web service communication, a deployment using the
entity-operation model can be likened to a set of web-services o�ering various
operations. Our approach, however, allows various interaction methods, some of
which can be more lightweight than deploying a web server on every node.

Essentially, what we strive to o�er with the entity-operation model is choice
and expression power. A MAS developer should not be forced into making the
choice of implementing an entity as a framework-o�ered abstraction that is not
appropriate for that entity, and this choice should not lead to a development
path that is so far from the other types of abstractions that it is di�cult to
return to the decision point. The developer should be able to choose from a wide
array of available abstractions and, when needed, to be able to create their own
�rst-class abstractions, and then use that set of abstractions for the entities in
the applications. Let us take a few examples.

A context manager handles the interactions between other entities and a
smart space or a smart activity [2]. For instance, a context manager keeps track
of the entities which are a part of that context, e.g., which are physically in that
space, or are part of that activity. In our scenario, the context manager of the
room keeps track of the users in the room, or users authorized to control the room
devices; the context manager of the course (as an activity) sends updates to the
entities involved in the activity. A context manager is not a proper agent, in terms
of an entity which has goals, and which achieves goals by executing actions in a
plan; it rather manages aspects of the environment. However, it cannot easily be
implemented as an artifact (in the sense of the A&A model) because an artifact
cannot create relations between it and agents proactively, because agents need
to �rst focus on the artifact. When the teacher (or some faculty sta�) adds



16 A. Olaru et al.

students to a course, some agent would have to send a message to the students'
agents, and then the agents would have to focus on the context manager. In the
entity-operation model, a context manager entity is able to create relations to
agents (that they can approve or not), even if it is not modeled as an agent.

A broadcast group (similar to a mailing list) relays messages sent by one of
its members to all the other members in the group. Again, a broadcast group
would not be properly modeled as an agent. However, it cannot be modeled as
an A&A artifact either � artifacts can notify agents only of observable properties
or via signals. For a broadcast group, members of the group would not receive
the messages in the group as signals, not as messages, needing a di�erent pro-
cessing path inside the agent. In the entity-operation model, a broadcast group
is implemented as an entity which agents can join and then it can simply call
the receive operation of agents each time it needs to broadcast a message.

6 Conclusions and Future Work

We introduce the entity-operation model as a practical approach to the uniform
implementation of the various abstractions o�ered by a MAS framework. The
model has been created with the desire to both o�er to the MAS developer
an array of available abstractions, but also to allow the developer to change
previous choices regarding the modeling of the scenario, and to create new types
of abstractions, if one needs it. The model is enriched with a context-based access
model for operations.

Using the entity-operation model brings a series of advantages, like the possi-
bility to interact with all types of abstractions in a MAS and to model explicitly
the communications and services infrastructures. Another advantage is the abil-
ity to create sub-agent or supra-agent entities, such as shards and organizations,
respectively, or to create holonic structures.

A current development direction is to fully integrate machine learning models
as sub-agent entities, while interoperating, using the principles of the entity-
operation model, with ML frameworks written in Python.

The next steps in this research are to build entity implementations that
use the entity-operation model and are compatible with Jade, JaCaMo, and
other popular MAS frameworks. Our short-term goals are to be able to run
Jade agent code on other communication infrastructures, to use various agent
implementations with the Jade communication infrastructures, to support Jason
as an AOP language, and to interoperate with CArtAgO and MOISE.

References

1. Abar, S., Theodoropoulos, G.K., Lemarinier, P., O'Hare, G.M.: Agent based mod-
elling and simulation tools: a review of the state-of-art software. Computer Science
Review 24, 13�33 (2017)

2. Baljak, V., Benea, M.T., El Fallah Seghrouchni, A., Herpson, C., Honiden,
S., Nguyen, T.T.N., Olaru, A., Shimizu, R., Tei, K., Toriumi, S.: S-
CLAIM: An agent-based programming language for AmI, a smart-room



The entity-operation model 17

case study. In: Proceedings of ANT 2012, The 3rd International Con-
ference on Ambient Systems, Networks and Technologies, August 27-29,
Niagara Falls, Ontario, Canada. Procedia Computer Science, vol. 10,
pp. 30�37. Elsevier (2012). https://doi.org/10.1016/j.procs.2012.06.008,
http://www.sciencedirect.com/science/article/pii/S1877050912003651

3. Bellifemine, F., Poggi, A., Rimassa, G.: JADE - a FIPA-compliant agent frame-
work. In: Proceedings of PAAM. vol. 99, pp. 97�108. Citeseer (1999)

4. Boissier, O., Bordini, R.H., Hübner, J.F., Ricci, A., Santi, A.: Multi-agent oriented
programming with JaCaMo. Science of Computer Programming 78(6), 747�761
(2013)

5. Braubach, L., Pokahr, A.: Jadex active components framework-BDI agents for dis-
aster rescue coordination. Software Agents, Agent Systems and Their Applications
32, 57�84 (2012)

