
Protocol-Based Engineering of Microservices

Aditya K. Khadse1, Samuel H. Christie2, Munindar P. Singh1, and Amit K.
Chopra3

1 North Carolina State University, USA
2 Unaffiliated

3 Lancaster University, Lancaster, UK
{akkhadse@ncsu.edu, shcv@sdf.org, mpsingh@ncsu.edu,

amit.chopra@lancaster.ac.uk}

Abstract. In industry, the microservice pattern is increasingly used to
realize decentralized applications, often with the help of programming
models such Dapr. Multiagent systems have always been thought of as
being decentralized. Can multiagent software abstractions benefit the
engineering of microservices?
In this paper, we show how that interaction protocols, a fundamen-
tal multiagent abstraction, facilitates the engineering of applications in
a manner that respects the microservices pattern. To make our case,
we take a third-party application that exemplifies Dapr’s programming
model and reengineer it in based on protocols. We evaluate the differ-
ences between our protocol-based implementation and the Dapr imple-
mentation and find that our protocol-based implementation provides an
improved developer experience along with a verifiable causal structure to
the business process. We conclude that augmenting Dapr with protocol-
based programming abstractions would be high beneficial to the mi-
croservices enterprise.

Keywords: microservices · Dapr · multiagent systems · information pro-
tocols · agent programming

1 Introduction

With the recent upsurge of cloud providers and affordable deployment solu-
tions [16], most large-scale software is written using microservices [22]. Microser-
vices are motivated from loose coupling afforded by a decentralized application
architecture: The microservices that constitute an application can be indepen-
dently maintained, deployed, and scaled (in the cloud). By contrast, the compo-
nents in a monolithic application [17] are tightly coupled.

A challenge with any decentralized architecture is coordination between its
components. With products increasingly adopting the microservices architecture,
programming models that facilitate microservices-based application development
have emerged. Dapr [13] is one such leading programming model, originally con-
ceived within Microsoft, but now an open source project. To support coordina-
tion, Dapr provides the abstractions of state stores, pubsub brokers, and so on.



2 A. Khadse et al.

Dapr is used across different industries by companies such as Alibaba Cloud [1]
and Bosch [15]. Alibaba Cloud notes that adopting Dapr helped them integrate
microservices written in different languages quickly. Bosch particularly mentions
how it was easy to move to event-driven microservices while using Dapr.

The field of multiagent systems (MAS) has traditionally been concerned with
decentralized architectures. Recent developments have focused on the idea of in-
formation protocols. An information protocol [18] models a decentralized MAS
by specifying declarative information constraints on message occurrence. Infor-
mation protocols are enacted by decentralized agents via Local State Transfer
(LoST) [19]. Programming models based on information protocols includes De-
serv [8], Bungie [7], Mandrake [9], and Kiko [10]. Kiko in particular enables
developers to focus on writing the decision makers of agents.

In this paper, we model an existing Dapr application via information pro-
tocols and implement it using Kiko to highlight the benefits of a multiagent
approach to microservices development. In particular, the benefits are:

– All interactions between microservices can be asynchronous.
– Safer interactions as they will always have valid information.
– Assign ownership of parameters to corresponding agents.
– Provide documentation of roles of microservices, their interactions, owner-

ship of parameters, and flow of control.

We then evaluate the implementation by comparing it to the existing appli-
cation, report our findings, and discuss some ideas for future work.

2 Background

In this section, we describe information protocols, Kiko, and Dapr.

2.1 Information Protocols

Information protocols are declarative specifications of interaction between agents.
A protocol specifies the roles (played by agents); a set of public parameters; op-
tionally, a set of private parameters; and a set of messages. Each message spec-
ifies the sender, receiver, and its parameters. Adornments such as ⌜in⌝, ⌜out⌝,
⌜nil⌝ on parameters provide causal structure to the protocol. Key parameters
identify enactments. Together, they constrain when messages may be sent. The
adornment ⌜out⌝ for a parameter means in any enactment, the sender of the
message can generate a binding (supply a value) for the parameter if it does
know already it; ⌜in⌝ means that the parameter binding must already be known
to the sender from some message in the enactment that it has already observed;
⌜nil⌝ means that the sender must neither already know nor generate a binding
for the parameter. Each tuple of bindings for the public parameters corresponds
to a complete enactment of the protocol. Thus, one can think of a protocol as
notionally computing tuples of bindings via messaging between the roles.

