
vGOAL: a GOAL-based Specification Language
for Safe Autonomous Decision-Making

Yi Yang and Tom Holvoet

imec-DistriNet, KU Leuven, 3001 Leuven, Belgium
{yi.yang,tom.holvoet}@kuleuven.be

Abstract. Formal verification is a reliable approach to addressing safety
concerns in autonomous applications. We have designed vGOAL based
on the internal logic of the GOAL agent programming language, which
serves as the formal specification language of our innovative formal ap-
proach to safe autonomous decision-making. A detailed description of
vGOAL is necessary to present and justify our approach to safe au-
tonomous decision-making, yet it is currently missing. Therefore, this
paper aims to provide a comprehensive description of vGOAL, including
its formal syntax, its operational semantics, a real-world robotic appli-
cation, and a comparison with several comparable agent programming
languages, namely, GOAL, Gwendolen, and AgentSpeak (Jason).

Keywords: Formal Specification · Autonomous Decision-Making · Safety
Assurance · vGOAL

1 Introduction

The applications of autonomous systems have seen a remarkable increase in re-
cent years. These systems are capable of operating without human intervention
to achieve complex goals. As autonomous applications become increasingly com-
mon in industries like manufacturing and transportation, it is crucial to ensure
their safety.

Safe autonomous decision-making is one of the key challenges in developing
autonomous robotic applications. Agent programming languages (APLs), in-
cluding AgentSpeak [2], Jason [3], Gwendolen [8], and GOAL [10], have been ex-
tensively researched for programming autonomous agents for decades, indicating
two facts: (1) A multi-agent system can properly model agent-based autonomous
systems; (2) APLs are well-suited for tackling the challenge of the decision-
making of agent-based autonomous systems. Despite the potential benefits of
APLs in the development of autonomous robotic applications, their research has
not been widely used in the field. Integration with the Robot Operating System
(ROS) may expand their applications to robotics, as ROS has become the de
facto standard for developing robotic applications. If an APL has built-in sup-
port for ROS, it would be advantageous to integrate it with ROS-based robotic
applications.

2 Y. Yang and T. Holvoet.

The Belief-Desire-Intention (BDI) model is a popular reasoning mechanism
utilized in various APLs including Jason and Gwendolen [4]. GOAL shares many
features with BDI APLs, such as beliefs and goals, but it is primarily a rule-
based APL that differs in its approach to action selection [4]. Specifically, while
BDI APLs select actions from a plan library, GOAL derives actions based on
its rules to fulfill goals, making it highly suitable for specifying autonomous
decision-making.

To facilitate safe decision-making of agent-based autonomous systems, we
have developed vGOAL, which is a GOAL-based specification language that
focuses exclusively on the internal logic reasoning mechanism of GOAL, moti-
vated by three primary considerations. First, the decision-making mechanism
of GOAL is highly suitable for autonomous decision-making, but many of its
specifications are irrelevant to this domain, such as environment specifications.
Second, the intrinsic logic-based nature of GOAL makes it highly suitable for
formal verification, which is ideal for providing safety assurance for autonomous
decision-making. Third, GOAL cannot directly access ROS, which limits its ap-
plicability in robotic applications. Therefore, vGOAL can be highly valuable for
safe autonomous decision-making used in robotic applications, as it can leverage
the strengths of GOAL, ROS, and formal verification.

On the basis of vGOAL, we have developed a three-stage formal approach
to safe autonomous decision-making: formal specification using vGOAL, safe
decision generation using the vGOAL interpreter, and the verification of vGOAL
using an automated translator for vGOAL and a PCTL model checker (Storm [6]
or PRISM [15]). Additionally, we have integrated the vGOAL interpreter into
ROS via rosbridge to facilitate implementation and execution. We validated
our approach in a real-world autonomous logistic system consisting of three
autonomous mobile robots. There are three demonstration videos accessible for
viewing at [18].

In [19], we established the preliminary groundwork for the formal specifica-
tion and verification of vGOAL by outlining how to verify a GOAL program
with specific restrictions, including a stratified program, a single agent, and a
single goal. Building on this initial work, we described the rationale and imple-
mentation of the three-stage formal approach in [20]. [17] presents a high-level
overview of the three-stage formal approach. However, a detailed description of
vGOAL is crucial to thoroughly describing our approach to safe autonomous
decision-making, similar to the descriptions of Gwendolen in [7] and in [8], and
of GOAL in [10]. Therefore, the purpose of this paper is to provide a detailed
explanation of vGOAL.

The paper is structured as follows. In Section 2, we present the formal syn-
tax of vGOAL. In Section 3, we present the operational semantics of vGOAL.
In Section 4, we demonstrate how to use vGOAL with a validated real-world
autonomous logistic system. In Section 5, we will discuss the essential features
of vGOAL and provide a comparative analysis with other APLs, namely GOAL,
Gwendolen, and AgentSpeak (Jason). In Section 6, we draw conclusions on
vGOAL.

vGOAL: a GOAL-based Specification Language 3

2 Formal Syntax

This section introduces the formal syntax of vGOAL, which offers a rigorous and
structured formalism for describing the safe decision-making of agent-based au-
tonomous systems. Additionally, we employ a multi-agent system within vGOAL
to model the decision-making process of an agent-based autonomous system.

