
Dynamics of Causal Dependencies in
Multi-agent Settings

Maksim Gladyshev, Natasha Alechina, Mehdi Dastani, and Dragan Doder

Utrecht University, Utrecht, Netherlands
{m.gladyshev, n.a.alechina, m.m.dastani, d.doder}@uu.nl

Abstract. In this paper we discuss how causal models can be used
for modeling multi-agent interaction in complex organizational settings,
where agents’ decisions may depend on other agents’ decisions as well as
the environment. We demonstrate how to reason about the dynamics of
such models using concurrent game structures where agents can change
the organisational setting and thereby their decision dependencies. In
such concurrent game structure, agents can choose to modify their reac-
tions on other agents’ decisions and on the environment by intervening
on their part of a causal model. We propose a generalized notion of inter-
ventions in causal models that allow us to model and reason about the
dynamics of agents’ dependencies in a multi-agent system. Finally, we
discuss how to model uncertainty and reason about agents’ responsibility
concerning their dependencies and thereby their choices.

Keywords: Causal models · Interventions · Multi-agent systems.

1 Introduction

The complex interactions between agents in multi-agent systems can be de-
scribed in terms of organizational structures that determine the dependencies
between agents’ decisions [1, 9, 15, 6]. Such dependencies can be described in a
causal manner, allowing us to reason about the cause of agents’ decisions and
explain what causes a given agent’s decision in terms of the organizational struc-
ture and the decisions of other agents on which it depends. For example, in an
organisational setting such as banking system, the decision of a loan officer to
accept or reject a mortgage application may depend on the decision of her man-
ager. It is also clear that in multi-agent systems the agents interact not only with
each other, but also with their shared environment, which is also governed by
causal relations. In our simple example, accepting a mortgage application may
cause a new contract to be added to the administration database, which in turn
may cause a notification to be sent to the mortgage applicant. In general, agents’
decisions may have a causal effect on each others decisions’ and their shared en-
vironment, which in turn may have causal affect on the agents’ decisions. In
order to study such causal interactions between agents and/or the environment,
we use causal models developed in the theory of actual causality[13].

2 M. Gladyshev et al.

There exist two different types of causality. The first one is so-called type
causality, and is critical in machine learning and for prediction purposes. This
kind of causality concerns general statements such as ‘smoking causes lung can-
cer’, and can be used to predict, e.g., the probability that someone who smokes
gets lung cancer. The second kind of inference, is termed actual causality, and is
essential in tracing and explaining the cause of a specific outcome, which in turn
is essential for assigning responsibility for the outcome to a specific component
or decision of an AI system. The theory of actual causality was developed in [21,
12, 14, 11, 13].

We assume that the decision-making mechanism of each agent is specified
as a part of a causal model, more specifically, as a function that determines the
agent’s decision based on the current context, the decisions of the agents that she
depends on, and the state of the environment. Simply speaking, given an actual
context (e.g., a mortgage application is submitted), the decisions of all agents
can be determined through the causal model (e.g., the decision of a loan officer is
determined by the submitted mortgage application, its decision-making function
that specifies an accept/reject decision based on the decisions of her managers,
and perhaps the previous mortgage applications of the same applicant stored
in the administration database). In this paper, we investigate how agents can
change the causal dependency of their decisions, and thereby the structure of
their organization. This allows us to reason about causal structures of organisa-
tions and their dynamics. So, the proposed causal modelling approach allows us
to reason about causal dependencies between agents and possible interventions
of agents to modify their dependencies.

From a technical perspective, we employ MAS models to represent and rea-
son about different causal settings. In such causal settings, the agents’ behaviour
(decisions) is determined by the structure of a causal model and an assignment of
exogenous variables called context. At the same time, each agent has a choice to
modify her part of the model, which results in an updated causal model. In a new
causal setting for updated model and fixed context, the decisions of agents may
be different, as well as the state of the environment. We consider the set of all
causal settings to be a set of states in a Concurrent Game Structure (CGS). The
updates (called interventions) generate the set of possible actions (choices) for
the agents. Then the transitions between states of such CGS can be interpreted
as strategic abilities of the agents to enforce the corresponding dependency over
their decisions and the environment. In this sense, our approach goes along with
other works on Concurrent Game Structures semantics for different logics. In
particular, CGS semantics for logics of “sees to it that” (STIT) was proposed
in [3]. Our work is also close to [16], where the framework for reasoning about
agents’ knowledge about actual causes is proposed. The main difference with
our approach is that [16] uses different formalization, namely situation calculus
(SC), while we stick to original Structural Equations Models (SEM) approach
and straightforwardly unfold such SEM into CGS. Our approach allows us to em-
ploy well-known MAS machinery for reasoning about transformations of causal
models interpreted as the choices of multi-agent organizational structures.

Dynamics of Causal Dependencies in Multi-agent Settings 3

The remainder of this paper is structured as follows. In Section 2 we introduce
formal definitions related to causal models. In Section 3 we discuss Concurrent
Game Structures and demonstrate how to represent possible interventions in
a causal model in terms of CGS models. In Section 4 we propose the gener-
alized notion of interventions for causal models that allow us to reason about
more complicated behavior of the agents. Finally, in Section 5 we discuss how
to model uncertainty in our settings, then we define the notion of strategic re-
sponsibility and demonstrate that the proposed generalized interventions can be
more suitable for reasoning about agents’ responsibility. For simplicity, in this
definition we consider only one-step interactions and leave ATL-style machinery
for future work.