Listing 1 is an example of an information protocol between a buyer, a seller,
and a shipper for the purchase of an item.



Protocol-Based Engineering of Microservices 3

Listing 1. The Purchase protocol.

Purchase {

roles Buyer , Seller , Shipper

parameters out ID key , out item , out price , out outcome

private address , resp , shipped

Buyer -> Seller: rfq[out ID , out item]

Seller -> Buyer: quote[in ID, in item , out price]

Buyer -> Seller: accept[in ID , in item , in price , out

address , out resp]

Buyer -> Seller: reject[in ID , in item , in price , out

outcome , out resp]

Seller -> Shipper: ship[in ID, in item , in address , out

shipped]

Shipper -> Buyer: deliver[in ID , in item , in address , out

outcome]

}

Let’s unpack how the protocol works. The first line mentions the name of the
protocol, which is Purchase in this case. Next, we list out the roles that will be in-
volved in the protocol, Buyer and Seller. We then list out the parameters that
are part of the messages being sent between the roles. Here, the key parameter
is ID and other parameters are item, price, and outcome. The private parameters
are address, resp, and shipped. Beyond this, every line defines a message.

Every message has a sender, a receiver, a name, and a schema. The sequence
in which these messages are written is unimportant. The causal inference is
made using the adornments of parameters. If a message has all of its parameters
adorned with ⌜in⌝ bound, then that message becomes enabled meaning it can
be sent once the agent fills all the parameters with ⌜out⌝ adornment. Hence, the
first message that can be sent in this protocol becomes rfq, as all its parameter
are adorned with ⌜out⌝ which can be created by the sender. The next message
that can be sent is quote, as its parameters ID and item were bound by the rfq
message that was received, and the parameter price.

Choice within protocols can be supported by providing messages that conflict
with each other. In the listing, we can see that the messages accept and reject
both have resp as a parameter adorned with ⌜out⌝. An agent cannot rebind a
parameter. Hence, the agent has to make a choice where either accept or reject
is sent. If reject is sent, the parameter address is never bound, and in effect,
messages ship and deliver will never be enabled. The enactment will be deemed
as completed as all the parameters that are needed would be bound.

2.2 Kiko

Kiko is a protocol-based programming model. Kiko’s main abstraction is that
of a decision maker. Business logic needed for making decisions out of possible



4 A. Khadse et al.

choices resides in a decision maker. Information protocols are used by Kiko as
the language for specifying the protocols. By taking over all tasks other than
writing the set of decision makers, Kiko enables the developer to focus on the
business logic. Figure 1 shows the architecture of a Kiko agent.

Fig. 1. The Kiko agent architecture [10].

The Multiagent System, Protocol and Decision Makers are authored by the
agent developer. Following is an expected workflow of a developer creating a
multiagent system:

1. Write an information protocol that defines the roles, messages, parameters
and completion criteria for the business process.

2. Write a Python script defining the configuration of the desired multiagent
system.

3. Write Python scripts for each involved role by creating an agent using
Adapter provided by Kiko.

4. Write decision makers in Python based on the information protocol using
the previously written agent.

5. Write a script to start the agents.

The Protocol Adapter on the other hand is provided by Kiko, understands in-
formation protocols, and provides an API for plugging in Decision Makers. Let’s
take a look at a sample flow of information.

1. The protocol adapter is initiated within every agent, with the current agent’s
name, the configuration of the systems as well as the configuration of the
other agents.



Protocol-Based Engineering of Microservices 5

2. Depending on the protocol and currently available information, certain de-
cision makers are invoked by the protocol adapter. The protocol adapter
provides forms, which are message instances with unbound parameters the
decision maker can fill out.

