
Remote Deployment of a JADE Agent in Docker

Dennis Maecker, Henning Gösling, and Oliver Thomas

German Research Center for Artificial Intelligence (DFKI), Germany
{dennis.maecker,henning.goesling,oliver.thomas}@dfki.de

Abstract. This work presents a technical introduction into the imple-
mentation process of a containerized multi-agent system. More specifi-
cally, the JADE framework is used as a middleware for the development
of software agents. With the goal of achieving high modularity and en-
hancing usability, the system will be containerized in Docker. To model
an application-oriented scenario, the containerized agent-system is de-
ployed on a headless remote server. The goal of this paper is to provide
a comprehensive solution to help overcome the technical difficulties en-
countered in accessing the graphical user interface of agents from an end
device. A procedural guide to the implementation process is provided, in-
cluding the preparation of the JADE-based multi-agent system, creation
of Docker containers, and deployment of the containerized multi-agent
system on a remote server.

Keywords: Multi-agent system · JADE · Docker · Containerization

1 Introduction

Recently, the novel concept of a Smart Managed Freight Fleet was introduced
[5], focusing in particular on multi-agent systems applied to supply chains in
the transport market. Representing a promising framework for multi-agent sys-
tems, the Java Agent Development Framework (JADE) [3, 4], already applied
in real-world telecommunication applications [8], was chosen as a candidate for
the implementation process. As a Java-based middleware, JADE is used to in-
corporate functionalities of multi-agent systems and follows the standards of the
Foundation for Intelligent Physical Agents (FIPA). In the scenario of a large-scale
freight-fleet management system, it is crucial to ensure not only the interoper-
ability of the agents, but also compatibility with different platforms, for instance
remote servers or software enabled fleet assets, and facilitate the deployment of
the software. For this objective, the container virtualization technology of Docker
[1] was chosen. In the progress of adapting the multi-agent system for the use in
modular Docker containers, several technical issues emerged. So far, deploying
JADE agents in Docker containers was only sparsely investigated or documented
at the time of writing. Thus, this paper documents the basic procedure in order
to make a multi-agent system (MAS) available through Docker containers on
an arbitrary machine. Furthermore, the deployment of containerized agents on
a remote server is explained, with a focus on the accessibility of the graphical
interface by local machines.

2 D. Maecker et al.

2 Pre-Requirements

2.1 Implementation of a JADE-based Multi-Agent System

A JADE-based multi-agent platform typically consists of one main container and
additional agent containers, each including an arbitrary number of agents. Agent
containers can register at the main container, which acts as an administration
instance of the multi-agent platform. In the implementation process, a universal
Container class was set up. By passing arguments (MainContainer or Agent) to
the execution call of this class, it can be determined whether the instance acts as
a JADE main container or an agent container. For a main container, the IP ad-
dress of the hosting machine is required as an argument, while an agent container
necessitates the agent’s name and an existing main container’s IP address. In
the latter case, the Container class then initializes a predefined agent instance
within the agent container. As the implementation of the MAS in Java depends
on auxiliary libraries (e.g., the JADE framework) it is crucial to ensure depen-
dency resolution with the aim of a portable software. This can be achieved by
packing the compiled Java classes in a Java archive (i.e., a .jar file). A META-INF
folder with the meta-information file MANIFEST.MF must be generated, as de-
picted in Figure 2a. This file specifies the project’s main class, Container. The
packing process of the Java archive file can be undertaken in various ways, de-
pending on the development environment that is being used. After the creation,
the .jar file can be executed for testing purposes in the console by the follow-
ing command (assuming a locally installed Java environment) considering the
local IP of the host machine: java -jar SmartTransport.jar MainContainer
192.168.0.125. Conversely, the command java -jar SmartTransport.jar
Agent agent1 192.168.0.125 ensures that the instance of the Container class
acts as an agent container, instantiating an agent with name agent1 and con-
necting to the main container with the corresponding IP address given in the
argument.