id :: = string

b :: = ground atom

g :: = ground atom

Bsensor :: = Bsensor ∪ {b}|∅
Bprior :: = Bprior ∪ {b}|∅

B :: = Bsensor ∪Bprior

G :: = G ∪ {g}|∅
goals :: = G : goals|[]

p :: = predicate

neg p :: = ¬p
R :: = all|allother|id

msgs :: = send:(R, p)|send!(R, p)|send?(R, p)

msgr :: = sent:(R, p)|sent!(R, p)|sent?(R, p)

MS :: = MS ∪ {msgs}|∅
MR :: = MR ∪ {msgr}|∅

Agent :: = (id,B, goals,MS ,MR)

MAS :: = MAS ∪ {Agent}|∅

A multi-agent system consists of multiple agents in a modular manner. To
specify a multi-agent system, the users only need to identify the agents that
form the system and the corresponding agent specifications at first. An agent
specification consists of five essential components: a unique identifier: id, beliefs:
B, goals: goals, sent messages: MS , and received messages: MR.

The unique identifier of the agent is represented by a string, denoted by
id. Bsensor, Bprior, B, and G are collections of ground atoms, representing a
collection of real-time beliefs, a collection of prior beliefs, a belief base, and
a goal base, respectively. The set Bsensor denotes the real-time beliefs obtained
from sensors. The set Bprior denotes the prior beliefs that are essential for agents
but cannot be received from sensors. The set B denotes the complete belief base
of an agent. An agent can have multiple goals, denoted by goals, which is a list
of G.

R represents a group of agents, with its domain consisting of three distinct
elements: all, allother, and id. Specifically, all denotes all agents within the
multi-agent system; allother represents all agents within the multi-agent system
excluding the individual responsible for transmitting messages; and id designates

4 Y. Yang and T. Holvoet.

a particular agent. A sent message is denoted by msgs with the domain contain-
ing three different elements: send:(R, p), send!(R, p), and send?(R, p), whereas a
received message is denoted by msgr with the domain containing three different
elements: sent:(R, p), sent!(R, p), and sent?(R, p). Notably, the communication
messages involve six predefined functions: send:, send!, send?, sent:, sent!, and
sent?. The specification of messages distinguishes between three types: indica-
tive messages, identified by the functions send:(R, p) and sent:(R, p); declarative
messages, specified by send!(R, p) and sent!(R, p); and interrogative messages,
described by send?(R, p) and sent?(R, p). Furthermore, R denotes the receivers
of a message in a msgs, while it denotes the sender in a msgr. The sets of sent
and received messages are denoted by MS and MR, respectively.

D :: = D ∪ {constant}|∅
hs :: = hs ∧ p|hs ∧ neg p|True

rule1 :: = hs → p

qrule1 :: = ∀x.qrule1|∀x ∈ D.qrule1|∃x.qrule1|rule1
K :: = K ∪ {qrule1}|K ∪ {ground atom}|∅
lh :: = a-goal(p) ∧ hs

rule2 :: = lh → p

qrule2 :: = ∀x.qrule2|∀x ∈ D.qrule2|∃x.qrule2|rule2
C :: = C ∪ {qrule2}|∅
A :: = A ∪ {qrule1}|∅

rule3 :: = hs → hs

qrule3 :: = ∀x.qrule3|∀x ∈ D.qrule3|∃x.qrule3|rule3
E :: = E ∪ {qrule3}|∅

rule4 :: = hs → msgs

qrule4 :: = ∀x.qrule4|∀x ∈ D.qrule4|∃x.qrule4|rule4
S :: = S ∪ {qrule4}|∅

update :: = insert(b)|delete(b)|adopt(g)|drop(g)
response :: = msgs|update

rule5 :: = msgr ∧ hs → response

qrule5 :: = ∀x.qrule5|∀x ∈ D.qrule5|∃x.qrule5|rule5
rule6 :: = lh → response

qrule6 :: = ∀x.qrule6|∀x ∈ D.qrule6|∃x.qrule6|rule6
rule7 :: = hs → response

qrule7 :: = ∀x.qrule7|∀x ∈ D.qrule7|∃x.qrule7|rule7
P :: = P ∪ {qrule5}|P ∪ {qrule6}|P ∪ {qrule7}|∅

The specification of a multi-agent system involves six rule sets, each with a
unique designation: K represents the knowledge base, C denotes enabled con-

vGOAL: a GOAL-based Specification Language 5

straints, A refers to action generation, E describes action effects, S pertains to
sent message generation, and P concerns event processing. Moreover, a-goal is
a predefined function to evaluate if its argument is included in the focused goal
base.

The operational semantics of vGOAL involves the syntax and semantics of
first-order logic. Consequently, the syntax of vGOAL incorporates the domain of
variables. The core implementation of the vGOAL interpreter is the automated
logical derivation and minimal model generation over first-order theories con-
straint by the vGOAL syntax. It is noteworthy that the rule sets K, C, A, S,
and P have been defined with no negative recursion, a finite domain for each
variable, and quantification of each variable, thereby ensuring the existence of
the minimal model of these rule sets. Additionally, users are only required to
specify the domain of universally quantified variables that appear on one side of
a rule, due to the implementation of the interpreter.