2 Preliminaries: Causal Models

We start with the general definition of a causal model as used in [21, 14, 13].

Definition 1 (Causal Model). A signature is a tuple S = (U ,V,R), where U
is a finite set of exogenous variables, V is a finite set of endogenous variables,
and R associates with every variable Y ∈ U ∪ V a finite nonempty set R(Y) of
possible values for Y , also called range of Y . A causal model over a signature
S is a tuple M = (S,F), where F associates with every endogenous variable
X ∈ V a function FX such that FX maps ×Z∈(U∪V−{X})R(Z) to R(X). That is,
FX describes how the value of the endogenous variable X is determined by the
values of all other variables in U ∪ V. The values of exogenous variables U are
determined outside of the model and usually referred to as a context u⃗.

To illustrate this definition, consider Example 1, originating in [17] and ex-
tensively analysed in the theory of actual causality [13].

Example 1 (Rock-throwing). Suzy and Billy both pick up rocks and throw them
at a bottle (encoded as ST=1 and BT=1 respectively). Suzy’s rock gets there
first, shattering the bottle. We denote the fact that Suzy’s rock hits the bottle
as SH=1. Similarly, BH=0 denotes the fact that Billy’s rock does not hit the
bottle. Finally, BS=1 means ’the bottle shatters’. We also know that because
both throws are perfectly accurate, Billy’s would have shattered the bottle had
it not been preempted by Suzy’s throw. 1

1 Although we use this example due to its simplicity and its extensive analysis in the
literature, we can also use new interpretation of this example to illustrate the de-
pendencies of agents’ decisions in multi-agent organisations. Let Suzy and Billy be
two loan officers working in a bank, who decide to accept or reject a mortgage ap-
plication. Then ST = 1 (and BT = 1) can indicate that Suzy (and Billy respectively)
rejects an application. Then SH = 1 (and BH = 1) mean that Suzy’s (and Billy’s)
rejection is registered in the administration database. We also assume that Suzy has
a priority, so Billy’s rejection is registered (BH = 1) only if Suzy’s is not (SH = 0).
Then, the mortgage is rejected (BS = 1) if SH = 1 or BH = 1.

4 M. Gladyshev et al.

So, our endogenous variables V are {ST,BT,SH,BH,BS}. Our exogenous
variables U = {UST , UBT } determine the values of ST and BT variables respec-
tively. For all Y ∈ (U ∪ V), R(Y) = {0,1}. F in this example can be defined as
follows. Let z⃗ be an assignment of all variables (U ∪ V)/{X} for corresponding
FX .

FSH(z⃗) =
⎧⎪⎪⎨⎪⎪⎩

1 if (ST = 1) ∈ z⃗,
0 if (ST = 0) ∈ z⃗;

FBH(z⃗) =
⎧⎪⎪⎨⎪⎪⎩

1 if (ST = 0,BT = 1) ∈ z⃗,
0 otherwise;

FBS(z⃗) =
⎧⎪⎪⎨⎪⎪⎩

1 if (SH = 1) ∈ z⃗ or (BH = 1) ∈ z⃗,
0 otherwise;

Intuitively, FX describes some structural equation that specifies how the
value of the endogenous variable X is determined by (and depends on) the values
of all other variables in (U ∪V)−{X}. For example, in a causal model with three
variables X,Y and Z, the function FX(Y,Z) = Y + Z defines the structural
equation X = Y +Z, while FY (X,Z) = Z defines the structural equation Y = Z,
etc. The later equation demonstrates that Y does not depend onX. For example,
given three variables X, Y and Z, the structural equation for X can be defined as
X=Y+Z, X=max(Y, Z), X=Y, or any other complex functional specifications.
The later equation demonstrates that X does not depend on Z. Additionally,
these equations can be written with an ’iff’ notation, for example X = 1 iff
min(Y, Z) = 0, and X = 0 iff min(Y, Z) ≠ 0. For the case of binary variables it is
often more convenient to define structural equations using boolean connectives,
e.g. X = ¬(Y ∨X). So, by structural equation for any endogenous variable X we
understand the way of specifying how the value of X is determined by the values
of other variables2.

Causal models can be represented as a dependency graph. The nodes of
such graph represent variables U ∪V (we usually omit exogenous variables from
the figures), and edges represent the dependencies between the variables. The
dependency graph for Example 1 is presented in Figure 1.

BS

SH

BH

ST

BT

Fig. 1. A dependency graph for the Rock-throwing example.

Now, we need to discuss some restrictions on F and highlight the difference
between recursive and non-recursive models. Following [13], we say that variable
Y is independent of X in (M, u⃗) if, for all settings z⃗ of the endogenous variables

2 The detailed overview can be found in [13].

Dynamics of Causal Dependencies in Multi-agent Settings 5

other than X and Y , and all values x and x′ of X, FY (x, z⃗, u⃗) = FY (x′, z⃗, u⃗). A
modelM is then considered as recursive if, for each context u⃗, there is a partial
order ⪯u⃗ of the endogenous variables such that unless X ⪯u⃗ Y , Y is independent
of X in (M, u⃗). It guarantees that no cycles can occur in the dependency graph
of such model, and then structural equations F have a unique solution for any
u⃗ [13]. Let Sol(u⃗) denote a set of all (X = x), where X ∈ V, x ∈R(X), such that
X has a value x in the unique solution of equations inM for a context u⃗.

