
Imperative and Event-Driven Programming of
Interoperable Software Agents

Giuseppe Petrosino1,�, Stefania Monica1, and Federico Bergenti2

1 Dipartimento di Scienze e Metodi dell’Ingegneria
Università degli Studi di Modena e Reggio Emilia, Italy
{giuseppe.petrosino,stefania.monica}@unimore.it

2 Dipartimento di Scienze Matematiche, Fisiche e Informatiche
Università degli Studi di Parma, Italy

federico.bergenti@unipr.it

Abstract. Jadescript is a recent agent-oriented programming language
conceived to support the effective development of agents and multi-agent
systems based on JADE. Jadescript is designed to ease the development
of agents by means of a tailored syntax matched with a programmer-
friendly development environment. This paper presents a brief overview
of Jadescript by describing its main features and abstractions and by
comparing them with the corresponding features and abstractions ad-
vocated by other agent-oriented programming languages. Moreover, to
show the applicability of Jadescript to the construction of interesting
multi-agent systems, this paper concisely summarizes a case study in
which Jadescript is used to implement agents that participate in English
auctions. Finally, this paper is concluded with a brief overview of planned
future developments of the language.

Keywords: Agent-oriented software engineering · Agent-oriented pro-
gramming · Jadescript · JADE

1 Introduction

Over the past two decades [7], numerous researchers and practitioners have effec-
tively used JADE (Java Agent DEvelopment framework) [2] for their projects.
By taking the role of the reference implementation of FIPA (Foundation for In-
telligent Physical Agents) [35] specifications, JADE has significantly contributed
to shape the ideas, the methodologies, and the tools of AOSE (Agent-Oriented
Software Engineering) [9]. In particular, JADE helped promote a peculiar view
of agents that focuses on the features of agents that are considered as useful
for software development. Essentially, in this view, agents are software compo-
nents [4] that engage in complex interactions [24] by exchanging messages in
possibly heterogeneous [1,15] and challenging [8,12,16,21,23] environments.

Recent trends in software engineering, exemplified by DSLs (Domain-Specific
Languages) [22], suggested that the adoption of the peculiar view of agents that
JADE advocates would greatly benefit from programming languages specifically



designed to easily employ the features and the abstractions that JADE already
provides in terms of a Java framework. This idea motivated the introduction of
JADEL [5,11], a programming language based on Xtend [17], which is a dialect
of Java designed to support the construction of DSLs. Although JADEL was
intended to simplify the development of agents andMAS (Multi-Agent Systems),
informal experiments on its use suggested that it exhibits inherent problems
that severely limit its applicability. For example, programmers who were new to
JADEL often preferred to directly use JADE in Java because they disconsidered
Xtend as Java plus irrelevant syntactic sugar. Therefore, the main advantage of
using JADEL, which is the possibility of easily adopting the abstractions that
JADE provides, was not effectively perceived during the informal experiments.

Jadescript [7,13] is a fresh start toward the objectives that motivated JADEL.
Jadescript is a programming language that was designed from scratch around
the view of agents and MASs promoted by JADE, and it ultimately encompasses
the following objectives. First, Jadescript aims at providing a clear and simple
way to implement agents and related abstractions, such as ontologies [40] and
behaviours [14]. Actually, the source code of a Jadescript agent bears a resem-
blance to the pseudocode found in textbooks on agents and MASs. Therefore,
Jadescript inevitably shares several similarities with popular scripting languages,
e.g., Python and JavaScript, hence its name. Second, Jadescript is intended to
help programmers adopt best development practices. For example, agents should
not use busy-waiting to detect events, and Jadescript natively provides cyclic
behaviours [27] to allow agents to suspend when no events can be processed by
available event handlers [13]. Third, Jadescript is meant to enhance the over-
all quality of produced software, and therefore it offers a specific type system
designed to natively support the features and the abstractions that character-
ize JADE. Actually, the Jadescript type system [30] aims at providing very
high-level abstractions for effective agent programming and at promoting the
development of robust and maintainable MASs. Finally, Jadescript is intended
to support mainstream development, and therefore it comes with a comprehen-
sive set of programmer-friendly development tools. In particular, a dedicated
plugin for Eclipse is proposed as the official tool to effectively use Jadescript in
production environments. The Jadescript plugin [29] for Eclipse provides an inte-
grated compiler and a set of support tools that include, e.g., dedicated graphical
interfaces to manage project files and launch agents and platforms. Actually,
the Jadescript plugin is designed to enhance the overall development experience
of Jadescript programmers by offering a streamlined and programmer-friendly
toolset to help them effectively create and manage complex projects that use
Jadescript in some, or even all, parts.

This paper is organized as follows. Section 2 briefly introduces Jadescript by
describing its main features and abstractions. Section 3 presents a practical use
of Jadescript in a classic scenario in which agents participate in English auctions.
Section 4 succinctly compares the features and the abstractions that Jadescript
provides with related aspects of other programming languages. Finally, Section 5
concludes this paper by outlining some directions for future developments.



2 A Short Introduction to Jadescript

The major agent-oriented abstractions advocated by Jadescript are: agents,
(agent) behaviours, and (communication) ontologies. The programmers that
use JADE are well-acquainted with these names, and the abstractions that
Jadescript provides purposely share similarities with their JADE counterparts.
Note that, despite being designed for the implementation of MASs based on
JADE, and despite being compiled to Java, Jadescript is not an object-oriented
programming language. It does not provide ways to declare classes of objects, to
construct objects, to invoke the methods of an object, or to access the state of
an object. Actually, needed abstract data types can be defined in Jadescript by
means of ontology concepts together with procedures and functions. Jadescript
provides procedures and functions to define portions of reusable code with an
associated visibility, which can be public or private. Functions are used to im-
plement operations that compute a value while procedures are limited to the
execution of commands. These and other features of the language are designed
to direct programmers to reason about agents, their tasks, and their interactions,
rather than concentrating on lower level aspects of the computation, like the or-
ganization of data in memory or the management of computational resources.