2.2 Setting up an X Server

As the common interface of a Docker container is console-based, this section
addresses the necessary steps for accessing the graphical interface of Docker
containers on the host machine. This can be achieved by setting up an X server on
the host machine, which manages the graphical output of the Docker container.
Depending on the operating system, several solutions are possible, such as X.Org
for Linux, VcXsrv1 for Windows, or XQuartz2, based on X.Org components, for
MacOS. In either case, after the X server is started, the Docker container merely
needs the local IP address of the host machine as an environment variable in
order to forward the graphical interface to the X server. This is explained in
further detail in the next chapter. Moreover, it is important to allow access to

1 Available at: https://sourceforge.net/projects/vcxsrv/
2 Available at: https://www.xquartz.org/index.html

Remote Deployment of a JADE Agent in Docker 3

the X server on the host machine. In the case of VcXsrv, this can be accomplished
in the program’s settings. Considering the X.Org server on Linux, it is sufficient
to enter the following command in the console: xhost +. It is important to note,
that this procedure opens the X server for all participants in the network. In
high security environments, this approach is not recommended.

3 Agents on a Remote Server

The containerization of the agent system is split into two parts. First, a base
image is set up in a Dockerfile. In a separate docker-compose.yml file, the
establishment of the Docker-related network setup takes place. Also, two con-
tainers will be specified, one which runs a JADE main container and one running
a JADE agent container. As the host of the Docker containers (i.e., the headless
remote server) has no support for graphical output by itself, it has to be ensured
that the graphical user interface can be accessed from an end device through a
Secure Shell (SSH) connection to the server.

3.1 Accessing the User Interface of Remotely Deployed Agents

First, the remote server is accessed by an SSH connection. It is possible to
run graphical applications on the remote server and have the graphical output
displayed on the local machine utilizing the X server running on the local system.
This can be achieved by passing an -X argument to the call of the SSH connection
as follows: ssh -X user@remote-server. Alternatively, when using SSH-clients
such as PuTTY, it is possible to configure the forwarding task to the X server in
the application settings [7]. However, passing the graphical output of an agent
application inside a Docker container through the remote server to the end device
requires a more elaborate solution. The most promising approach for forwarding
the user interface of the containers to the end device will be further described and
can be summarized by the installation of a Virtual Network Computing (VNC)
server in the Docker container. When connecting to the remote server via SSH
it is possible to connect to the Docker container using a VNC client installed
on the server. The graphical output of the VNC client is then tunneled via the
SSH connection and displayed on the local end device. This concept is depicted
in Figure 1. The substantial advantage of this approach is that the application
continues its operation even under interruptions of either the SSH or the VNC
connection. Additionally, as the graphical output is tunneled through the SSH
connection to the end device, there is no need for additional ports being accessed
on the remote server, hence contributing to the data security of the system.

3.2 Setting up the Docker Container

The Dockerfile for the Docker image used in this part is shown in Figure
2b. The base image used for this system is an openjdk:18-jdk-slim image
(line 1) that is a minimal, Debian-based environment containing a pre-installed

4 D. Maecker et al.

Fig. 1: Data flow of the graphical information (solid lines) as well as data ex-
change in between the agent applications (dashed line).

Java distribution. Subsequently, in line 2 the .jar Java archive for the Java
agent application is copied to the home directory of the Docker image. As stated
before, the .jar file can be started with different arguments, thus launching
either a JADE main container or a JADE agent container. Hence, the Docker
image which is created here can be used for both types of JADE containers.

In line 3, the installation of basic packages related to the connection to
the X server along with a VNC server (x11vnc) and a minimal desktop en-
vironment (openbox, tint2, xterm, lxterminal) takes place. Lines 4-6 set
up the desktop environment. This process is inspired by the descriptions in
a publicly available repository [6]. The last command in line 7 refers to the
docker-entrypoint.sh script that is executed when the container is launched.
The content of this docker-entrypoint.sh file is shown in Figure 2c and is
responsible for the initialization of the desktop environment and the window
manager. Finally, the Docker image can be built using the following command:
docker build -t dfki/agents. By using the argument -t, a tag name for the
Docker image, here dfki/agents, can be set, which is then further used as a
base image in the docker-compose.yml file in Figure 2d.