Causal models allow us to reason not only about an actual context, but also
about counterfactual scenarios. These counterfactual scenarios can be described
by interventions of the form [Y⃗ ← y⃗](Z = z), where Y⃗ ← y⃗ abbreviates (Y1 ←
y1, . . . , Yk ← Yk) for Y1, . . . , Yk ∈ V. We read these formulas as ”if Y⃗ were set to
y⃗, then Z would have a value z”. The intervention Y⃗ ← y⃗ in a modelM results

in an updated modelMY⃗←y⃗ = (S,F Y⃗←y⃗).
Definition 2 (Updated Model). Given a model M = (S,F) and inter-

vention Y⃗ ← y⃗, an updated model MY⃗←y⃗ = (S,F Y⃗←y⃗) is such that for all
(Y = y) ∈ Y⃗ ← y⃗ and for any assignment Z⃗ = z⃗ of all variables other than

Y,F Y⃗←y⃗
Y (z⃗) = y. So, F Y⃗←y⃗

Y is a constant function returning y for any input and

all F Y⃗←y⃗
X for X ∉ Y⃗ remain unchanged.

Next we can define the basic causal language L(C)3[13].
Definition 3 (L(C) Syntax). Given a signature S = (U ,V,R), a primitive
event is a formula of the form X = x, for X ∈ V and x ∈R(X). A causal formula
(over S) is one of the form [Y1 ← y1, . . . , Yk ← yk]φ, where φ is a Boolean
combination of primitive events, {Y1, . . . , Yk} ⊆ V, yi ∈R(Yi).

Language L(C(S)) for S = (U ,V,R) consists of all Boolean combinations of
causal formulas, where the variables in the formulas are taken from V and the
sets of possible values of these variables are determined by R.

Causal formulas from L(C) can be evaluated on a causal settings (M, u⃗) as
follows:

Definition 4 (Semantics). Given a causal settings (M, u⃗), and L(C) formula
φ we define ⊧HP relation inductively as follows:
(M, u⃗) ⊧HP (X = x) iff (X = x) ∈ Sol(u⃗),
(M, u⃗) ⊧HP ¬φ iff (M, u⃗) ⊭HP φ,
(M, u⃗) ⊧HP (φ ∧ ψ) iff (M, u⃗) ⊧HP φ and (M, u⃗) ⊧HP ψ,

(M, u⃗) ⊧HP [Y⃗ ← y⃗]φ iff (MY⃗←y⃗, u⃗) ⊧HP φ.

As you can see, the nesting of [Y⃗ ← y⃗] operators is not allowed in L(C). But
if we interpret it as an update operator as Definition 2 suggests, then we can

define the result of multiple updates [X⃗ ← x⃗][Y⃗ ← y⃗] as a model (MX⃗←x⃗)Y⃗←y⃗

updated twice. So, we could reason about the series of model transformations by
consecutive interventions [X⃗ ← x⃗] . . . [Y⃗ ← y⃗] (of some agents) on the variables

V ′ ⊆ V. For example (M, u⃗) ⊧HP [X⃗ ← x⃗][Y⃗ ← y⃗]φ iff (MX⃗←x⃗, u⃗) ⊧HP [Y⃗ ←
y⃗]φ iff (MX⃗←x⃗)Y⃗←y⃗, u⃗) ⊧HP φ.

3 Please note that for notational convenience we use L(C) instead of L(C(S)).

6 M. Gladyshev et al.

3 Concurrent Game Structures

We use Concurrent Game Structures semantics for reasoning about causal mod-
els’ transformations, through which agents’ decision-making dependencies (and
thereby organisational structure) may change, and strategic abilities of the agents
controlling such transformations. In order to do this, we need to distinguish
agents from environment in causal models. As we have seen in Example 1, in
causal models variables V can represent both facts about the agents and the
environment. So, in our example, ST and BT can be seen as agents’ variables
for Suzy and Billy respectively, while SH,BH and BS express some facts about
the environment. In these models decisions of agents (understood as the values
of agents’ variables Va) determine the values of (some) environmental variables
(Ve). But the decisions of these agents can also depend on environmental vari-
ables and the decisions of other agents. So, it would be interesting to study what
agents can enforce by the right choice of the interventions on their variables. At
the same time we do not want to consider how environmental variables could be
modified, since we treat the causal dependencies of environmental variables as
fixed.

In order to study these series of causal models’ transformations, first of all we
want to generate a Concurrent Game Structure (CGS) for a given causal model.
Concurrent Game Structures are usually defined as follows.