In a multi-agent system, each agent generates its decisions in a modular
manner. The agent takes the first goal in sequence as the focused goal and ac-
complishes all goals sequentially in this manner. Each decision-making reasoning
cycle involves six steps. First, the agent derives its current beliefs and desired
beliefs from the belief base and the focused goal, respectively, using the knowl-
edge base. Second, the agent derives enabled constraints using C and its current
and desired beliefs. Third, the agent derives enabled actions based on enabled
constraints and A. Fourth, the agent derives enabled sent messages based on
enabled constraints and S if no enabled action is generated. Fifth, the agent
processes events, specifically, reacting to received messages, generating subgoals
towards its desired goal, and revising its current beliefs. Finally, all agents will
send their enabled sent messages to receivers, and the sent messages queue of
each agent will be emptied. Furthermore, the state of the multi-agent system
responds to changes in either the current beliefs or the focused goals.

Remark: Belief Base and Goal Base

In vGOAL, the belief base and the goal base both contain information that
cannot be inferred by logical deduction. More specifically, an agent’s current
beliefs are obtained by combining its belief base with its knowledge base, while
its desired beliefs are obtained by combining its goal base with its knowledge
base. As a result, the belief base represents a subset of an agent’s current beliefs,
and the goal base represents a subset of an agent’s desired beliefs.

3 Operational Semantics

This section presents the operational semantics of vGOAL. The reasoning cycle is
a fundamental concept that underlies the definition of the language’s operational
semantics, involving both logical derivation and minimal model generation of
first-order theories constrained by the syntax of vGOAL.

6 Y. Yang and T. Holvoet.

In vGOAL, a state is the collective state of all agents in the multi-agent
system, with each agent’s state serving as a substate of the entire system. During
a reasoning cycle, agents are capable of modifying their specifications, which
include beliefs, and goals, as well as sent and received messages. Such information
is indispensable for the decision-making process of an agent. Therefore, we use
sub info to denote the necessary information about the substate, which consists
of its identity, its belief base, its goal base, its sent messages, and its received
messages. Moreover, we define the substate as consisting of its unique identifier,
its belief base, and its goals, as any change of the substate will reinitialize the
sent and received messages in our setting. Consequently, we formally define the
state and the corresponding state information of vGOAL as follows:

substate :: = id : (B, goals),

sub info :: = id : (B, goals,MS ,MR),

state :: = state ∪ {substate}|∅,
state info :: = state info ∪ {sub info}|∅,

3.1 Stage 1: Substate Property Generation

For one agent, each substate can only differ from either its belief base, its goal
base, or both. Consequently, we define the substate property as the combination
of the current beliefs and the desired beliefs.

The current beliefs and the desired beliefs are defined as follows:

G1 = goals[0],

CB ::= B ∪K,

DB ::= G1 ∪K.

Each agent aims to achieve its first goal base, denoted as G1. CB is a first-
order theory to derive current beliefs, consisting of its current belief base, denoted
as B, and its knowledge base, denoted as K; DB is a first-order theory to derive
desired beliefs, consisting of its focused goal base and its knowledge base. The
semantics of CB and DB is determined by the minimal model of each theory,
which is formally defined as follows:

modelC ::= {ρ(A)|CB |= ρ(p)},
modelG ::= {ρ(A)|DB |= ρ(p)},

where ρ is a ground substitution.
Accordingly, we define the properties of a substate as follows:

substate properties ::= (modelC ,modelG).

3.2 Stage 2: Enabled Constraint Generation

The constraints that constrain an agent to generate feasible actions or sent
messages are referred to as enabled constraints. Constrained by the current and
desired beliefs, an agent generates decisions.

vGOAL: a GOAL-based Specification Language 7

While the semantics of most predicates occurring in the specifications are de-
termined bymodelC , the semantics of a-goal predicates is determined bymodelC
and modelG, which is defined as follows:

a-goal p =

{
True if modelC |= ¬p ∧modelG |= p,

False otherwise.

The predefined a-goal offers the advantage of enabling the decision-making
module to exclusively generate decisions that transform the current state toward
the desired state, thereby avoiding pointless decisions.

The enabled constraints are defined as follows:

EC ::= {modelC ,modelG, C}.

EC is a first-order theory expressing enabled constraints. The generated
constraints, GC, is defined as follows:

GC ::= {ρ(p)|EC |= ρ(E) ∧modelC ⊭ ρ(p)},

where ρ is a ground substitution.

3.3 Stage 3: Enabled Action Generation

An action can be triggered only when a related enabled constraint and its pre-
conditions are satisfied by the current beliefs. The enabled actions are defined
as follows:

EA ::= modelC ∪GC ∪A.

EA is a first-order theory expressing enabled actions. The generated actions,
GA, which are defined as follows:

GA ::= {ρ(p)|EA |= ρ(Act) ∧modelC ∪ CG ⊭ ρ(p)},

where ρ is a ground substitution.
An agent changes its current belief base based on the rules of action effects

and the enabled actions. The action effects will change the state of the agent,
subsequently changing the state of the multi-agent system. The effects of an
action are defined as follows:

EE ::= modelC ∪GA ∪ E.

EE is a first-order theory describing enabled action effects. According to the
syntax, each rule in E is defined in the form of rule3. Its semantics is defined as
follows:

GE ::= {ρ(hs)|modelC ∪GA |= ρ(hs)},

where ρ is a ground substitution.
It is noteworthy that ρ(hs) may comprise both positive and negative ground

atoms, which correspond to belief insertion and deletion, respectively.