3. These filled-out message instances are then processed by the protocol adapter
as attempts. The protocol adapter then checks the attempts for discrep-
ancies. In case of no discrepancies, the message instances are successfully
emitted; otherwise they are dropped.

4. The protocol adapter relies on the communication service for transporting
messages between agents. The default communication service is UDP, as it
is sufficient for enacting the information protocols.

The configuration of the MAS defines what agents are present in the system
and what roles they play. The configuration also lists different systems that can
connect with each other. Each system defines the names of the agents along with,
for each agent, the address on which to connect to it. Listing 2 shows an example
of how configuration can be set up for MAS based on the protocol in Listing 1.
We define one system named SysName0 that has one agent for each role in the
protocol. Bob is a buyer, Sally is a seller and Sheldon is a shipper.

Listing 2. A configuration of a multiagent systems using Kiko.

systems = {

"SysName0 ": {

"protocol ": Purchase ,

"roles": {

Buyer: "Bob",

Seller: "Sally",

Shipper: "Sheldon"

}

}

}

agents = {

"Bob": [("192.168.0.1" , 1111)],

"Sally": [("192.168.0.2" , 1111)],

"Sheldon ": [("192.168.0.3" , 1111)]

}

To initiate the protocol, there are events that can be used by the developer
in order to kickstart the system. InitEvent is one such event, which is triggered
once the agent using it has started. Listing 3 shows one such method authored
by the developer that is invoked by the InitEvent. For our example, we assume
that Bob who plays the role of a buyer is requesting a quote for a watch. The
message rfq is accessible as a form via the enabled argument. Kiko only allows
binding the appropriate parameters of the message. The decision maker fails if
the form is filled incorrectly.

Listing 3. Bob sending the RFQ message to Sally.

@adapter.decision(event=InitEvent)



6 A. Khadse et al.

def start(enabled):

ID = str(uuid.uuid4())

item = "watch"

for m in enabled.messages(RFQ):

m.bind(ID=ID , item=item)

Since our protocol has defined that rfq must be sent from a buyer to a seller,
Kiko will automatically send this message from Bob to Sally. Let’s say that Sally
has replied with a quote message providing the value of price. Now, Bob has to
decide whether to accept or reject the quote. Listing 4 explains how an agent is
able to make a decision.

Listing 4. Bob deciding whether to accept or reject a quote.

@adapter.decision

def decide(enabled):

for m in enabled.messages(Buy):

if m["price "] < 20:

m.bind(address ="1600 Pennsylvania Avenue NW",

resp=True)

else:

reject = next(enabled.messages(Reject ,

ID=m["ID"]))

reject.bind(outcome=True , resp=True)

The developer is in control of what is to be done at each junction of making a
decision. Kiko provides this control through the use of sets of enabled messages.
If an agent attempts to send both accept and reject, the messages would fail
emission as the set of instances being sent are inconsistent with each other.

2.3 Dapr

Dapr is an event-driven runtime that promises resilient, stateless and stateful mi-
croservices that interoperate. Dapr provides building blocks called components.
Some popular type of components are:

– State Store: These components can be used as a database that is accessible
to any Dapr application.

– PubSub Brokers: These components provide a system that supports publish-
ing of messages to a topic. Applications can then subscribe to these topics
and receive published messages.

– Bindings & Triggers: These components enable Dapr applications to com-
municate to external services without integration of respective SDKs.

Dapr also provides a new type of component called Pluggable components.
These components are not bundled as part of the Dapr runtime and run inde-
pendent of it. The primary advantage of using a pluggable component is that it
can be written in any language that supports gRPC.



Protocol-Based Engineering of Microservices 7

3 Traffic Control Application

Traffic Control [25] is a sample application that emulates a traffic control system
using Dapr. Figure 2 describes the application using a UML sequence diagram.
It is inspired by the speeding-camera setup present on some Dutch highways.
An entry camera is installed at the start of a highway and an exit camera is
installed at a certain distance from the entry camera to capture vehicle license
information. If a vehicle is going faster than the speed limit, the driver of the
vehicle can be fined.