Definition 5 (CGS, pointed). A concurrent game structure (CGS) is a tuple
Γ = (AG,Q,Π,π,Act, d, o), comprising a nonempty finite set of all agents AG =
{1, . . . , k}, a nonempty finite set of states Q, a nonempty finite set of atomic
propositions Π and their valuation π ∶ QÐ→ P(Π), and a nonempty finite set of
(atomic) actions Act. Function d ∶ AG×QÐ→ P(Act)/{∅} defines nonempty sets
of actions available to agents at each state, and o is a (deterministic) transition
function that assigns the outcome state q′ = o(q, (α1, . . . , αk)) to a state q and a
tuple of actions (α1, . . . , αk) with αi ∈ d(i, q) and 1 ≤ i ≤ k, that can be executed
by AG in q. A pointed CGS is given by (Γ, q), where Γ is a CGS and q is a state
in it.

Let q′ be a successor of q if there exists a complete action profile α, such that
q′ = o(q,α). Given a CGS Γ , a play λ in Γ is an infinite sequence λ = q0, q1, . . .
of states in Q such that, for all i ≥ 0, the state qi+1 is a successor of the state
qi. For a play λ and positions i, j ≥ 0, we use λ[i], λ[j, i] and λ[j,∞) to denote
the i’th state of λ, the finite segment qj , qj+1, . . . , qi, and the suffix qj , qj+1, . . .
of λ, respectively. A positional (memoryless) strategy for an agent a ∈ AG or
a-strategy, is a function stra ∶ QÐ→ d(a,Q). Positional strategy of a coalition G
is a tuple strG of positional strategies, one for each player in G.

We assume V = Va ∪ Ve, where Va is the set of agent variables and Ve is the
disjoint set of environment variables. Now we demonstrate how to generate a
CSG ΓM for a casual modelM. A causal modelM = (S,F), given a context u⃗,
is translated to a CGS ΓM = (AG,Q,Π,π,Act, d, o), as follows

Dynamics of Causal Dependencies in Multi-agent Settings 7

– AG = Va4;
– Q = {MX⃗←x⃗ ∣ X⃗ ⊆ Va & x⃗ ∈ ×R(X⃗)};
– Π = {Y = y ∣ Y ∈ V & y ∈R(Y)};
– π is defined as (Y = y) ∈ π(M′) iff (M′, u⃗) ⊧HP (Y = y) for anyM′ ∈ Q;
– Act = {X ← x ∣ X ∈ Va & x ∈ R(X)} ∪ {⊺X ∣ X ∈ Va}, where ⊺X denotes ’no

intervention on X’;
– d ∶ Va ×Q Ð→ R(Act) is defined as d(X,M′) ⊆ {X ← x ∣ x ∈ R(X)} for any
X ∈ Va andM′ ∈ Q;

– o ∶ Q × (ActX1 × ⋅ ⋅ ⋅ × ActXk
) Ð→ Q for ActXi = {Xi ← x ∣ x ∈ R(Xi)} and

{X1, . . . ,Xk} = Va is such that for anyM1,M2 ∈ Q,M2 ∈ o(M1,ActX⃗) iff
MActX⃗

1 =M2.

So, our states Q are all possible results of [X⃗ ← x⃗] updates ofM where X⃗ ⊆
Va. In other words anyM′ ∈ Q is a result of replacing some FX ’s with constant
functions.5 The set of atomic propositions Π consists of all pairs (Y = y). The
valuation function π agrees with ⊧HP relation. Every agent i in any state has a
set of available actions [Xi ← x] for x ∈ R(Xi) together with an ’empty’ action
⊺Xi meaning ’do nothing’. So, every agent i may choose to replace her FXi with
a constant function FXi = x for any x ∈R(Xi) or not to change FXi . The choice
(ActX1 × ⋅ ⋅ ⋅ × ActXk

) of all agents in any state q ∈ Q determines its (unique)
successor state q′ according to o. It guarantees that M2 is a successor of M1

by a complete action profile (X⃗AG ← x⃗) in the proposed semantics if and only if

M2 is the result ofMX⃗AG←x⃗
1 update.

Consider how to obtain a CGS for the causal model from Example 1. Our
agents Suzy (s) and Billy (b) control variables ST and BT respectively. So,
Va = {ST,BT}. Each agent has 3 options: to replace his/her function Fi with
a constant function returning 1, to replace his/her function Fi with a constant
function returning 0 or not to modify Fi. So, initial state has 9 possible tran-
sitions. For example if both agent decide not to change their functions, then
o(M, (⊺ST ,⊺BT)) =M, i.e. the agents will stay in the initial state. For other 8
action profiles there is a special state reachable fromM in our CGS. This CGS
is illustrated in Figure 2.

Here each state is reachable from the initial one, but interestingly, not any
state is reachable from the second one. Other simple properties of this CGS are

– MBT←0 is not reachable fromMST←0 in Figure 2. Because inMST←0 func-
tion FBT is not modified: it returns 0 if UBT=0 and 1 otherwise. While in
MBT←0, FBT←0

BT is a constant function, which cannot be restored to its initial
configuration FBT by any available action for agent b inMBT←0.

4 Here we assume for simplicity that each agent in AG controls only one variable in Va,
so ∣AG∣ = ∣Va∣. But without loss of generality one can assume that Va is partitioned
into disjoint subsets cotrolled by agents in AG. In this case ∣AG∣ ≤ ∣Va∣.

5 We note that such an intervention (updates) make the agents in X⃗ independent of
other agents as their decision-making functional specifications are now reduced to a
constant function. Later in Section 4 we will introduce more general interventions
(updates) that can create arbitrary dependencies between agents.