8 Y. Yang and T. Holvoet.

3.4 Stage 4: Enabled Sent Message Generation

During a reasoning cycle, if the decision-making module fails to generate a fea-
sible action, it will attempt to generate enabled sent messages for exchanging
information with other agents. A message can be sent only when the related
enabled constraint is satisfied. The enabled sent messages are defined as follows:

ES ::= modelC ∪GC ∪ S.

ES is a first-order theory expressing enabled sent messages and the correspond-
ing belief change of the agent. The generated sent messages, GS, are formally
defined as follows:

GS ::= {ρ(msgs)|ES |= ρ(msgs) ∧modelC ∪GC ⊭ ρ(msgs)},

where ρ is a ground substitution.
sub info of the agent will be changed if GS is not an empty set. MS will be

assigned with GS, which is defined as follows:

MS ::= GS

3.5 Stage 5: Event Processing

In each reasoning cycle, each agent processes events including adopting sub-
goals to achieve the desired state, revising current beliefs, and responding to the
received messages from the last reasoning cycle. The state of the multi-agent
system may change as a result of the event processing altering the state of an
agent. In the reasoning cycle, the received messages of an agent are denoted with
MR. The enabled event processing is defined as follows:

EP ::= modelC ∪MR ∪ P.

EP is a first-order theory expressing the results of event processing. The results
of event processing, PR, are formally defined as follows:

PR ::= {ρ(response)|EP |= ρ(response) ∧modelC ∪ P ⊭ ρ(response)},

where ρ is a ground substitution.
If MR is not an empty set, the sub info of the agent will be altered. This

modification occurs because MR undergoes reinitialization, resetting it to an
empty set after event processing, which is formally defined as follows:

MR ::= {}

3.6 Stage 6: Communication

During each reasoning cycle, agents exchange information on the basis of the
information of sub info. To define the effects of communication of the sub info
of each agent, we utilize the following functions.

vGOAL: a GOAL-based Specification Language 9

We utilize three functions to convert sent messages into their corresponding
received messages. First, inst(S,msgs) instantiates the receivers of a sent mes-
sage. Secondly, Inst(S,MS) instantiates all messages sent by an agent, using
inst(S,msgs) as the basis. Third, MP (S,msgs) converts a sent message to its
corresponding received message.

inst(S,msgs) :: =


r⋃
send(r,B), if R = all, and r ∈

⋃
id

r⋃
send(r,B), if R = allother and r ∈

⋃
id \ S,

r⋃
send(r,B), if R = id, and r ∈ {id},

Inst(S,MS) :: =

{
{}, if MS = {},
inst(S,msgs)

⋃
Inst(S,MS \msgs), otherwise

MP (S,msgs) :: =


sent(S,B), if msgs = send(r,B),

sent!(S,B), if msgs = send!(r,B),

sent?(S,B), if msgs = send?(r,B),

Next, we use three functions to update the subinfo of one agent. First,
P1(sub info, S,msgs) defines how an agent updates its sub info for a single sent
message. Second, P2(sub info, S,M) defines how an agent updates its sub info
for a set of sent messages, using P1(sub info, S,msgs) as the basis. Third,
P3(sub info) describes the initialization of MS of an agent.

P1(sub info, S,msgs) :: =

{
r : (B, goals,MS ,MR

⋃
MP (S,msgs)), if id=r

sub info, otherwise,

P2(sub info, S,MS) :: =

{
sub info, if MS = {} or id ̸= r

P2(P1(sub info, S,msgs), S,MS \msgs), otherwise,

P3(sub info) :: = id : (B, goals, {},MR).

We define the state info as a collective set of the sub info of each agent
within the multi-agent system, denoting as (sub info)×n. After the reasoning
cycle of each agent, the update of state info is formally defined as follows:

(sub info)×n
(id:MS)×n−−−−−−−→ (P3((P2(sub info, id,MS))×n))×n.

3.7 State Update

For a multi-agent system, agents participate in a modular reasoning cycle and
communicate with other agents during the final stage of the cycle. The state of
the multi-agent system is updated once all agents have completed their current
reasoning cycle.

10 Y. Yang and T. Holvoet.

The substate of a multi-agent system, i.e., the state of an agent, can only be
modified by the effects of an action, GE, and the processed results of the event
processing, PR. In each reasoning cycle, the agent can only generate either
an enabled action or a sent message, but it can handle all received messages.
We define a function T to update substate based on action effects during each
reasoning cycle, and T will not modify the substate if there is no enabled action
effect.

A generated effect only changes the current belief base, and a generated effect
of GE is an instance of hs, which is in the form:

ρ(hs) ::= ρ(
∧
m

Bm ∧
∧
n

¬Bn),

where ρ is a ground substitution.
For the generated action effect, the substate is updated as follows:

update(B) :: = B ∪
m⋃

ρ({Bm}) \
n⋃
ρ({Bn)},

T (substate,GE) :: =

{
id : (update(B), goals), if GE = {ρ(hs)},
id : (B, goals), if GE = ∅,

substate :: = T (substate,GE).

A processed result of event processing can modify beliefs, goals, or both. Ad-
ditionally, an instance of a response can take the form of either msgs or update.
It is worth noting that only an instance of update will modify the substate, which
includes insert(B, b), delete(B, b), adopt(goals, g), and drop(goals, g).