Fig. 2. A UML sequence diagram for the traffic control sample application.

The time difference between an entry camera capturing a vehicle and an exit
camera capturing the same vehicle will calculate the speed of the vehicle. Based
on the speed of the vehicle, there is a decision to be made about whether the
driver should be fined for driving over the speed limit.



8 A. Khadse et al.

3.1 Using Dapr

To develop this system in Dapr, four applications were created:

– Camera Simulation: A .NET Core console application that simulates passing
cars.

– Traffic Control Service: A ASP.NET Core WebAPI application that defines
two endpoints /entrycam and /exitcam

– Fine Collection Service: Another ASP.NET Core WebAPI application with
only one endpoint /collectfine for collecting fines,

– Vehicle Registration Service: An ASP.NET Core WebAPI application with
only one endpoint /vehicleinfo/{license-number}, which links a vehicle
to its owner.

A rundown of how this system operates follows:

1. Camera Simulation generates a random license number and sends a Vehi-
cleRegistered message (which contains the license number, the lane number,
and a timestamp) to the /entrycam endpoint of Traffic Control Service.

2. The Traffic Control Service then stores the details in a database.
3. After a random interval of time, the Camera Simulation sends another Ve-

hicleRegistered message, but this time to the /exitcam endpoint of Traffic
Control Service.

4. The Traffic Control Service then fetches the previously stored details and
calculates the average speed of the vehicle.

5. If the average speed of the vehicle is greater than the speed limit, the
Traffic Control Service sends the details of the incident to the endpoint
/collectfine Fine Collection Service, where the fine is calculated.

6. The Fine Collection Service retrieves the email of the vehicle’s owner by send-
ing the details of the vehicle to the endpoint /vehicleinfo/{license-number}
of the Vehicle Registration Service and sends the fine to the owner via email.

To enable the developer to focus on the business logic, Dapr provides com-
ponents that are generic such as a database for storing the vehicle’s information,
providing an endpoint that can connect to an SMTP server that sends an email,
and an asynchronous messaging queue that exchanges messages between the
services.

Listing 5 shows how the /exitcam endpoint of the Traffic Control application
deals with sending the fine. In particular, the endpoint is responsible for sending
a NotFound() in case a vehicle that is not in the vehicleStateRepository is
detected by the exit camera.

Listing 5. The traffic control application’s /exitcam endpoint.

[HttpPost (" exitcam ")]

public async Task < ActionResult >

VehicleExitAsync(VehicleRegistered msg , [FromServices]

DaprClient daprClient) {

try {



Protocol-Based Engineering of Microservices 9

// get vehicle state

var state = await _vehicleStateRepository

.GetVehicleStateAsync(msg.LicenseNumber);

if (state ==

default (VehicleState)) {

return NotFound ();

}

// update state

var exitState = state.Value with {

ExitTimestamp = msg.Timestamp

};

await _vehicleStateRepository

.SaveVehicleStateAsync(exitState);

// handle possible speeding violation

int violation = _speedingViolationCalculator

.DetermineSpeedingViolationInKmh(

exitState.EntryTimestamp ,

exitState.ExitTimestamp.Value

);

if (violation > 0) {

var speedingViolation = new SpeedingViolation {

VehicleId = msg.LicenseNumber ,

RoadId = _roadId ,

ViolationInKmh = violation ,

Timestamp = msg.Timestamp

};

// publish speedingviolation (Dapr pubsub)

await daprClient.PublishEventAsync (" pubsub",

"speedingviolations", speedingViolation);

}

return Ok();

} catch (Exception ex) {

return StatusCode (500);

}

}

3.2 Using Kiko

To implement the Traffic Control system in Kiko, we initially need to create
a protocol that can accommodate all of our requirements. Listing 6 shows an
example of a protocol that would enable us to fulfill the requirements and is
supported by the tooling.



10 A. Khadse et al.

Listing 6. The TrafficControl protocol.