8 M. Gladyshev et al.

M
M

ST←0,BT←0

M
ST←0

M
BT←0

M
ST←0,BT←1

M
ST←1,BT←0

M
ST←1,BT←1

M
BT←1

M
ST←1

Fig. 2. CGS for the Rock-throwing example. Note that reflexive transitions are omitted
from the picture and every transition must be marked with a single or multiple action
profiles, which does not fit in the picture.

– There is no requirement that any action profile leads to a different state.
Thus, both action profiles (BT ← 0,⊺ST) and (⊺BT ,⊺ST) inMBT←0 results
in a reflexive transition to the same state. But, for example, (BT ← 1,⊺ST)
will result in the transition to MBT←1 and (⊺BT , ST ← 0) results in the
transition toMBT←0,ST←0.

– Different states of such CGS may agree on the valuation on all variables.
For example, given a context u⃗, (M, u⃗) and (MST←1,BT←1, u⃗) agree on all
(Y = y). But we still treat them as separate states, since these models have
different F ’s.

Now we can extend L(C) and allow the nesting of [Y⃗ ← y⃗] operators.

Definition 6 (L(Ce) syntax).

φ ∶∶= (X = x) ∣ ¬φ ∣ φ ∧ φ ∣ [Y⃗ ← y⃗]φ,

where X ranges over V, Y⃗ over 2V , x over R(X) and each y in y⃗ over R(Y).
We use standard abbreviations for ⊺,�,∨ and →.

So, now we assume that agents may perform series of updates [X⃗ ← x⃗], . . . , [Y⃗ ←
y⃗] in the extended language L(Ce(S)). L(Ce(S)) formulas can be evaluated by
⊧HP satisfiability relation defined in the same way as in Definition 4.

Proposition 1. Any [X⃗ ← x⃗] . . . [Y⃗ ← y⃗]φ ∈ L(Ce(S)) is equivalent to some
[X⃗ ′ ← x⃗′, . . . , Y⃗ ′ ← y⃗′]φ ∈ L(C(S)).

Proof. [X⃗ ← x⃗] . . . [Y⃗ ← y⃗] generates a model MX⃗←x⃗...Y⃗←y⃗

updated multiple

times. Our goal is to prove that there exists a model MW⃗←w⃗, such that W⃗ is
a set of variables that occur in X⃗, . . . , Y⃗ and w⃗ are the values that occur in

x⃗, . . . , y⃗, such thatMW⃗←w⃗ =MX⃗←x⃗...Y⃗←y⃗

.
So, let W⃗ be a set of all variables that occur in X⃗, . . . , Y⃗ . Let Z⃗ denote a

vector (X⃗ = x⃗, . . . , Y⃗ = y⃗). To determine that value of every Wi ∈ W⃗ we need to
find the right-most Wi = wi in Z⃗. So, there is k ≤ ∣Z⃗ ∣, such that Z⃗[k] = (Wi = wi)

Dynamics of Causal Dependencies in Multi-agent Settings 9

(here Z⃗[k] denotes the k’s element of Z⃗ of the form X = x) and for any n > k
and any w′ ∈ R(Wi) it holds that Z⃗[n] ≠ (Wi = w′). By doing this we enforce

that in our model MW⃗←w⃗ all functions FX ∈ W⃗ are set to constant functions

in the exactly same way as they are set in MX⃗←x⃗...Y⃗←y⃗

. It guarantees that
(M, u⃗) ⊧HP [X⃗ ← x⃗] . . . [Y⃗ ← y⃗]φ iff (M, u⃗) ⊧HP [W⃗ ← w⃗]φ.

But since it is also clear that every φ ∈ L(C) is a L(Ce) formula, L(C) and
L(Ce) are equally expressive. The same result can be seen on CGS’s also. For
any CGS ΓM obtaned fromM, it holds that if some state q′ ∈ ΓM is reachable
from initial state q0, then it is reachable in 1 step.

4 Arbitrary Updates

In this section we demonstrate how the proposed framework can be generalized
to allow creating arbitrary dependencies between agents. This is done by allowing
interventions that change the functional specifications FX to an arbitrary F ′X
for any agent X. It is clear that interventions [X⃗ ← x⃗] are not the only possible
operations modifying F . In other words, there are more ways to update F instead
of replacing some FX ’s with a constant functions. For example, we can allow
agents to modify the value of FX(z⃗) on a specific input z⃗. We denote it as
X(z⃗) ← x, where X ∈ V, x ∈ R(X) and z⃗ is the assignment of all variables in V
except X.

To illustrate it, assume that in the Rock-throwing example we allow Suzy to
make an additional action (act∗): to update FST in such a way that Fact∗

ST (z⃗) = 1
on all inputs z⃗ containing (UST = 1). Now we can generate a new CGS Γ ′ which
contains more possible transitions. The updated CGS is preseinted in Figure 3.

M
M

ST←0,BT←0

M
ST←0

M
BT←0

M
ST←0,BT←1

M
ST←1,BT←0

M
ST←1,BT←1

M
BT←1

M
ST←1

Fig. 3. Extended CGS Γ ′ for the Rock-throwing example. Dashed blue arrows indicate
new transitions.