Agents represent the most relevant abstraction that Jadescript provides, and
Jadescript agents inherit several characteristics from JADE agents. Since mul-
tiple agents in a MAS can share the same source code, a Jadescript agent dec-
laration actually defines a family of agents [5] whose members have similar be-
haviours and share the structure of their internal states. The structure of the
internal states of the agents in a given family is defined by a set of property
declarations. Actually, a property is a named and statically typed part of the
internal state of an agent, and it is always private to ensure that agents cannot
directly access the internal states of other agents.

Jadescript supports the definition of behaviours to model the conducts of
agents in terms of stateful and concurrent tasks. The behaviours that are active
in an agent concurrently contribute to implement the conduct of the agent, and
therefore they share the internal state of the agent. However, no race conditions
on the internal state of the agent can occur because active behaviours in the same
agent are executed one at a time using an internal non-preemptive scheduling
mechanism. Similarly to agents, behaviour declarations can include property,
function, and procedure declarations. Note that a behaviour can be bound to an
agent family to limit its usage only to the agents of the specified family. This
possibility has the advantage of making the private properties, functions, and
procedures of an agent in the family freely accessible from the behaviour.

Currently, Jadescript behaviours are split in two categories: one-shot be-
haviours and cyclic behaviours. A one-shot behaviour is automatically deacti-
vated at the end of its executions. Therefore, it is executed only once after its
activations, and it represents a good way to implement atomic actions, e.g., the
broadcasting of a start message to all agents in the MAS. Instead, a cyclic be-
haviour is normally kept in the pool of active behaviours after its execution,
and it is repeatedly executed until explicitly deactivated. Therefore, it can be



used to implement repetitive actions, e.g., continuously waiting for a start mes-
sage. Note that behaviours can be explicitly activated by means of the activate
statement, and they can be deactivated using the deactivate statement. The
activation of behaviours can be delayed [33] to occur at a specific time or after
a specified delay. Moreover, cyclic behaviours can be scheduled to be executed
periodically [33]. All these scheduling capabilities are essential to let agents or-
ganize their tasks in time, e.g., to implement active monitoring tasks.

Jadescript promotes event-driven programming because agents are expected
to timely react to internal and external events. The reactions to these events are
implemented in Jadescript using event handlers, which can be defined in agents
and in behaviours. Internal events are related to the changes in the internal
states of agents and behaviours. For example, an on destroy handler of an
agent is executed by the agent right before the agent is removed from the agent
container in which it is executing. Conversely, an on create handler of an agent
is executed by the agent as soon as the agent becomes alive in order to initialize
the internal state of the agent and to activate the needed behaviours. Note that
on create handlers can have a set of named parameters. These parameters are
transparently bound to the arguments provided to the agent at construction
either via the command line, when the agent is created using the command line,
or via external Java code, when the agent is created using the Jadescript-Java
interoperability framework [32]. Moreover, note that mentioned event handlers
are also available for behaviours. Actually, a behaviour can have event handlers
to react to its creation, destruction, activation, deactivation, and to its selection
for execution by an agent. Finally, note that other events and associated event
handlers are available for agents and behaviours to handle exceptional situations
and behaviour failures [31].

Currently, external events are events associated with the reception of mes-
sages. A message is characterized by a sender agent and a nonempty set of
receiver agents, and all these agents are uniquely identified by means of their
AIDs (Agent IDentifiers) [3], which are texts with a specific structure directly in-
spired by JADE AIDs. A message is also characterized by a performative [3] and
a content, which is constructed by means of the ontology used for the message.
Jadescript advocates an approach to communication based on asynchronous mes-
sage passing, and the exchange of messages is implemented in Jadescript using
asynchronous send message statements and message handlers. Message handlers
support pattern matching [28], which allows programmers to easily express the
structure of the messages that a message handler can manage. The use of pat-
tern matching allows unifying the parts of the received message with the free
variables declared in the header of the message handler, thus providing a concise
and effective way to deconstruct the received message while making the relevant
parts of the message explicit and readily usable.

It is common opinion that the construction of MASs can benefit from the
adoption of ontologies to formalize the target application domain and to en-
sure that agents have a common understanding of the messages that mention
the elements of the domain. Ontologies are provided in Jadescript as one of the



main abstractions of the language, and they play a central role not only in sup-
porting communication but also in structuring the data that agents manipulate.
Actually, ontologies can be associated with agents to allow agents to create and
manipulate the concepts, actions, (atomic) propositions, and predicates defined
in the ontology. In addition, all agents associated with the same ontology can
freely exchange messages whose contents are defined using the elements of the
ontology, sharing their definitions, and consequently, their meanings.

Concepts and actions are elements of ontologies used to manipulate domain-
specific structured data and agent actions, respectively. They are characterized
by properties, and Jadescript provides for inheritance of both concepts and ac-
tions to allow defining hierarchies of data types. Predicates and propositions are
other elements of ontologies, and they are used to express facts. A predicate is
associated with a lists of named and typed arguments while a proposition is not
structured. Note that predicates and propositions share the Proposition super-
type, even if programmers cannot use inheritance on these types. Finally, note
that predicates and propositions are used in logical expressions, and they are also
used to denote the reasons for behavior failures and exceptional situations [31].