TrafficControl {

roles EntryCam , ExitCam , FineCollector , VehicleMngr

parameters out regID key , out entryTS key , out exitTS

key , out email

private amount , avgSpeed , query

EntryCam -> ExitCam: Entered[out regID , out entryTS]

ExitCam -> FineCollector: Fine[in regID , in entryTS , out

exitTS , out avgSpeed]

FineCollector -> VehicleMngr: Query[in regID , in

entryTS , in avgSpeed , out query]

VehicleMngr -> FineCollector: Result[in regID , in

entryTS , out email]

}

Let’s unpack how this protocol works. The roles involved would be En-
tryCam, ExitCam, FineCollector, VehicleMngr. The parameters nec-
essary for the completion of an enactment are regID which stands for registra-
tion ID, entryTS which stands for entry timestamp, exitTS which stands for exit
timestamp, and outcome. Private parameters that may or may not be bound are
amount, avgSpeed which stands for average speed, and query.

The first message that will be sent out is Entered. This denotes the En-
tryCam alerting the ExitCam that a vehicle has entered the highway. The
next message that will be sent out is Fine. This is where the decision maker
defined by the developer will come into play. Listing 7 shows one such imple-
mentation of the decision maker. The code is written in Python by the developer
and uses the Kiko library [6]. Variables that are in uppercase are constants that
are part of the configuration. Currently, the entry camera is simulated by a trig-
ger event that is invoked at random times. The exit cam is simulated by adding
a random amount of time to a known entry timestamp. This could easily be
replaced with a blocking call to the method that would wait to observe a vehicle
and continue in case the vehicle matches the registration. An observation that
could be made is that it is not necessary to explicitly store the exit timestamp
as every observation is stored in the local store.

Listing 7. A decision maker for the exit camera.

@adapter.decision(event=VehicleExit)

async def check_vehicle_speed(enabled , event):

for m in enabled:

if m.schema is Fine and m["regID "] == event.regID:

avgSpeed = DISTANCE / (event.ts - m[" entryTS "])

if avgSpeed > SPEED_LIMIT:

m.bind(exitTS=event.ts , avgSpeed=avgSpeed)

return m

We create a single decision maker for deciding whether Fine message should
be sent next. If the Fine Collector receives the message Fine, it then retrieves
the details of the owner of the vehicle from the Vehicle Manager and sends



Protocol-Based Engineering of Microservices 11

the email detailing the fine. The code for this implementation can be found on
https://gitlab.com/masr/kiko-traffic-control. Figure 3 shows the UML
for our implementation using Kiko.

Fig. 3. A UML sequence diagram for our traffic control sample application written
using Kiko.

Internal computations are omitted from the UML diagram. For example,
average speed is calculated by Exit Cam, hence a message like Exit is not explicit
in the protocol.

4 Evaluation

We would like to evaluate the implementation based on the differences in im-
plementation and the consequent effects. In particular, we see the differences
in:

– Internal processing of data.
– Interactions between microservices.
– Safeness of possible interactions between the microservices.
– Developer experience.
– Error handling.

The following points stand out when comparing the Dapr implementation
with its Kiko counterpart:

– In the Kiko implementation, there is no need to store the exit timestamp
of a car to a state, as all observed messages are automatically stored. This
enables developers to trace through the messages to understand the flow



12 A. Khadse et al.

of control. In the Dapr implementation, it becomes the developer’s duty to
store the vehicle information if it is to be used in the future.

– As further invocations are dependent on information passing in the Kiko
implementation, we are certain that variables needed for processing will
be known. In the Dapr implementation, since there is a reliance on the state
store for information, the implementation also had to provide additional code
to handle that case.

– Dapr’s implementation relies on the developers being responsible for inte-
grating the endpoints. It is possible that an external agent tries to send an
invalid request to an endpoint. Kiko’s implementation on the other hand
only relies on agents conforming to the protocol. Even if an external
agent attempts to push a message to the agent, if the history does not match
with the message, it will be ignored by Kiko.

– In the Kiko implementation, the use of information protocols forces
developers to build safe and live systems. A safe system is one that
does not have information collision while a live system is one where required
information passing is present to ensure that the protocol can be completed.
The Dapr implementation on the other hand requires the developer to be
cautious while structuring the system. There are no tools present to validate
whether a Dapr system is safe and live.