We see that after intervention ST ← 0 Suzy can always ’return’ FST to the
initial behavior by act∗. So, the blue transitions are the new options. Now, from
MST←0 Billy and Suzy can return to M if their action profile is (act∗,⊺BT).
Note also that no new states were generated in the extended example. Because

10 M. Gladyshev et al.

additional action act∗1 for Suzy cannot produce new configuration of FST which is
different from FST ,FST←1

ST or FST←0
ST . But assume that we add another possible

action act∗2 which can be expressed as ST (UST = 1)← 0, meaning that Fact∗2
ST (z⃗) =

0 if (UST = 1) ∈ z⃗. How should we generate a CGS Γ ′ now? In this case there
will be a possible Suzy’s strategy to make ST ← 1 intervention first and then
act∗2. Then, whatever Billy does, ST = 1 if UST = 0 and ST = 0 if UST = 1. But
such model cannot be reached by any strategy if only possible actions for Suzy
are interventions ST ← 1 and ST ← 0. To better illustrate the problem, consider
another example.

Example 2. Suppose that there are two agents a1 and a2 who can give an order
to the third agent a3. There are three alternative decisions a1 and a2 may choose:
order ’1’, order ’-1’ and not to give an order ’0’. The only environmental variable
P determines the priority of a1’s or a2’s order. Finally, a3 must choose one of
three possible actions: 1, -1 or 0 (to ’wait’).

More formally, our variables are Va = {a1, a2, a3},Ve = {P}. Their ranges are
R(a1) = R(a2) = R(a3) = {−1,0,1},R(P) = {1,2}. The values of a1, a2 and P
depend on the context u⃗, while a3 depends on all of them. The values for a3 are
determined as follows Fa3(z⃗) = 1 if ((P = 1) ∈ z⃗ and (a1 = 1) ∈ z⃗) or ((P = 2) ∈ z⃗
and (a2 = 1) ∈ z⃗), Fa3(z⃗) = 0 if ((P = 1) ∈ z⃗ and (a1 = 0) ∈ z⃗) or ((P = 2) and
(a2 = 0)), Fa3(z⃗) = −1 if ((P = 1) ∈ z⃗ and (a1 = −1) ∈ z⃗) or ((P = 2) ∈ z⃗ and
(a2 = −1) ∈ z⃗). So, agent a3 checks who has a priority and follows the order.

a1

a3

a2

P

Fig. 4. Dependency graph for Example 2.

Assume that in our context u⃗, a1’s order has a priority over a2’s according
to FP , so a3 follows the a1’s order. Decisions of a1 and a2 are determined by the
context, but each of them can enforce a desirable order by intervention on their
variables. So, each of the agents can modify her response to the environment by
updating Fai (in our case by making it a constant function). Agent a3 depends
on all other variables a1, a2 and P . But standard interventions [X ← x] does
not allow a3 to adjust its behavior while staying dependent on a1’s or a2’s
orders. For example, assume that a3 no longer trusts a1 and decides to ignore
him completely and always follow the a2’s order. This situation is clearly not
expressible by standard interventions. But if we extend possible actions of a3
with any combination of a3(z⃗) ← x, where x ∈ R(a3) and z⃗ is the assignment
of all variables expect a3, then we can encode much more complex behavior. In
particular, let trusta2 be an action encoded as

⋃
z⃗,s.t.(a2=1)∈z⃗

(a3(z⃗)← 1)∪ ⋃
z⃗′,s.t.(a2=0)∈z⃗′

(a3(z⃗′)← 0)∪ ⋃
z⃗′′,s.t.(a2=−1)∈z⃗′′

(a3(z⃗′′)← −1)

Dynamics of Causal Dependencies in Multi-agent Settings 11

This action allows a3 to modify Fa3 and obtain F trusta2
a3 . According to this

function, agent a3 always follows the order of a2 and ignores a1. We can also
imagine that order 1 is very risky for a3 and in case this agent receives this
order from the prioritized agent, he wants to check if second agent also gives
this order independently of P ’s value. This behavior can also be encoded with
basic general interventions of the form X(z⃗)← x. Let a3’s action doublecheck be
defined as follows

⋃
z⃗′,s.t.(P=1,a1=1,a2≠1)∈z⃗′

(a3(z⃗′)← 0) ∪ ⋃
z⃗′′,s.t.(P=2,a2=1,a1≠1)∈z⃗′′

(a3(z⃗′′)← 0)

In this settings, if a3 receives an order 1 from the prioritized agent, but
the order of second agent is not 1, then a3 decides to wait (a3 = 0) accord-
ing to Fdoublecheck

a3
. So, this action will result in one of the updated models

{M′
1, . . . ,M′

l}, depending on the actions of other agents. But we know that
for any such modelM′

i it holds that (M′
i, u⃗) ⊧ ((a1 ≠ 1) ∨ (a2 ≠ 1))→ (a3 ≠ 1).

We can formalize these generalized interventions as follows.

Definition 7 (Generally updated model). For any X ∈ Va, any assignment
z⃗ of all variables other than X and any x ∈ R(X), let X(z⃗) ← x be a general-

ized intervention that results in the update FX(z⃗)←x
X of function FX , such that

FX(z⃗)←x
X (z′) =

⎧⎪⎪⎨⎪⎪⎩

x if z⃗′ = z⃗,
FX(z⃗′) otherwise;

Let X⃗(z⃗) ← x⃗ denote X1(z⃗) ← x1, . . . ,Xk(z⃗′) ← xk, where same variable
from Va can occur multiple times in X1, . . . ,Xk. For any general intervention

X⃗(z⃗)← x⃗, an updated model is a pairMX⃗(z⃗)←x⃗ = (S,F X⃗(z⃗)←x⃗).