3 English Auctions in Jadescript

This section provides a description of how Jadescript can be used to implement
a MAS in which agents participate in English auctions. This example is used
to show several characteristics of the language and only a few marginal details
of the reported source codes were intentionally omitted. Note that this example
relaxes several assumptions of ordinary toy problems, and it can be considered as
genuinely more complex than the didactic examples that previous papers include
to present and discuss specific features of the language.

3.1 The scenario

In the considered scenario, an agent designated as auctioneer is first created.
The auctioneer knows the item it is prompted to sell, which is normally a paint-
ing, and it also knows the opening bid for the item and the reserve price. Once
created, the auctioneer waits for participants to register to the auction. When
at least two participants have registered, the auction starts and the auctioneer
issues an initial call for bids to all registered participants. The initial call for bids
includes the description of the item together with the necessary details needed
to submit valid bids, namely the opening bid, the minimum increment on bids,
and the deadline for submitting bids. Note that the auctioneer considers a bid
as valid only if it is submitted before the deadline and if it is higher or equal to
the standing bid plus the minimum increment publicized in the last call for bids.
After each successful reception of a valid bid, the auctioneer issues a new call
for bids to all registered participants. The new call for bids includes the current
standing bid, the updated deadline, and the name of the participant who sub-
mitted the standing bid. The auctioneer continues to send updated calls for bids



until the deadline has passed and no pending bids are left. When this occurs, if
the standing bid is lower than the reserve price, then the auctioneer concludes
the auction without selling the item. Otherwise, the auctioneer informs all regis-
tered participants that the item is assigned to the participant that submitted the
current standing bid. Note that, during the auction, participants can freely join
and leave the auction. The auctioneer replies to late registrations with the latest
call for bids to allow new participants to make their bids before the deadline.

3.2 The ontology

The EnglishAuction ontology shown in Fig. 1 is used to describe the content
of each message exchanged in the MAS. The first two elements of the ontology,
namely the Participating and the Leaving propositions, are used by partici-
pants to join and leave the auction, respectively.

The Item concept is included in the ontology to describe an item being
traded in an auction. For the sake of simplicity, generic items are described
using only their names. However, the scenario assumes that the auctioneer sells
paintings, and therefore the Painting concept is included in the ontology as a
a specialization of the Item concept. The Painting concept includes the title
and the author properties, and when a new description of a painting is created,
its name is constructed from to the title and the author of the painting.

The SubmitBid action is included in the ontology to be used as content for the
calls for bids sent by the auctioneer to the participants. The SubmitBid action
has several properties that specify the details of valid bids. The first property
is item, and it is the item being traded. The second property is currentBid,
which is either the opening bid or the standing bid. The third property is
bidMinimumIncrement, which is the specified minimum increment. The fourth
property is deadline, and it indicates the time at which the auctioneer will stop
accepting new bids. Finally, the fifth property is currentlyWinning, which is
the name of the participant that submitted the standing bid. If this value is the
empty string, then no valid bids have been submitted yet.

The Buy action is included in the ontology to denote the act of buying the
specified item, while the Priced predicate is used to associate an item with a
price. The Buy and the Priced elements are both used as content of messages
sent by participants to submit new bids, while the BidRejected predicate is
used by the auctioneer to refuse a bid indicating the reason that caused the bid
to be rejected. This reason is described using one of the following predicates
of the ontology. The BidTooLow predicate indicates that the submitted bid was
too low, and it includes a property that specifies the minimum value for a valid
bid. The InvalidBid predicate is used to generically reject a bid by providing
a textual explanation of what went wrong during the submission of the bid.

Finally, two predicates of the ontology are used by the auctioneer to inform
registered participants of the outcome of the auction. The ItemNotSold predicate
includes a property to specify the item the auctioneer failed to sell. The ItemSold
predicate includes two properties, namely buyer, which contains the AID of the
winning participant, and price, which contains the price of the winning bid.



1 ontology EnglishAuction
2 proposition Participating
3 proposition Leaving
4 concept Item(name as text)
5 concept Painting(author as text , title as text)
6 extends Item with name = title+" by "+author
7 action SubmitBid(item as Item , currentBid as integer ,
8 bidMinimumIncrement as integer ,
9 deadline as timestamp , currentlyWinning as text)

10 action Buy(item as Item)
11 predicate Priced(item as Item , price as integer)
12 predicate BidRejected(reason as Proposition)
13 predicate BidTooLow(minimumBid as integer)
14 predicate InvalidBid(otherReason as text)
15 predicate ItemSold(item as Item , buyer as aid ,
16 finalPrice as integer)
17 predicate ItemNotSold(item as Item)

Fig. 1. The Jadescript implementation of the English auction ontology.

3.3 The auctioneer

The Jadescript source code for the auctioneer is shown in Fig. 2. The properties
defined in the declaration of the auctioneer constitute the internal state of the
auctioneer, which equals the state of the auction for the sake of simplicity. These
properties can be subdivided in three groups. The first group contains the pre-
defined parameters of the auctioneer. In particular, the minimumParticipants
property specifies the minimum number of participants required for an auction
to start. The auctioneer waits until the number of participants that registered
to the action reaches the specified minimum number. The amount of time that
the auctioneer waits for new bids after sending a call for bids is denoted by
the waitingForBidsTime property. The startBid property specifies the open-
ing bid, and the bidMinimumIncrement property denotes the minimum required
increment between two subsequent bids. The reserve property denotes the re-
serve price. Finally, the last property of this group is the item property, which
denotes the item being traded.