– To get a gist of what the software is attempting to do, we have to take a look
at the sequence diagram created by the developers in the Dapr implementa-
tion. If the Dapr implementation is updated in the future, the corresponding
sequence diagram must also be updated by the developer. On the other hand,
Kiko’s implementation uses information protocol, which is the perfect sole
document needed to understand the complete system. Due to the
causal structure and information-oriented design of information protocols, it
is clear how the flow of the system takes place.

Since the Kiko implementation of the traffic control sample application does
not rely on message ordering for processing, it is possible that the event VehicleExit
is received prior to the reception of the Entered message. In this case, as the
Fine message would never be activated, it would simply ignore the event. There
is no explicit processing added to check for the case of the Entered message being
received after the VehicleExit. This may not be the desired effect, but can be
remedied by writing a decision maker that iterates over enabled messages on the
reception of the Entered message. Similarly, in case Kiko receives a message that
is not appropriate for the current state of the agent, it is ignored and discarded.

It is also easier to suspend and continue jobs that use information protocols
as every message can be thought of as a new layer that is to be built upon. In our
sample application, a power failure that restarts all microservices would support
continuing the processing of an enactment as long as the local store has the
correct messages. Duplicate messages are handled by Kiko and do not prevent
processing. Due to the causal nature of information protocols, it is simple to
program continuation of these processes. An application written in Dapr would



Protocol-Based Engineering of Microservices 13

fail to do this as the system does not understand partial completion unless
explicitly programmed by the developer.

Dapr still relies on the request-response style of programming that suffers
from the need of receiving messages in the order they were sent to ensure coher-
ent processing. The Kiko implementation uses lossy, unordered communication
protocol UDP, to send messages rather than use a request-response style.

Based on this evaluation, we can conclude that the Kiko implementation
provides better developer experience, and the causal structure of the protocol
leads to a safe and live program that is verified by other tools.

5 Discussion

Using the microservice architecture also requires a fair amount of knowledge
dealing with the deployment of different services. A dedicated DevOps team was
found to be necessary for software that followed microservice architecture [21].
With only about 10% of respondents claiming to be a DevOps specialist in the
2022 Developer Survey [20] by Stack Overflow, developers end up being the ones
deploying the applications. Using Dapr, this job becomes easier to deal with
when using applications written in different languages.

We posit that the conceptual integration between MAS and web architec-
ture would facilitate the construction of multiagent systems that are widely
distributed and inherit architectural properties such as scalability and evolvabil-
ity [12]. Integration of Kiko along with Dapr would enable the users to build a
MAS that has the benefits of microservice architecture such as scalability but
also the benefits of observability and secret management. Further, this concep-
tual integration can also lead to the resulting system being close to a Hypermedia
MAS [11].

Multiagent systems need to provide an account of what happened during an
abnormal situation [3, 5]. Kiko would provide the protocol as a blueprint while
Dapr would provide robust tooling for the observation of intercommunication of
the microservices.

Microservices of the future should look at a move towards asynchronous com-
munication [14] and this idea is supported in information protocols in its causal
nature and its ability to use lossy, unordered protocols such as UDP. A lesson
learned in the explorative study of promises and challenges in microservices [24]
was changes that break the API should be discouraged. The use of information
protocols enables the developers to version interactions between the microser-
vices. Since the protocol file defines all valid interactions between microservices,
it also defines implemented interactions between microservices of a release ready
for production environment. Timeouts within a microservice system is a problem
that is remedied by using a circuit breaker [23] but has the tradeoff of requiring
an update on all microservices. With the use of information protocols, we move
away from synchronous communication and remove the need for timeouts and
consequently circuit breakers.