6. Cardoso, R.C., Ferrando, A.: A review of agent-based programming for multi-agent
systems. Computers 10(2), 16 (2021)

7. Curry, E., Chambers, D., Lyons, G.: A jms message transport protocol for the jade
platform. In: IEEE/WIC International Conference on Intelligent Agent Technology,
2003. IAT 2003. pp. 596�600. IEEE (2003)

8. Dorri, A., Kanhere, S.S., Jurdak, R.: Multi-agent systems: A survey. IEEE Access
6, 28573�28593 (2018)

9. Dorst, T., Eichstädt, S., Schneider, T., Schütze, A.: Propagation of uncertainty
for an adaptive linear approximation algorithm. SMSI 2020-System of Units and
Metrological Infrastructure pp. 366�367 (2020)

10. FIPA: FIPA ACL message structure speci�cation (December 2002),
http://www.�pa.org/specs/�pa00061/SC00061G.html

11. Fortino, G., Russo, W., Savaglio, C., Shen, W., Zhou, M.: Agent-oriented coopera-
tive smart objects: From iot system design to implementation. IEEE Transactions
on Systems, Man, and Cybernetics: Systems (99), 1�18 (2017)

12. Galland, S., Rodriguez, S., Gaud, N.: Run-time environment for the SARL agent-
programming language: the example of the janus platform. Future Generation
Computer Systems 107, 1105�1115 (2020)

13. Gregori, M.E., Cámara, J.P., Bada, G.A.: A jabber-based multi-agent system plat-
form. In: Proceedings of the �fth international joint conference on Autonomous
agents and multiagent systems. pp. 1282�1284 (2006)

14. Kravari, K., Bassiliades, N.: A survey of agent platforms. Journal of Arti�cial
Societies and Social Simulation 18(1), 11 (2015)

15. Lorig, F., Dammenhayn, N., Müller, D.J., Timm, I.J.: Measuring and compar-
ing scalability of agent-based simulation frameworks. In: German Conference on
Multiagent System Technologies. pp. 42�60. Springer (2015)

16. Melo, L.S., Sampaio, R.F., Leão, R.P.S., Barroso, G.C., Bezerra, J.R.: Python-
based multi-agent platform for application on power grids. International Transac-
tions on Electrical Energy Systems 29(6), e12012 (2019)

17. Olaru, A., Sorici, A., Florea, A.M.: A �exible and lightweight agent de-
ployment architecture. In: 2019 22nd International Conference on Control
Systems and Computer Science (CSCS), Bucharest, Romania, 28-30 May
2019. pp. 251�258. IEEE (2019). https://doi.org/10.1109/CSCS.2019.00048,
https://ieeexplore.ieee.org/abstract/document/8744845/

18. Olaru, A., Florea, A.M.: A framework for integrating heterogeneous agent com-
munication platforms. In: Proceedings of ACSys 2015, the 12th Workshop on



18 A. Olaru et al.

Agents for Complex Systems, in conjunction with SYNASC 2015, the 17th In-
ternational Symposium on Symbolic and Numeric Algorithms for Scienti�c Com-
puting, Timisoara, Romania, September 21-24. pp. 399 � 406. IEEE Xplore (2015).
https://doi.org/http://dx.doi.org/10.1109/SYNASC.2015.66

19. Pal, C.V., Leon, F., Paprzycki, M., Ganzha, M.: A review of platforms for the
development of agent systems. arXiv preprint arXiv:2007.08961 (2020)

20. Rao, A.S.: AgentSpeak (L): BDI agents speak out in a logical computable language.
In: European workshop on modelling autonomous agents in a multi-agent world.
pp. 42�55. Springer (1996)

21. Ricci, A., Croatti, A., Bordini, R., Hübner, J., Boissier, O.: Exploiting simulation
for mas programming and engineering-the jacamo-sim platform. In: 8th Interna-
tional Workshop on Engineering Multi-Agent Systems (EMAS 2020) (2020)

22. Ricci, A., Viroli, M., Omicini, A.: Give agents their artifacts: the A&A approach for
engineering working environments in mas. In: Proceedings of the 6th international
joint conference on Autonomous agents and multiagent systems. p. 150. ACM
(2007)

23. Rodriguez, S., Gaud, N., Galland, S.: SARL: a general-purpose agent-oriented pro-
gramming language. In: 2014 IEEE/WIC/ACM International Joint Conferences on
Web Intelligence (WI) and Intelligent Agent Technologies (IAT). vol. 3, pp. 103�
110. IEEE (2014)

24. Rousset, A., Herrmann, B., Lang, C., Philippe, L.: A survey on parallel and dis-
tributed multi-agent systems for high performance computing simulations. Com-
puter Science Review 22, 27�46 (2016)

25. Suguri, H., Kodama, E., Miyazaki, M., Kaji, I.: Assuring interoperability between
heterogeneous multi-agent systems with a gateway agent. In: 7th IEEE Interna-
tional Symposium on High Assurance Systems Engineering, 2002. Proceedings. pp.
167�170. IEEE (2002)

26. Tom, R.J., Sankaranarayanan, S., Rodrigues, J.J.: Agent negotiation in an iot-
fog based power distribution system for demand reduction. Sustainable Energy
Technologies and Assessments 38, 100653 (2020)