The intervention [X ← x] can be encoded as a set of generalized interventions:
X ← x ≡ ∪z⃗X(z⃗)← x. Since X ← x replaces the value of FX for each input z⃗.

Now we can extend our generalized syntax L(Cg) with a new operator:

Definition 8 (L(Cg) syntax).

φ ∶∶= (X = x) ∣ ¬φ ∣ φ ∧ φ ∣ [Y⃗ (z⃗)← y⃗]φ,

Note that since any variable Y may occur multiple times in [Y⃗ (z⃗) ← y⃗], every
agent i ∈ AG can modify Fi in an arbitrary way in L(Cg). The satisfiability

relation ⊧g is identical to Definition 4 in all items other than [Y⃗ (z⃗) ← y⃗]φ, for
which it is defined as
(M, u⃗) ⊧g [Y⃗ (z⃗)← y⃗]φ iff (MY⃗ (z⃗)←y⃗, u⃗) ⊧ φ.

Now we can generate a CGS for the extended set of operations on models.
Note that the set {X(z⃗) ← x ∣ X ∈ Va & z⃗ ∈ ×Z∈(U∪V)/{X}R(Z) & x ∈ R(X)}
will generate a larger set of actions Act∗ for Γ ∗. The set of states Q∗ in Γ ∗

will also contain more elements, because now we have more choices to construct

updated causal modelMX⃗(z⃗)←x⃗ for any X⃗(z⃗) ← x⃗. In fact, we need to be sure

that we will generate everyMX⃗(z⃗)←x⃗...Y⃗ (
⃗z′)←y⃗

. This is possible because there are

12 M. Gladyshev et al.

only finitely many such models: there only finitely many possible functions FX

mapping ×Z∈(U∪V−{X})R(Z) to R(X). So, we want the set of states Q∗ ∈ Γ ∗
to contain a model M′ for any possible updated functions F ′X1

, . . . ,F ′Xk
for

Va = {X1, . . . ,Xk}. But as we show in Proposition 2, the set of allMX⃗(z⃗)←x⃗’s is

equal to the set of all MX⃗(z⃗)←x⃗...Y⃗ (
⃗z′)←y⃗

’s. Next, Π∗, π∗ and d∗ are defined as

before. We say that o(M′, X⃗(z⃗) ← x⃗) =M′′ iffM′′ = (M′)X⃗(z⃗)←x⃗. Thus, given
a causal modelM = (S,F) and a context u⃗ we can generate a general CGS Γ ∗M
as follows

– AG = Va;
– Q∗ = {MX⃗(z⃗)←x⃗ ∣ X⃗ ⊆ Va & x⃗ ∈ ×R(X⃗) & z⃗ ∈ ×Y ∈U∪VR(Y)};
– Π∗ = {Y = y ∣ Y ∈ V & y ∈R(Y)};
– π∗ is defined as (Y = y) ∈ π(M′) iff (M′, u⃗) ⊧′ (Y = y) for anyM′ ∈ Q;
– Act∗ = {X(z⃗) ← x ∣ X ∈ Va & z⃗ ∈ ×Z∈(U∪V)/{X}R(Z) & x ∈ R(X)} ∪ {⊺X ∣
X ∈ Va}, where ⊺X denotes ’no intervention on X’;

– d∗(X,M′) ⊆ {X(z⃗) ← x ∣ x ∈ R(X), z⃗ ∈ ×Z∈(U∪V)/{X}R(Z)} for any X ∈ Va
andM′ ∈ Q;

– o∗(M′, X⃗(z⃗)← x⃗) =M′′ iffM′′ =M′X⃗(z⃗)←x⃗ for anyM′,M′′ ∈ Q∗;

This general CGS differs from our previous construction, because the set of
general interventions X(z⃗) ← x generates a different set of actions Act∗ and a
set of possible states Q∗ comparing to standard interventions X ← x. Now we
can establish the result similar to Proposition 1.

Proposition 2. For any L(Cg) formula of the form [X⃗(z⃗) ← x⃗] . . . [Y⃗ (z⃗′) ←
y⃗]φ there exists an equivalent formula of the form [X ′(z⃗i) ← x′, . . . , Y ′(z⃗j) ←
y′]φ.

Proof. Let Z⃗ be a vector (X⃗(z⃗) ← x⃗, . . . , Y⃗ (z⃗′) ← y⃗). So, each element of Z⃗ is a
basic intervention of the form Y (z⃗) ← y. We denote k’s element of Z⃗ as Z⃗[k].
Let W be a set of all pairs (Y, z⃗) for which Y (z⃗) ← y occurs in Z⃗. So, there is
k ≤ ∣Z⃗ ∣, such that Z⃗[k] = (Y (z⃗) ← y) and for any n > k and any y′ ≠ y it holds
that Z⃗[n] ≠ (Y (z⃗) ← y′). Let w⃗ be vector of such values for all elements of W⃗ .