3.3 Integration in a docker-compose File

The docker-compose.yml file describes the setup of a main container and an
additional agent container, both based on the JADE framework. In lines 2-9
of the file, a network gateway is defined. Thus, it is possible for each Docker
container to possess its own IP address within this separate network. This ensures
portability of the Docker system, as the IP addresses do not have to be adapted to
the address of the respective host machine. Beginning in line 11, the configuration
of the Docker container running the JADE main container is specified. Lines 12
states the base image as the one described by the Dockerfile in Figure 2b. In
line 15, the IP address of this container is set. Following, lines 16-19 define
the ports of the Docker container which are mapped to the ports of the host

Remote Deployment of a JADE Agent in Docker 5

1: Manifest-Version: 1.0
2: Main-Class: smartTransport.Container

(a) Content of the MANIFEST.MF file.

1: FROM openjdk:18-jdk-slim
2: COPY ./out/artifacts/SmartTransport/

/home/
3: RUN apt-get update && apt-get -y install

iproute2 x11-apps libxi6 libxtst6
libxrender1 lib32z1 xvfb openbox tint2
x11vnc xterm lxterminal

4: ADD config /opt/config
5: RUN chmod +x

/opt/config/docker-entrypoint.sh
/opt/config/openbox/autostart

6: RUN rm -rf /etc/xdg/openbox && cp -R
/opt/config/openbox /etc/xdg/openbox &&
(rm -rf /etc/xdg/tint2 || true) && cp -R
/opt/config/tint2 /etc/xdg/tint2

7: CMD "/opt/config/docker-entrypoint.sh"

(b) Dockerfile for containerization of
the multi-agent system intended to be de-
ployed on a remote server.

1: #!/bin/bash -xe
2: xvfb-run -s "$DISPLAY" -s ’-screen 0

1024x700x24 -ac’ openbox-session

(c) docker-entrypoint.sh file.

1: version: "2.4"
2: networks:
3: agent_network:
4: driver: bridge
5: ipam:
6: driver: default
7: config:
8: - subnet: 192.168.56.0/24
9: gateway: 192.168.56.1

10: services:
11: container:
12: image: dfki/agents
13: networks:
14: agent_network:
15: ipv4_address: 192.168.56.10
16: ports:
17: - 1099:1099
18: - 7778:7778
19: - 5900:5900
20: working_dir: /home
21: environment:
22: DISPLAY: :99
23: agent1:
24: image: dfki/agents
25: networks:
26: agent_network:
27: ipv4_address: 192.168.56.11
28: ports:
29: - 1100:1099
30: - 7779:7778
31: - 5901:5900
32: working_dir: /home
33: environment:
34: DISPLAY: :99

(d) docker-compose.yml-file used for
launching one JADE main-container and
one JADE agent container in dedicated
Docker containers.

Fig. 2: Contents of relevant files used in this work.

machine. Additionally to the ports relevant for the JADE communication (7778
and 1099), port 5900 is opened to allow a VNC connection by the remote server,
i.e., the host of the Docker container. The display environment variable in line 22
is set to :99, ensuring that the graphical output is sent to the VNC server. The
part after line 23 represents the setup of a second Docker container, dedicated to
a JADE agent container. The configuration procedure is analogous to that of the
first container. Additionally, the setting of the IP address in line 27 and the port
mapping in lines 28-31 differ. The ports need to be altered for this container
as the initial ports on the host machine are already used by the first container.
If more containers for other agents are intended to be launched than there are
specified here, the respective ports have to be altered accordingly (e.g., 1101,
7780, 5902). The file can be built using the following command on the remote
host: docker-compose up. After this, the two docker containers are running on
the remote host.