14 A. Khadse et al.

5.1 Future Work

To fully obtain the benefits of Kiko under Dapr, the ideal solution would be
to build a Pub/Sub–based pluggable component in Python, that uses Kiko to
work on the messages. The queues that would be created as part of the Pub/Sub
communication between applications, must have their messages assessed through
Kiko. This way we would emulate Kiko’s protocol adapter within this pluggable
component and send forms to be filled out as attempts by the applications. Since
Kiko can act as a verification agent, it would enable runtime verification of the
developed MAS similar to existing solutions for other MASs [4]. Verification at
design time [2] would also be possible as endpoints within Dapr applications are
registered and known to Dapr prior to any communication between applications.

Currently, Kiko can invoke methods on the reception of a particular message
or event, or the enablement of a particular message. We cannot invoke a method
only if multiple events are received or multiple messages are received. A future
iteration could support ways in which decision makers may be invoked when a
specified set of events and/or messages are received.

In cases where enactments are not fulfilled, the messages stay in the local
store forever. These dangling enactments would eventually prevent storing new
enactments. An automated job that gets rid of these enactments can be added
to be run after a fixed time interval. As all enactments are linked via the key
parameters, it is easy to identify what messages must be discarded.

Acknowledgments

Thanks to the EPSRC (grant EP/N027965/1) and the NSF (grant IIS-1908374)
for support.

References

1. Ao, S.: How Alibaba is using Dapr, https://blog.dapr.io/posts/2021/03/19/
how-alibaba-is-using-dapr/, accessed 19 February 2023

2. Baldoni, M., Baroglio, C., Martelli, A., Patti, V.: A priori conformance verification
for guaranteeing interoperability in open environments. In: Proceedings of the 4th
International Conference on Service-Oriented Computing (ICSOC). Lecture Notes
in Computer Science, vol. 4294, pp. 339–351. Springer, Chicago (Dec 2006). https:
//doi.org/10.1007/11948148_28

3. Baldoni, M., Baroglio, C., Micalizio, R., Tedeschi, S.: Accountability in multi-
agent organizations: From conceptual design to agent programming. Journal of
Autonomous Agents and Multi-Agent Systems (JAAMAS) 37(1), 7 (Jun 2023).
https://doi.org/10.1007/s10458-022-09590-6

4. Briola, D., Mascardi, V., Ancona, D.: Distributed runtime verification of jade mul-
tiagent systems. In: Camacho, D., Braubach, L., Venticinque, S., Badica, C. (eds.)
Intelligent Distributed Computing VIII. pp. 81–91. Springer International Publish-
ing, Cham (2015)



Protocol-Based Engineering of Microservices 15

5. Chopra, A.K., Singh, M.P.: Accountability as a foundation for requirements in
sociotechnical systems. IEEE Internet Computing (IC) 25(6), 33–41 (Sep 2021).
https://doi.org/10.1109/MIC.2021.3106835

6. Christie, S.: Kiko, https://gitlab.com/masr/bspl/-/tree/kiko/, accessed 15
February 2023

7. Christie V, S.H., Chopra, A.K., Singh, M.P.: Bungie: Improving fault tolerance via
extensible application-level protocols. IEEE Computer 54(5), 44–53 (May 2021).
https://doi.org/10.1109/MC.2021.3052147

8. Christie V, S.H., Chopra, A.K., Singh, M.P.: Deserv: Decentralized serverless com-
puting. In: Proceedings of the 19th IEEE International Conference on Web Ser-
vices (ICWS). pp. 51–60. IEEE Computer Society, Virtual (Sep 2021). https:
//doi.org/10.1109/ICWS53863.2021.00020

9. Christie V, S.H., Chopra, A.K., Singh, M.P.: Mandrake: Multiagent systems as
a basis for programming fault-tolerant decentralized applications. Journal of Au-
tonomous Agents and Multi-Agent Systems (JAAMAS) 36(1), 16:1–16:30 (Apr
2022). https://doi.org/10.1007/s10458-021-09540-8

10. Christie V, S.H., Singh, M.P., Chopra, A.K.: Kiko: Programming agents to enact
interaction protocols. In: Proceedings of the 22nd International Conference on
Autonomous Agents and MultiAgent Systems (AAMAS). pp. 1–10. IFAAMAS,
London (May 2023)