The second group of properties that constitute the internal state of the auc-
tioneer is used to track the dynamic state of the current auction. The currentBid
property denotes the standing bid, and it is initialized with the mentioned
startBid property. The candidateBuyer property is used to store the identity
of the participant that submitted the standing bid when at least one valid bid
has been received, which is an event that is denoted by the thereIsCandidate
property. Finally, the participants property is a set of AIDs used to store the
identities of all registered participants. This set is updated dynamically by the
auctioneer every time a participant registers or deregisters.



1 agent Auctioneer uses ontology EnglishAuction
2 property minimumParticipants = 2
3 property waitingForBidsTime = "PT30S" as duration
4 property startBid = 80
5 property reserve = 120
6 property bidMinimumIncrement = 2
7 property item = Painting("Leonardo", "Mona Lisa")
8

9 property currentBid = startBid
10 property candidateBuyer as aid
11 property thereIsCandidate = false
12 property participants as set of aid
13

14 property doAuction = DoAuction
15 property endAuction = EndAuction
16

17 on create do
18 log "Agent "+name of agent+" created."
19 activate AwaitParticipants

Fig. 2. The Jadescript implementation of the auctioneer.

The last group of properties that constitute the internal state of the auction-
eer contains two properties that refer to behaviours. The first property refers to a
DoAuction behaviour, and the auctioneer uses this behaviour to run the auction.
The second property refers to an EndAuction behaviour, and the auctioneer uses
this behaviour to finalize the auction by informing all registered participants of
the outcome of the auction. Note that these two properties refer to behaviours
that are explicitly activated and deactivated when needed.

The agent declaration shown in Fig. 2 is concluded with an on create han-
dler. As soon as the auctioneer starts, it writes a message to its log, and then
it activates an AwaitParticipants behaviour, whose source code is shown in
Fig. 3. The activated AwaitParticipants behaviour performs the task of wait-
ing for a sufficient number of participants to register to the auction. This be-
haviour is designed to be used exclusively by the auctioneer, and therefore its
declaration uses the for agent clause in its header. This tight link between
the AwaitParticipants behaviour and the auctioneer has two relevant conse-
quences. First, the behaviour can refer to the properties of the agent, which are
always private. In particular, the minimumParticipants and the participants
properties are used by the behaviour. Second, the behaviour is transparently
associated with the ontologies used by the agent. In this case, this is used to
access to the Participating and the Leaving propositions.

The AwaitParticipant behaviour created by the auctioneer to manage the
start of the auction uses the two message handlers shown in Fig. 3. The first
handler processes inform messages that contain a Participating proposition.



1 cyclic behaviour AwaitParticipants for agent Auctioneer
2 on message inform Participating do
3 add sender of message to participants
4 if size of participants >= minimumParticipants do
5 log "Starting auction."
6 log "Selling: "+item+"."
7 activate doAuction
8 deactivate this
9

10 on message inform Leaving do
11 remove sender from participants
12

13 on activate do
14 do log "Waiting for participants."

Fig. 3. The Jadescript implementation of the behaviour used to wait for participants.

These messages are sent by agents interested in participating in the auction, and
therefore their AIDs are added to the set of participants. If, after this addition,
the number of registered participants reaches the specified minimum number of
participants, then the auctioneer changes its behaviour by deactivating its cur-
rent behaviour and by activating the doAuction behaviour. The second handler
shown in Fig. 3 processes inform messages that contain a Leaving proposition.
These messages are sent by participants that want to leave the auction, and
therefore their AIDs are removed from the set of participants. Finally, note that
the AwaitParticipant behaviour created by the auctioneer writes a message to
its log when activated.

The task of running an auction is implemented by the auctioneer using a
DoAuction behaviour, whose declaration is shown in Fig. 4. This behaviour as-
sumes that a sufficient number of participants is registered to the auction. As
soon as the behaviour is activated, the actioneer executes the callForBids pro-
cedure. This procedure sends a call for proposals to all registered participants.
This call for proposals contains a SubmitBid action that details the information
needed by participants to submit valid bids. After sending the call for proposals,
the DoAuction behaviour performs a delayed activation of the behaviour used
to terminate the auction, which is referenced by the endAuction property. The
time at which this behaviour will be activated is stored in the nextTimeout
property, which is computed as now + waitingForBidsTime. Note that each call
to the callForBids procedure resets this delayed activation, thus postponing
the activation of the behaviour used to terminate the auction.

The behaviour used by the auctioneer to run auctions also handles the recep-
tion of inform messages that mention either the Participating or the Leaving
propositions in order to dynamically manage the set of registered participants.
In particular, when an inform message from an agent who wants to join the
auction arrives, the auctioneer adds the agent to the set of participants, and it



1 cyclic behaviour DoAuction for agent Auctioneer
2 property nextTimeout as timestamp
3

4 on activate do
5 do callForBids
6

7 procedure callForBids do
8 nextTimeout = now + waitingForBidsTime
9 do sendCFPMessage with bidders = participants

10 activate endAuction at nextTimeout
11

12 procedure sendCFPMessage with bidders as set of aid do
13 currentlyWinning = ""
14 if thereIsCandidate do
15 currentlyWinning = name of candidateBuyer
16 send message cfp SubmitBid(item , currentBid ,
17 bidMinimumIncrement , nextTimeout ,
18 currentlyWinning) to bidders
19

20 on message inform Participating do
21 add sender of message to participants
22 do sendCFPMessage with bidders = { sender }
23

24 on message inform Leaving do
25 remove sender of message from participants
26 if size of participants < 2 do
27 activate endAuction
28