For a processed result, the substate is updated as follows:

insert(B, b) :: = B ∪ b,

delete(B, b) :: = B \ b,
adopt(goals, g) :: = {goals[0] ∪ g} ∪ goals[1 :],

drop(goals, g) :: = {goals[0] \ g} ∪ goals[1 :],

H(S, r) :: =



id : (insert(B, b), goals) if r = insert(b),

id : (delete(B, b), goals) if r = delete(b),

id : (B, adopt(goals, g)) if r = adopt(g),

id : (B, drop(goals, g)) if r = drop(g),

id : (B,G) , otherwise.

For the processed results of the event processing, PR, we define the function
F to update the substate as follows:

F (S, PR) =

{
F ((H(S, r), PR \ r) if PR \ r ̸= {},
S otherwise.

vGOAL: a GOAL-based Specification Language 11

Assuming a multi-agent system containing n agents (n ≥ 1), the state is
represented as (substate)×n. In each reasoning cycle, the substate can only be
changed by the effects of enabled actions and the processed results of event
processing. We use the (id : (GE,PR))×n to represent a transition that may
change the substate, subsequently changing the state. The operational semantics
of a vGOAL specification is defined as follows:

(substate)×n
(id:(GE,PR))×n−−−−−−−−−−→ (F (T (substate, E), PR)×n,

where GE represents the generated effects of an action, and PR denotes the
processed results of the event processing. Although GE and PR can both be
empty for an agent, if any agent has a goal, at least one agent will have non-
empty GE or PR. In our setting, if an agent fails to generate any decisions based
on its current beliefs, it should send messages to other agents to obtain more
information to accomplish its goal.

Moreover, if any substate is updated, each sub info within the multi-agent
system will be automatically adjusted, namely, the belief base and goal base
will be modified to align with the substate. Furthermore, the sent and received
messages of each agent will be reinitialized to an empty set.

4 Case Study

Using a real-world autonomous logistic system, we have validated our formal
approach to safe autonomous decision-making. Accordingly, we use the system
to explain how to use vGOAL.

Fig. 1. Layout of the Robot Environment

The autonomous system is composed of three autonomous mobile robots,
situated in the environment depicted in Figure 1. The case study aims to perform
a collaborative transportation task. Non-red areas are considered safe places,
denoting from P1 to P8, while red areas are considered unsafe, denoting by P9.
P2 is the destination of the delivery task; P3 and P4 are the pick-up station; P5 is

12 Y. Yang and T. Holvoet.

a waiting point for the charging station; P6, P7, and P8 are the charging stations;
and P1 is the other places except the aforementioned areas. The nine areas can
be classified into four categories. Category I only contains P1. The location of
Category I is a safe place, but agents do not need permission to access it, and it
has no dock. Category II includes P2, P3, P4, P6, P7, and P8. The locations of
Category II are safe places, and agents need permission to access them. There
is a dock for each location. Category III includes P5. The location of Category
III is a safe place, and agents need permission to access it, but it has no dock.
Category IV only includes P9. The location of Category IV is an unsafe place,
and agents need to avoid moving there.

We demonstrate each key aspect of the vGOAL specifications using a subset
of the specifications that specify the case study. For a comprehensive version of
the formal specification for the case study, we refer readers to [18].

First of all, we have to determine how to specify agents within the multi-agent
system. We need to define four agents in the case study: three for the real-world
agents, designated as A1, A2, and A3, and one for a dummy agent, denoted as
C. In our approach, we utilize a dummy agent to manage competing requests
for critical resources, such as permissions for locations. The specification of the
multi-agent system is specified as follows:

Agents = [A1 ,A2 ,A3 ,C] ,

where A1, A2, A3, and C are an instance of the agent class defined in the vGOAL
interpreter.

To facilitate real-time autonomous decision-making, an agent will take both
the real-time beliefs abstracted from sensor information and the prior beliefs as
the complete belief base to make decisions. As it is common that not all required
information can be sensed in practical scenarios, we need prior beliefs to specify
the necessary but unperceived information, and it is shared by all agents within
the system. The belief base of A3 and the prior beliefs of the system are specified
as follows:

b e l i e f b a s e 3 =[] ,
p r i o r b e l i e f s =[”on (1 , 3)” , ” on (2 , 4)” , ” on (3 , 3)” , ” on (4 , 3) ”] .

Furthermore, the vGOAL interpreter receives real-time beliefs abstracted
from sensor information on location, docking, and battery level. The initial com-
plete belief base of A3 consists of the prior beliefs and the initial real-time beliefs,
which is listed as follows:

b e l i e f b a s e 3 =[”on (1 , 3)” , ” on (2 , 4)” , ” on (3 , 3)” , ” on (4 , 3)” ,
” at (8)” , ” bat te ry (2)” ,” docked (8)” , ” a s s i gned (8) ”] .