11. Ciortea, A., Boissier, O., Ricci, A.: Engineering world-wide multi-agent systems
with hypermedia. In: Weyns, D., Mascardi, V., Ricci, A. (eds.) Engineering Multi-
Agent Systems. pp. 285–301. Springer International Publishing, Cham (2019)

12. Ciortea, A., Mayer, S., Gandon, F., Boissier, O., Ricci, A., Zimmermann, A.: A
decade in hindsight: The missing bridge between multi-agent systems and the world
wide web. In: Proceedings of the 18th International Conference on Autonomous
Agents and MultiAgent Systems. p. 1659–1663. AAMAS ’19, International Foun-
dation for Autonomous Agents and Multiagent Systems, Richland, SC (2019)

13. Dapr: Dapr – Distributed Application Runtime (2019), https://dapr.io/, ac-
cessed 14 February 2023

14. Jamshidi, P., Pahl, C., Mendonça, N.C., Lewis, J., Tilkov, S.: Microservices: The
journey so far and challenges ahead. IEEE Software 35(3), 24–35 (2018). https:
//doi.org/10.1109/MS.2018.2141039

15. Microsoft: Bosch builds smart homes using Dapr and
Azure, https://customers.microsoft.com/en-us/story/

1435725395247777374-bosch-builds-smart-homes-using-dapr-azure, ac-
cessed 19 February 2023

16. PwC: Cloud business survey, https://www.pwc.com/us/en/tech-effect/cloud/
cloud-business-survey.html, accessed 14 February 2023

17. Richardson, C.: Monolithic architecture pattern, https://microservices.io/

patterns/monolithic.html, accessed 8 February 2023
18. Singh, M.P.: Information-driven interaction-oriented programming: BSPL, the

Blindingly Simple Protocol Language. In: Proceedings of the 10th International
Conference on Autonomous Agents and MultiAgent Systems (AAMAS). pp. 491–
498. IFAAMAS, Taipei (May 2011). https://doi.org/10.5555/2031678.2031687

19. Singh, M.P.: LoST: Local State Transfer—An architectural style for the distributed
enactment of business protocols. In: Proceedings of the 9th IEEE International
Conference on Web Services (ICWS). pp. 57–64. IEEE Computer Society, Wash-
ington, DC (Jul 2011). https://doi.org/10.1109/ICWS.2011.48

20. Stack Overflow: Stack Overflow 2022 Developer Survey, https://survey.

stackoverflow.co/2022/, accessed 14 February 2023



16 A. Khadse et al.

21. Taibi, D., Lenarduzzi, V., Pahl, C.: Continuous architecting with microservices
and DevOps: A systematic mapping study. In: Proceedings of the 8th Interna-
tional Conference on Cloud Computing and Services Science (CLOSER): Re-
vised Selected Papers. Communications in Computer and Information Science,
vol. 1073, pp. 126–151. Springer, Funchal, Madeira, Portugal (Mar 2018). https:
//doi.org/10.1007/978-3-030-29193-8_7

22. Thönes, J.: Microservices. IEEE Software 32(1), 116–116 (2015). https://doi.
org/10.1109/MS.2015.11

23. Tighilt, R., Abdellatif, M., Moha, N., Mili, H., Boussaidi, G.E., Privat, J.,
Guéhéneuc, Y.G.: On the study of microservices antipatterns: A catalog proposal.
In: Proceedings of the European Conference on Pattern Languages of Programs
2020. EuroPLoP ’20, Association for Computing Machinery, New York, NY, USA
(2020). https://doi.org/10.1145/3424771.3424812

24. Wang, Y., Kadiyala, H., Rubin, J.: Promises and challenges of microservices: an
exploratory study. Empirical Software Engineering 26(4), 63 (May 2021). https:
//doi.org/10.1007/s10664-020-09910-y

25. vanWijk, E., Molenkamp, S., Hompus, M., Kordowski, A.: Dapr traffic control sam-
ple, https://github.com/EdwinVW/dapr-traffic-control, accessed 15 February
2023