29 on message propose (Buy(proposedItem),
30 Priced(proposedItem , proposedPrice)) do
31 minBid = currentBid + bidMinimumIncrement
32 if proposedPrice < minBid do
33 send message reject_proposal (Buy(proposedItem),
34 Priced(proposedItem , proposedPrice),
35 BidRejected(BidTooLow(minBid)))
36 to sender of message
37 else do
38 send message accept_proposal (
39 Buy(proposedItem),
40 Priced(proposedItem , proposedPrice)
41 ) to sender of message
42 currentBid = proposedPrice
43 thereIsCandidate = true
44 candidateBuyer = sender of message
45 do callForBids

Fig. 4. The Jadescript implementation of the behaviour used to run auctions.



replies to the agent with a call for proposals. This call for proposals is populated
with the needed information for the new participant to place valid bids before
the deadline. Similarly, when an inform message from a participant that wants
to leave the auction arrives, the auctioneer removes the AID of the sender from
the set of participants. Note that if the number of registered participants is less
than two, the auctioneer immediately terminates the auction.

Finally, note that the DoAuction behaviour used by the auctioneer to run
the auction provides a message handler for proposals, as shown in the bottom of
Fig. 4. In order for this handler to be executed, the content of the message must
match against the pattern composed of a pair of types (Buy, Priced). If the re-
ceived message successfully matches against this pattern, the message handler is
executed and it can access the proposedItem and the proposedPrice variables.
The values of these variables are transparently extracted from the content of
the message during the matching against the specified pattern. Therefore, these
values can be freely used to verify the validity of the received proposal. First, the
auctioneer ensures that the bid is valid by checking that the proposed price is
sufficiently high. In particular, the proposed price must be higher than or equal
to currentBid + bidMinimumIncrement. If the proposed price is not sufficiently
high, the bid is rejected with an appropriate reason for the rejection. Otherwise,
the auctioneer accepts the bid, and the state of the auction is updated to take
into account the new standing bid. In particular, a new iteration of the auction
is immediately started by calling the callForBids procedure. Note that if no
valid bids are submitted by the deadline, the delayed activation of the behaviour
used to terminate the auction ensures that the auction is still terminated.

The source code of the behaviour used to terminate an auction is shown
in Fig. 5. The auctioneer uses a delayed activation of this behaviour to ensure
that the auction terminates at the appropriate deadline. When activated, this
behaviour first deactivates the behaviour used to run the auction, which is ref-
erenced by the doAuction property, in order to prevent it from accepting bids
submitted after the deadline. Then, it checks the final state of the auction to
compute its outcome. If there is no valid standing bid higher than the reserve
price, the auction is concluded with no transactions. In this case, the auctioneer
informs all participants that the item was not sold. On the contrary, if a valid
standing bid is available, the auctioneer notifies all participants of the successful
outcome, and it indicates the identity of the winner of the auction. Finally, note
that some corner cases were intentionally omitted for the sake of simplicity. For
example, the auctioneer does not treat sufficiently well the case of a participant
that leaves the auction while it is the current winner.

3.4 The participants

Together with the auctioneer, the MAS comprises a set of participants. Even if
the Jadescript source code of participants, in the Bidder agent declaration, is
not shown for space constraints, participants are very simple and they can be
easily described. First, participants use the EnglishAuction ontology to share



1 one shot behaviour EndAuction for agent Auctioneer
2 on activate do
3 deactivate doAuction
4 if not thereIsCandidate or currentBid < reserve do
5 log "No valid bid submitted. Not selling the item."
6 send message inform ItemNotSold(item)
7 to participants
8 else do
9 log "Selling item "+item+" to "+candidateBuyer+"."

10 send message inform ItemSold(item , candidateBuyer ,
11 currentBid) to participants

Fig. 5. The Jadescript implementation of the behaviour used to terminate auctions.

the definition of concepts, actions, predicates, and propositions with the auc-
tioneer. Then, each participant has a budget property that stores the amount of
money available for the auction. Once created, participants immediately activate
a ParticipateToAuction behaviour to enter the auction and try to win it. The
implemented strategy adopted by participants to try to win the auction is very
simple: a participant always proposes the minimum price sufficient to make the
proposal valid, and it stops bidding only if it does not have enough money to
make a valid proposal.

The source code of the ParticipateToAuction behaviour used by partici-
pants to participate to the auction is shown in Fig. 6. This behaviour is defined
by several event handlers. Upon activation and deactivation of this behaviour,
the participant informs the auctioneer about its interest to participate to the
auction. When a call for proposals arrives, the corresponding message handler
deconstructs it and uses its parts to compute the decision on what to do. In
particular, if the participant is not the one that submitted the current stand-
ing bid, and if the participant has enough money and time to propose a higher
bid, then the participant proposes a higher bid by sending the corresponding
message to the auctioneer. The proposal is then either accepted or rejected by
the auctioneer. These two events are handled in the participant by the two mes-
sage handlers that match against accept proposals and reject messages. Note
that the behaviour also handles the final outcome of the auction, providing a
message handler for each one of the possible messages sent by the auctioneer to
inform participants of the termination of the auction.