6 D. Maecker et al.

3.4 Launching the JADE Agent System

The last section described how to start the two Docker containers containing
the SmartTransport.jar that can launch either a JADE main container or an
agent container. At the time of writing this paper, no solution has been found
yet to run the agent application automatically when the Docker containers are
starting. Rather, it is necessary to connect to the running Docker containers
via a VNC client and to manually start the agent application. After setting up
the SSH connection and enabling graphical forwarding to the local X server,
the VNC client (e.g., vncviewer) can be launched on the remote host, display-
ing the VNC software user interface on the end device (see data flow in Figure
1). In the user interface of the VNC client, the IP and the port of the respec-
tive Docker container can be entered, in this case either 192.168.56.10:5900
or 192.158.55.11:5901. In the following, the Docker container with the IP
192.168.56.10 is used to launch a JADE main container, while the other Docker
container with the IP 192.158.55.11 is dedicated to the JADE agent container.
A successful connection will exhibit the respective Docker container’s desktop
environment within the VNC client’s interface. In the environment of the Docker
container, it is possible to launch a terminal instance (here lxterminal, see in-
stallation setup in Figure 2b). A JADE main container can be started by enter-
ing the following command: java -jar SmartTransport.jar MainContainer
192.168.56.10. When the main container is started, the graphical user interface
of the JADE framework can be accessed in the interface of the VNC client. Sub-
sequently, a VNC connection to the second Docker container can be established
from the remote server. In a terminal instance, a predefined agent named agent1
can be started in a JADE agent container by following command: java -jar
SmartTransport.jar Agent agent1 192.168.56.10. As described before, by
passing the IP address of the JADE main container as an argument to the call of
the JADE agent container, it is possible that the JADE agent container connects
to the JADE main container. Hence, an arbitrary number of agents can connect
to the JADE main container to form a MAS. The agent applications stay active,
regardless of whether the VNC connection to the Docker containers or the SSH
connection to the remote server is active.

4 Conclusion and Further Work

In this paper, we have presented an introduction to how to combine the well-
known JADE middleware for MAS with Docker focusing on the deployment
on a remote server. To the best of the authors’ knowledge, a comprehensive
introduction to this topic, as presented here, has not yet been published. Future
developments in this regard can be identified for instance by configuring the
JADE message protocol (MTP) to utilize HTTP [2]. Hence, JADE platforms
distributed over several networks can be connected by using JADE’s feature of
remote platform connectivity or by implementing REST interfaces.

Remote Deployment of a JADE Agent in Docker 7

References

1. Anderson, C.: Docker [software engineering]. IEEE Software 32(3), 102–c3 (2015)
2. Bellifemine, F., Caire, G., Trucco, T., Rimassa, G., Mungenast, R.: Jade adminis-

trator’s guide. TILab (2003)
3. Bellifemine, F., Poggi, A., Rimassa, G.: JADE - A FIPA-compliant agent framework,

pp. 97–108. The Practical Application Company Ltd. (1999)
4. Greenwood, D., Bellifemine, F.L., Caire, G.: Developing Multi-Agent Systems with

JADE. WILEY (2007)
5. Heinbach, C., Gösling, H., Meier, P., Thomas, O.: Smart managed freight

fleet: Ein automatisiertes und vernetztes flottenmanagement in einem föderierten
datenökosystem. HMD Praxis der Wirtschaftsinformatik (2022)

6. murer: Virtual x and vnc server docker image with openbox. https://github.com/
murer/docker-xvfb-x11vnc-openbox (2020)

7. Tatham, S.: PuTTY User Manual (2022), https://upload.wikimedia.org/
wikipedia/commons/b/b7/PuTTY_User_Manual.pdf

8. Ughetti, M., Trucco, T., Gotta, D.: Development of agent-based, peer-to-peer mobile
applications on ANDROID with JADE. In: The Second International Conference on
Mobile Ubiquitous Computing, Systems, Services and Technologies. IEEE (2008)