An agent can have no goals, one goal, or multiple goals. Agent A3 has two
goals, which are specified as follows:

goa l ba s e3 = [’ d e l i v e r e d (2 , 3) ’] ,
goa l ba s e4 = [” d e l i v e r e d (2 , 4) ”] ,
goa l s 3 = [goa l base3 , goa l ba s e4] .

vGOAL: a GOAL-based Specification Language 13

Dummy agents are used to manage critical resources. Their specifications are
similar to those of real-world agents, including belief bases and goals. However,
while real-world agents rely on sensor information to update their belief bases,
dummy agents’ belief bases are not affected by sensor information. Furthermore,
dummy agents have no goals to pursue. The case study only requires one dummy
agent, denoted as C, whose belief base and goals are listed as follows:

dummy agents=[”C”]
b e l i e f b a s e 4 = [” i d l e (2)” , ” i d l e (3)” , ” i d l e (4)” , ” i d l e (5)” ,

” r e s e rved (A1 , 6) ” , ” r e s e rved (A2 , 7) ” , ” r e s e rved (A3 , 8) ”]
goa l s4 = []

The vGOAL interpreter provides a class for agents, whose attributes involve
a unique identifier, a belief base, goals, sent messages, and received messages.
The sent messages and received messages are empty by default. Therefore, users
only need to specify an agent with the other three values. The specifications of
Agent A3 and the dummy agent are specified as follows:

A3 = Agent (”A3” , b e l i e f b a s e 3 , goa l s3)
C = Agent (”C” , b e l i e f b a s e 4 , goa l s4)

A knowledge base is a collection of facts and rules that the decision-making
module uses to reason about the world. In vGOAL, a knowledge base can contain
either a first-order implication without negative recursion or a ground atom. Two
representative rules in the knowledge base are specified as follows:

” f o r a l l w. on (w, 4) imp l i e s a v a i l a b l e (w)” ,
” equal (charging , charg ing) ” .

vGOAL utilizes a set of rules, referred to as the constraints of action gener-
ation, to ensure that the generated decisions are moving towards a goal. These
constraints are either related to the generation of actions or the generation of
messages to acquire more information about the environment. Two representa-
tive constraints are specified as follows:

” f o r a l l w, y in D2 . a−goa l ho ld ing (w) and docked (p) and not
ho ld ing (y) and docked (4) and av a i l a b l e (w) imp l i e s A(w)” ,
” f o r a l l p ,w in D2 . a−goa l at (p) and not ho ld ing (w) and

not equal (p , 2) imp l i e s S(p) ” .

The first constraint pertains to the action generation, and the second con-
straint pertains to the generation of sent messages. As mentioned in Section 2,
users only need to specify the domain of variables that only occur on the left
side of the implication due to the implementation of the interpreter.

In vGOAL, feasible actions are derived using a set of rules called the en-
abledness of actions, which requires including a generated constraint and may
impose restrictions on the current belief base. Two of the enabledness of action
generation are specified as follows:

” f o r a l l w. A(w) imp l i e s pickup (w)”

14 Y. Yang and T. Holvoet.

” f o r a l l p . e x i s t s y . C(p) and at (y) and equal (y , 1) and
not equal (p , 5) imp l i e s move1 (y , p) ” .

The first rule only involves a generated constraint, whereas the second rule
involves both a generated constraint and current beliefs.

In vGOAL, sent messages are derived using a set of rules, which only includes
a generated constraint and may impose restrictions on the current belief base.
One rule for the generation of sent messages is specified as follows:

” f o r a l l p . S (p) imp l i e s send ! (C) i d l e (p) ” .

vGOAL includes rules related to event processing, which encompasses re-
sponding to received messages and adopting subgoals of the focused goal on the
basis of current beliefs. Five rules for event processing are specified as follows:

” f a t a l imp l i e s drop a l l ” ,
” f o r a l l z . e x i s t s x , y . sent ! (x) at (y) and re s e rved (x , z)

and not equal (z , y) imp l i e s i n s e r t i d l e (z)” ,
” f o r a l l x . e x i s t s y . sent ! (x) i d l e (y) and re s e rved (x , y)

imp l i e s send : (x) a s s i gned (y)” ,
” e x i s t s x , y . sent ! (x) i d l e (y) and re s e rved (z , y) and

equal (x , z) imp l i e s d e l e t e i d l e (y)” ,
” e x i s t s x ,w, p . a−goa l on (w, 2) and on (w, p) and at (x)

imp l i e s adopt at (p) ” .

The first rule states that all goals should be dropped if a fatal error occurs.
The next three rules illustrate three distinct approaches to responding to a re-
ceived message, including belief insertion, message sending, and belief deletion.
The last rule specified how to adopt a subgoal toward the desired goal.

vGOAL employs action effects to determine how to modify the current belief
base. These effects can either involve belief insertion or deletion. As a result,
the associated rule may involve negative recursion, a property not shared by
rules in other components. An example rule for the generation of action effects
is provided below:

”pickup ” : ” f o r a l l w, p , y in D2 . pickup (w) and not ho ld ing (y)
and on (w, p) imp l i e s ho ld ing (w) and not on (w, p)”

Moreover, the real-time information can include error messages, necessitat-
ing error handling. We emphasize that our framework can conveniently handle
errors. In another word, users can simply specify how to handle errors in the
specifications without changing any implementation of the framework. In the
case study, we identify four types of errors: E1, dock errors; E2, pick up errors;
E3, drop off errors; and E4, charge errors. In our setting, the non-fatal er-
rors are E1, E2, and E3, and the fatal errors are E4, which is specified in the
knowledge base as follows:

”E1 imp l i e s non fa ta l ” ,
”E2 imp l i e s non fa ta l ” ,
”E3 imp l i e s non fa ta l ” ,

vGOAL: a GOAL-based Specification Language 15

”E4 imp l i e s f a t a l ” ,

If an agent encounters a fatal error, it should send a message to the dummy
agent to report its current location. If an agent encounters a nonfatal error,
we need a dummy rule to avoid any meaningful constraints. Therefore, two
constraints on error handling are specified as follows:

” f o r a l l p . at (p) and f a t a l imp l i e s M(p)” ,
” non fa ta l imp l i e s Dummy” ,

If an agent encounters a fatal error, the agent will be considered broken and
will drop all goals and beliefs. If an agent encounters a non-fatal error, it will
drop all focused goals and adopt new goals. After inserting new goals, it will
delete corresponding nonfatal errors to enter the next reasoning cycle. The rules
on error handling are specified in the event processing as follows:

” f a t a l imp l i e s drop a l l ” ,
” f a t a l imp l i e s d e l e t e a l l ” ,
” non fa ta l and not goa l change imp l i e s drop a l l ” ,
” non fa ta l and not goa l change imp l i e s adopt l o ca t ed (charg ing)” ,
” non fa ta l and not goa l change imp l i e s adopt at (5)” ,
” non fa ta l and not goa l change imp l i e s i n s e r t goa l change ” ,
” non fa ta l and E1 imp l i e s d e l e t e E1” ,
” non fa ta l and E2 imp l i e s d e l e t e E2” ,
” non fa ta l and E3 imp l i e s d e l e t e E3” ,

5 Discussion

The motivation of vGOAL is the generation of verifiably safe decision-making for
autonomous systems. Consequently, it is pertinent to conduct a comparison with
the APLs capable of generating verified decisions. In this section, we discuss the
key aspects of vGOAL, along with a comparison with GOAL, Gwendolen, and
AgentSpeak (Jason).

vGOAL stands out from GOAL, Gwendolen, and AgentSpeak (Jason) in gen-
erating safe decisions without the need for additional computation. As discussed
in Section 3.1, the first stage of each reasoning cycle involves generating the sub-
state property, which links each state to a state property. Hence, we can prove
that a state satisfies its safety properties by showing that all safety properties
are contained within the state properties without additional computation. How-
ever, GOAL and AgentSpeak necessitate formal specifications of the original
programming language and verification tools [1] [13], while Gwendolen relies on
the Agent Java PathFinder (AJPF) for model checking, thereby encountering
efficiency problems [9].

Durative action modeling and error handling are crucial and challenging is-
sues in autonomous decision-making. Notably, we address the challenge of error
detection in a different way than GOAL, Gwendolen, and Jason. Specifically,

16 Y. Yang and T. Holvoet.

vGOAL logically handles errors by separating error detection from the decision-
making module and allowing users to specify how to handle errors in the spec-
ifications without modifying the implementation of the framework. In contrast,
error handling is hard-coded into the implementation of Gwendolen and Jason,
requiring users to modify the implementation to specify how to handle action
failures [2] [16]. While GOAL does not have a specific error-handling mechanism,
it can recognize action failure by comparing received perceptions with desired
effects. In practice, the method involves comparing the received perceptions with
the desired effects [12] [14], which can be laborious to identify all potential sit-
uations of action failure.

Despite being based on speech-act theory, the communications of all four
languages have different performatives. vGOAL and GOAL employ the least
performatives, namely indicative, declarative, and interrogative, which do not
directly alter current goals [11]. In contrast, Gwendolen utilizes performatives
such as tell, perform, and achieve, which directly affect intentions [7]. Jason
employs more performatives, compared with vGOAL, GOAL, and Gwendolen [2].
In summary, vGOAL and GOAL use a simpler communication mechanism than
Gwendolen and Jason, employing mailbox semantics without direct modification
of goals. Notably, in vGOAL, the communication component is encoded in a first-
order logical manner to allow automated logical derivation and minimal model
generation.

The implementation of the interpreter for vGOAL is in Python, which differs
from the implementation of the interpreters for GOAL, Gwendolen, and AgentS-
peak in Java. vGOAL has the advantage that only it can be readily encoded in a
decision-making node in ROS, compared with GOAL, Gwendolen, and AgentS-
peak. vGOAL has already been integrated with ROS using rosbridge, as well
as Gwendolen and AgentSpeak [5]. Additionally, there is currently no known
research that connects GOAL with ROS.

6 Conclusion

To achieve verifiably safe autonomous decision-making, we have developed an in-
novative formal approach based on vGOAL. In this paper, we aim to give a com-
prehensive introduction to vGOAL, as it is pivotal in presenting and justifying
our formal approach to safe autonomous decision-making. Initially, we presented
its formal syntax and operational semantics, providing a solid foundation for for-
mal verification. To demonstrate the applicability of the language, we described
a real-world autonomous logistic system that has been validated using vGOAL
and its interpreter. Finally, we compared the key aspects of vGOAL with com-
parable APLs to demonstrate its advantages. In the future, we aim to enrich the
case studies of vGOAL with numerous complicated real-world autonomous sys-
tems. Moreover, we intend to conduct an empirical analysis to compare vGOAL
with GOAL, Gwendolen, and AgentSpeak (Jason). We believe vGOAL can be
highly valuable for developing safe autonomous robotic applications.

vGOAL: a GOAL-based Specification Language 17

Acknowledgements

This research is partially funded by the Research Fund KU Leuven. We thank
Jens Vankeirsbilck for providing Fig.1.