4 Related Work

Several AOP (Agent-Oriented Programming) languages have been developed in
the last few decades to provide effective tools to support a novel programming
paradigm [39] suitable to develop agents and MASs. Besides languages mostly
intended for theoretical purposes, like AGENT0 [38] and AgentSpeak(L) [36],
notable examples of AOP languages intended for practical applications are Jason,



1 cyclic behaviour ParticipateToAuction for agent Bidder
2 on activate do
3 send message inform Participating to aid("Auctioneer")
4

5 on deactivate do
6 send message inform Leaving to aid("Auctioneer")
7

8 on message cfp (SubmitBid(item , currentBid ,
9 bidMinimumIncrement , deadline , currentWinner), _) do

10 bid = currentBid + bidMinimumIncrement
11 if currentWinner != name of agent
12 and now < deadline and bid <= budget do
13 log "Submitting bid: "+bid+"."
14 activate SendPropose(item , bid)
15 else if bid > budget do
16 log "Not enough money , giving up."
17

18 on message accept_proposal do
19 log "My bid has been accepted."
20

21 on message reject_proposal (_, _, reason) do
22 log "My bid was rejected , reason: "+reason
23

24 on message inform ItemSold(item , aid of agent , bid) do
25 log "I bought "+item+" for "+bid+"!"
26

27 on message inform ItemSold(item , other , bid) do
28 log other+" bought "+item+" for "+bid+"."
29

30 on message inform ItemNotSold(item) do
31 log "Item not sold: "+item+"."

Fig. 6. The Jadescript implementation of the behaviour used by participants.

ASTRA, and SARL. In the remaining of this section, the main features and
abstractions of these three languages are outlined and compared with the related
features and abstractions that Jadescript advocates.

AgentSpeak(L) [36] is a well-known AOP language that was formalized to
provide an operational proof-theoretic semantics to reason on BDI (Belief-
Desire-Intention) agents. In AgentSpeak(L), agent programs are expressed as
logic programs, and they are composed of beliefs, goals, and plans. Jason [18],
which is one of the most popular implementations of AgentSpeak(L), has gained
significant popularity in recent years. Jason extends AgentSpeak(L) with sev-
eral features, like a specific support for interoperability with Java. The tight
link between Jason and Java is so relevant that Jason agents are expected to be
situated in environments implemented in Java, and several parts of the Jason



interpreter can be customized by extending the core Java classes of the inter-
preter. ASTRA [19,20] is another implementation of AgentSpeak(L), and it also
provides specific extensions. ASTRA extends AgentSpeak(L) by introducing sev-
eral features inspired by the literature on agents and MAS, e.g., a support for
teleo-reactive [26] functions with encapsulated rules.

Jadescript and the mentioned implementations of AgentSpeak(L) are all AOP
languages intended for practical uses. However, Jadescript has some significant
differences with respect to AgentSpeak(L) and its derivates, one of the most
significant of which is in the approach to programming agents. AgentSpeak(L)
is a language that uses the BDI model to program agents, while Jadescript, on
the other hand, is both an imperative and an event-driven programming lan-
guage. Actually, while the focus in AgentSpeak(L) is on describing the mental
attitudes of the agents, the focus in Jadescript is on specifying the tasks per-
formed by the agents and on structuring the interactions among agents in the
MAS. Another key difference between Jadescript and the languages that de-
rive from AgentSpeak(L) is in the syntax and the semantics of the language.
AgentSpeak(L) is based on logic programming, and it uses a syntax that is simi-
lar to Prolog. Jadescript, on the other hand, has a syntax that is closer to modern
scripting languages like Python and JavaScript. Therefore, Jadescript is more
accessible to mainstream programmers, who are not supposed to be familiar
with logic programming and with the declarative paradigm. Finally, it is worth
noting that Jadescript is specifically designed to use JADE, whereas the men-
tioned practical implementations of AgentSpeak(L) can be used with a variety
of agent platforms. Therefore, Jadescript is a better choice for developers who
are already familiar with JADE, also because its main features and abstractions
are inspired by the corresponding features and abstractions provided by JADE.

Differently from AgentSpeak(L) and its implementation, SARL [37] is an
AOP language that can be considered as imperative and event-driven. SARL
is equipped with a syntax that is easy to understand for users of mainstream
programming languages. One of its most noteworthy features is its support for
holonic agents, which are agents composed of other agents. Moreover, SARL
is designed to not be tied to any particular platform, although it is frequently
used with Janus [37]. SARL has several similarities with JADEL, which is the
predecessor of Jadescript. For example, SARL and JADEL have similar syntaxes
to define agents, and they use similar linguistic constructs to handle events.
Moreover, both SARL and JADEL include specific extensions of Xtend for the
imperative parts of the source codes of agents. Despite these similarities, SARL
and JADEL were developed independently and have distinct purposes.

The main difference between SARL and Jadescript is that SARL explicitly
supports object-oriented programming, while Jadescript is a pure AOP language.
Actually, SARL supports the definition of classes and the manipulation of ob-
jects alongside the declaration of agents and of their tasks. On the other hand,
Jadescript purposely excludes the concepts of object-oriented programming from
the language to offer agent-oriented abstractions as valid alternatives to promote
reusability and composability [10].



5 Conclusion

Jadescript is a promising tool to develop real-world MASs that target mission-
critical applications and services (e.g., [6,25]). Its unique combination of simplic-
ity and conciseness makes it a valuable addition to the toolkit of the program-
mers of agents and MASs. However, Jadescript is still in its early stages, with
early versions of the compiler and associated tools having only recently been
made available to the open source community (github.com/aiagents/jadescript).
Therefore, Jadescript presents significant opportunities for further developments.

One promising direction for extending Jadescript is to incorporate IPs (Inter-
action Protocols) [34] as a primary abstraction of the language. IPs are intended
to precisely specify the possible patterns of the interactions among agents, and
therefore their support in Jadescript requires linguistic constructs to allow speci-
fying new IPs and to allow agents to enact IPs on the basis of these specifications.
Actually, by defining the role of an agent within an IP, the designer of the agent
is guided to design the behaviours of the agent taking into account the expected
interactions of the agent in the scope of the IP. This approach to the design of
agents and behaviours has the beneficial effect of improving the clarity and the
modularity of the design, and it also eases the identification of reusable agents
and behaviours for common communication patterns.

Finally, another possible development of Jadescript is about providing ef-
fective language-level features to enable the use of epistemic and intentional
propositions in the agents. This extension is expected to provide Jadescript with
a more expressive way to describe the decision making processes and cognitive
abilities of the agents, thus ultimately improving the robustness, the maintain-
ability, and the reusability of agents and MASs.

Acknowledgements This work was partially supported by the Italian Min-
istry of University and Research under the PRIN 2020 grant 2020TL3X8X for
the project Typeful Language Adaptation for Dynamic, Interacting and Evolving
Systems (T-LADIES).

References

1. Adorni, G., Bergenti, F., Poggi, A., Rimassa, G.: Enabling FIPA agents on small
devices. In: Proceedings of the 5th International Workshop on Cooperative Infor-
mation Agents (CIA 2001). Lecture Notes in Artificial Intelligence, vol. 2182, pp.
248–257. Springer (2001)

2. Bellifemine, F., Bergenti, F., Caire, G., Poggi, A.: JADE–A Java Agent DEvel-
opment Framework. In: Multi-Agent Programming, Multiagent Systems, Artificial
Societies, and Simulated Organizations, vol. 25, pp. 125–147. Springer (2005)

3. Bellifemine, F., Caire, G., Greenwood, D.: Developing Multi-Agent Systems with
JADE. Wiley Series in Agent Technology, John Wiley & Sons (2007)

4. Bergenti, F.: A discussion of two major benefits of using agents in software devel-
opment. In: Proceedings of the 3rd International Workshop on Engineering Soci-
eties in the Agents World (ESAW 2002). Lecture Notes in Artificial Intelligence,
vol. 2577, pp. 1–12. Springer (2003)

github.com/aiagents/jadescript


5. Bergenti, F.: An introduction to the JADEL programming language. In: Proceed-
ings of the 26th IEEE International Conference on Tools with Artificial Intelligence
(ICTAI 2014). pp. 974–978. IEEE (2014)

6. Bergenti, F., Caire, G., Gotta, D.: Large-scale network and service management
with WANTS. In: Industrial Agents: Emerging Applications of Software Agents in
Industry. pp. 231–246. Elsevier (2015)

7. Bergenti, F., Caire, G., Monica, S., Poggi, A.: The first twenty years of agent-based
software development with JADE. Autonomous Agents and Multi-Agent Systems
34(36) (2020)

8. Bergenti, F., Franchi, E., Poggi, A.: Agent-based social networks for enterprise
collaboration. In: Proceedings of the 20th IEEE International Workshops on En-
abling Technologies: Infrastructure for Collaborative Enterprises (WETICE 2011).
pp. 25–28. IEEE (2011)

9. Bergenti, F., Gleizes, M.P., Zambonelli, F. (eds.): Methodologies and Software
Engineering for Agent Systems. Springer (2004)

10. Bergenti, F., Huhns, M.N.: On the use of agents as components of software systems.
In: Methodologies and Software Engineering for Agent Systems. pp. 19–31. Springer
(2004)

11. Bergenti, F., Iotti, E., Monica, S., Poggi, A.: Agent-oriented model-driven devel-
opment for JADE with the JADEL programming language. Computer Languages,
Systems & Structures 50, 142–158 (2017)

12. Bergenti, F., Monica, S.: Location-aware social gaming with AMUSE. In: Proceed-
ings of the 14th International Conference on Advances in Practical Applications of
Scalable Multi-agent Systems (PAAMS 2016). Lecture Notes in Computer Science,
vol. 9662, pp. 36–47. Springer (2016)

13. Bergenti, F., Monica, S., Petrosino, G.: A scripting language for practical agent-
oriented programming. In: Proceedings of the 8th ACM SIGPLAN International
Workshop on Programming Based on Actors, Agents, and Decentralized Control
(AGERE 2018) at ACM SIGPLAN Conference Systems, Programming, Languages
and Applications: Software for Humanity (SPLASH 2018). ACM (2018)

14. Bergenti, F., Petrosino, G.: Overview of a scripting language for JADE-based multi-
agent systems. In: Proceedings of the 19th Workshop “From Objects to Agents”
(WOA 2018). CEUR Workshop Proceedings, vol. 2215, pp. 57–62. RWTH Aachen
(2018)

15. Bergenti, F., Poggi, A.: Ubiquitous information agents. International Journal of
Cooperative Information SystemsVolume 11(3–4), 231–244 (2002)

16. Bergenti, F., Poggi, A.: Developing smart emergency applications with multi-agent
systems. International Journal of E-Health and Medical Communications 1(4), 1–
13 (2010)

17. Bettini, L.: Implementing Domain-Specific Languages with Xtext and Xtend. Packt
Publishing (2013)

18. Bordini, R.H., Hübner, J.F., Wooldridge, M.: Programming multi-agent systems
in AgentSpeak using Jason. Wiley Series in Agent Technology, John Wiley & Sons
(2007)

19. Collier, R.W., Russell, S., Lillis, D.: Reflecting on agent programming with
AgentSpeak(L). In: Proceedings of 4th the International Conference of Principles
and Practice of Multi-Agent Systems (PRIMA 2015). Lecture Notes in Computer
Science, vol. 9387, pp. 351–366. Springer (2015)