References

1. Bordini, R.H., Fisher, M., Pardavila, C., Wooldridge, M.: Model checking AgentS-
peak. In: Proceedings of the second international joint conference on Autonomous
agents and multiagent systems. pp. 409–416 (2003)

2. Bordini, R.H., Hübner, J.F.: BDI agent programming in AgentSpeak using Jason.
In: International workshop on computational logic in multi-agent systems. pp. 143–
164. Springer (2005)

3. Bordini, R.H., Hübner, J.F., Wooldridge, M.: Programming multi-agent systems
in AgentSpeak using Jason. John Wiley & Sons (2007)

4. Cardoso, R.C., Ferrando, A.: A review of agent-based programming for multi-agent
systems. Computers 10(2), 16 (2021)

5. Cardoso, R.C., Ferrando, A., Dennis, L.A., Fisher, M.: An interface for program-
ming verifiable autonomous agents in ROS. In: Multi-Agent Systems and Agree-
ment Technologies, pp. 191–205. Springer (2020)

6. Dehnert, C., Junges, S., Katoen, J.P., Volk, M.: A Storm is coming: A modern
probabilistic model checker. In: International Conference on Computer Aided Ver-
ification. pp. 592–600. Springer (2017)

7. Dennis, L.A.: Gwendolen semantics: 2017 (2017)

8. Dennis, L.A., Farwer, B.: Gwendolen: A BDI language for verifiable agents. In:
Proceedings of the AISB 2008 Symposium on Logic and the Simulation of Interac-
tion and Reasoning, Society for the Study of Artificial Intelligence and Simulation
of Behaviour. pp. 16–23. Citeseer (2008)

9. Dennis, L.A., Fisher, M., Webster, M.P., Bordini, R.H.: Model checking agent
programming languages. Automated software engineering 19(1), 5–63 (2012)

10. Hindriks, K.V.: Programming rational agents in GOAL. In: Multi-agent program-
ming, pp. 119–157. Springer (2009)

11. Hindriks, K.V.: Programming Cognitive Agents in GOAL. Vrije Universiteit Am-
sterdam (June 2021)

12. Hindriks, K.V., Dix, J.: GOAL: a multi-agent programming language applied to
an exploration game. Agent-Oriented Software Engineering: Reflections on Archi-
tectures, Methodologies, Languages, and Frameworks pp. 235–258 (2014)

13. Jensen, A.B., Hindriks, K.V., Villadsen, J.: On using theorem proving for cogni-
tive agent-oriented programming. In: 13th International Conference on Agents and
Artificial Intelligence. pp. 446–453. Science and Technology Publishing (2021)

14. Jensen, A.B., Villadsen, J.: GOAL-DTU: development of distributed intelligence
for the multi-agent programming contest. In: The Multi-Agent Programming Con-
test 2019: Agents Assemble–Block by Block to Victory 14. pp. 79–105. Springer
(2020)

15. Kwiatkowska, M., Norman, G., Parker, D.: PRISM: Probabilistic symbolic model
checker. In: International Conference on Modelling Techniques and Tools for Com-
puter Performance Evaluation. pp. 200–204. Springer (2002)

18 Y. Yang and T. Holvoet.

16. Stringer, P., Cardoso, R.C., Dixon, C., Dennis, L.A.: Implementing durative ac-
tions with failure detection in Gwendolen. In: Engineering Multi-Agent Systems:
9th International Workshop, EMAS 2021, Virtual Event, May 3–4, 2021, Revised
Selected Papers. pp. 332–351. Springer (2022)

17. Yang, Y.: Verifiably safe decision-making for autonomous systems. In: Proc. of the
22nd International Conference on Autonomous Agents and Multiagent Systems
(AAMAS 2023). London (5 2023)

18. Yang, Y.: vGOAL. https://kuleuven-my.sharepoint.com/:f:/g/personal/

yi_yang_kuleuven_be/EjUTI-DUvkdBlBKoNWxcVgIB8GMfhyAZHSA_i1b7ovskqw?e=

k6FINj (2023)
19. Yang, Y., Holvoet, T.: Generating safe autonomous decision-making in ROS. In:

Fourth Workshop on Formal Methods for Autonomous Systems. vol. 371, pp. 184–
192. Open Publishing Association (9 2022)

20. Yang, Y., Holvoet, T.: Making model checking feasible for GOAL. In: 10th Inter-
national Workshop on Engineering Multi-Agent Systems (2022)

https://kuleuven-my.sharepoint.com/:f:/g/personal/yi_yang_kuleuven_be/EjUTI-DUvkdBlBKoNWxcVgIB8GMfhyAZHSA_i1b7ovskqw?e=k6FINj
https://kuleuven-my.sharepoint.com/:f:/g/personal/yi_yang_kuleuven_be/EjUTI-DUvkdBlBKoNWxcVgIB8GMfhyAZHSA_i1b7ovskqw?e=k6FINj
https://kuleuven-my.sharepoint.com/:f:/g/personal/yi_yang_kuleuven_be/EjUTI-DUvkdBlBKoNWxcVgIB8GMfhyAZHSA_i1b7ovskqw?e=k6FINj

	vGOAL: a GOAL-based Specification Language for Safe Autonomous Decision-Making