20. Dhaon, A., Collier, R.: Multiple inheritance in AgentSpeak(L)-style programming
languages. In: Proceedings of the 4th ACM SIGPLAN International Workshop on
Programming Based on Actors, Agents, and Decentralized Control (AGERE 2014)
at ACM SIGPLAN Conference Systems, Programming, Languages and Applica-
tions: Software for Humanity (SPLASH 2014). pp. 109–120. ACM (2014)

21. Federico, B., Agostino, P.: Agent-based approach to manage negotiation protocols
in flexible CSCW systems. In: Proceedings of the 4th International Conference on
Autonomous Agents (AGENTS 2000). pp. 267–268. ACM (2000)

22. Fowler, M., Parsons, R.: Domain Specific Languages. Addison-Wesley Signature,
Addison-Wesley (2010)

23. Iotti, E., Petrosino, G., Monica, S., Bergenti, F.: Exploratory experiments on pro-
gramming autonomous robots in Jadescript. In: Proceedings of the 1st Workshop
on Agents and Robots for Reliable Engineered Autonomy (AREA 2020) at the Eu-
ropean Conference on Artificial Intelligence (ECAI 2020). Electronic Proceedings
in Theoretical Computer Science, vol. 319. Open Publishing Association (2020)

24. Iotti, E., Petrosino, G., Monica, S., Bergenti, F.: Two agent-oriented program-
ming approaches checked against a coordination problem. In: Proceedings of the
17th International Conference on Distributed Computing and Artificial Intelligence
(DCAI 2020). pp. 60–70. Springer (2021)

25. Monica, S., Bergenti, F.: A comparison of accurate indoor localization of static
targets via WiFi and UWB ranging. In: Trends in Practical Applications of Scalable
Multi-Agent Systems, the PAAMS Collection. pp. 111–123. Springer (2016)

26. Nilsson, N.J.: Teleo-reactive programs for agent control. Journal of Artificial Intel-
ligence Research 1 (1993)

27. Petrosino, G., Bergenti, F.: An introduction to the major features of a scripting
language for JADE agents. In: Proceedings of the 17th Conference of the Italian
Association for Artificial Intelligence (AI*IA 2018). Lecture Notes in Artificial
Intelligence, vol. 11298, pp. 3–14. Springer (2018)

28. Petrosino, G., Bergenti, F.: Extending message handlers with pattern matching
in the Jadescript programming language. In: Proceedings of the 20th Workshop
“From Objects to Agents” (WOA 2019). CEUR Workshop Proceedings, vol. 2404,
pp. 113–118. RWTH Aachen (2019)

29. Petrosino, G., Iotti, E., Monica, S., Bergenti, F.: Prototypes of productivity tools
for the Jadescript programming language. In: Proceedings of the 22nd Workshop
“From Objects to Agents” (WOA 2021). CEUR Workshop Proceedings, vol. 2963,
pp. 14–28. RWTH Aachen (2021)

30. Petrosino, G., Iotti, E., Monica, S., Bergenti, F.: A description of the Jadescript
type system. In: Proceedings of the 3rd International Conference on Distributed
Artificial Intelligence (DAI 2022). Lecture Notes in Computer Science, vol. 13170,
pp. 206–220. Springer (2022)

31. Petrosino, G., Monica, S., Bergenti, F.: Robust software agents with the Jadescript
programming language. In: Proceedings of the 23rd Workshop “From Objects
to Agents” (WOA 2022). CEUR Workshop Proceedings, vol. 3261, pp. 194–208.
RWTH Aachen (2022)

32. Petrosino, G., Monica, S., Bergenti, F.: Cross-paradigm interoperability between
Jadescript and Java. In: Proceedings of the 15th International Conference on
Agents and Artificial Intelligence (ICAART 2023). vol. 1, pp. 165–172. Science
and Technology Publications (2023)



33. Petrosino, G., Monica, S., Bergenti, F.: Delayed and periodic execution of tasks in
the Jadescript programming language. In: Proceedings of the 19th International
Conference on Distributed Computing and Artificial Intelligence (DCAI 2022). pp.
50–59. Springer (2023)

34. Poslad, S.: Specifying protocols for multi-agent systems interaction. ACM Trans-
actions on Autonomous and Adaptive Systems 2(4), 15:–15:24 (2007)

35. Poslad, S., Charlton, P.: Standardizing agent interoperability: The FIPA approach.
In: Multi-Agent Systems and Applications. Lecture Notes in Computer Science,
vol. 2086. Springer (2001)

36. Rao, A.S.: AgentSpeak(L): BDI agents speak out in a logical computable language.
In: MAAMAW 1996: Agents Breaking Away. pp. 42–55. Springer (1996)

37. Rodriguez, S., Gaud, N., Galland, S.: SARL: A general-purpose agent-oriented pro-
gramming language. In: Proceedings of the IEEE/WIC/ACM International Joint
Conferences of Web Intelligence (WI 2014) and Intelligent Agent Technologies (IAT
2014). vol. 3, pp. 103–110. IEEE (2014)

38. Shoham, Y.: AGENT0: A simple agent language and its interpreter. In: Proceedings
of the 9th National Conference on Artificial Intelligence (AAAI 1991). vol. 91, pp.
704–709 (1991)

39. Shoham, Y.: Agent-oriented programming. Artificial Intelligence 60(1), 51–92
(1993)

40. Tomaiuolo, M., Turci, P., Bergenti, F., Poggi, A.: An ontology support for semantic
aware agents. In: Proceedings of the 7th International Bi-Conference Workshop on
Agent-Oriented Information Systems (AOIS 2005). Lecture Notes in Computer
Science, vol. 3529, pp. 140–153. Springer (2006)


	Imperative and Event-Driven Programming of Interoperable Software Agents