Then, the resulting modelsM(X⃗(z⃗)←x⃗...Y⃗ (⃗z′)←y⃗

andMW⃗←w⃗ are equivalent. So, it

holds that (M(X⃗(z⃗)←x⃗...Y⃗ (⃗z′)←y⃗

, u⃗) ⊧g φ iff (MW⃗←w⃗, u⃗) ⊧g φ.

This proposition in particularly implies, that for any two states q, q′ ∈ Q∗, if
q′ is reachable from q by some series of updates [X⃗(z⃗) ← x⃗]...[Y⃗ (z⃗) ← y⃗], then
q′ is reachable from q′ in one step by some update [X ′(z⃗)← x, . . . , Y ′(z⃗)← y′].

There are of course different ways to introduce additional restrictions on
the set of available actions d∗. And there may be different motivation for these
restrictions. Firstly, it seems reasonable to require that if some variable X ∈ Va
is independent of some other variable Y ∈ V in the initial model, then it must
remain so for any updated model. Note that the contrary does not hold: if X
depends on Y it may become independent of it even after standard intervention

Dynamics of Causal Dependencies in Multi-agent Settings 13

X ← x since FX←x
X becomes a constant function. But this restriction does not

look universal: it is easy to imagine that in some situations agent may decide
to take into account some information he previously ignored. Secondly, it seems
important to allow agents to rewrite the changes in their Fi’s back. Formally,
assume that in some state q, the i’s function is defined as F1

i and i has a strategy
stri, such that for any λ ∈ plays(q, stri) it holds that in all states q′ = λ[1] i’s
function is defined as F2

i . Then, agent must have a strategy str∗i , such that for
any λ ∈ plays(q′, str∗i) it holds that the Fi in λ[1] is defined as F1

i . So, i can
return Fi to its initial configuration after any change. This restriction sounds
reasonable for multi-agent systems, yet it does not generally hold if the possible
actions for agents are standard interventions [X⃗AG ← x⃗] described in Section 3.
Finally, some actions (updates) can turn a recursive model into a non-recursive
one. So, the choice of adequate restrictions remains an important issue.

Even though we introduced L(Ce) and L(Cg) to reason about sequences of
updates performed by agents as their strategies, essentially we worked with one-
shot games, because everything was reachable in one step in the corresponding
CGS as shown in Propositions 1 and 2. But this may not be the case depending
on the additional restrictions on the set of available actions (interventions) d ∈ Γ .
But these restrictions go beyond the scope of this paper.

5 Uncertainty and Responsibility

Reasoning about strategic abilities often includes reasoning about agents’ un-
certainty [8]. For example, an agent may be unaware of other agents’ choices or
about some fact of the world.

Note that previously we generated a CGS for a fixed context u⃗. But now we
assume that the actual context may be unknown to the agent. So, we want to
model uncertainty over the pairs (M, u⃗), which is a standard assumption for
modelling uncertainty in causal models [5, 10]. Basically, we want to generate a
state for any possible pair (M∗, u⃗′). Formally, given a causal modelM we want
to generate a CGS Γ(M,u⃗) for every context u⃗. Then, let Γ be a disjoint union

of all Γ(M,u⃗). In other words, QΓ = {(MX⃗(z⃗)←x⃗, u⃗) ∣ X⃗ ⊆ Va & x⃗ ∈ ×R(X⃗) & z⃗ ∈
×Y ∈U∪VR(Y) & u⃗ ∈ ×U∈UR(U)}.

We say that an Epistemic CGS (ECGS) Γ = (AG,Q,{∼i}i∈AG,Π, π,Act, d, o)
is a CGS extended with an epistemic relations ∼i⊆ Q ×Q for each i ∈ AG, such
that all ∼i’s are equivalence relations. To obtain ECGS Γ ∗, we need to extend
Γ with these epistemic relations ∼i. We assume that they are already given.

To illustrate the role of knowledge and uncertainty, return to Example 2
again. We want to model a situation when a3 observes only his own actions and
does not know what actions other agents make. Assume also that a3 does not
know the context u⃗, i.e. the assignment of exogenous variables U which determine
the values of a1, a2, P . Figure 5 represents this epistemic state for a3.

Here a3 can choose three available actions: not to modify Fa3 (denoted as
⊺), to follow a2’s decision (trusta2) or to double-check order ’1’ (doublecheck).
If a3 decides not to modify Fa3 , then he knows that he is in one of the states

14 M. Gladyshev et al.

(M, u⃗1)

(M
1, u⃗1)

⋯

(M
i, u⃗1)

(M
j , u⃗1)

⋯ ⋯

(M
m, u⃗1)

(M, u⃗2)

(M
1, u⃗2)

⋯

(M
i, u⃗2)

(M
j , u⃗2)

⋯ ⋯

(M
m, u⃗2)

a
3
∶
⊺ a 3

∶
⊺

a 3
∶
tru

sta 2
a
3
∶ doublecheck

a
3
∶
⊺ a 3

∶
⊺

a 3
∶
tru

sta 2
a
3
∶ doublecheck

∼a3

∼a3

∼a3

Fig. 5. Epistemic scenario with a3’s uncertainty for Example 2. Note that only two
contexts u⃗1, u⃗2 are included in the picture, but in general case there can be any possible
context u⃗′. The labels on the transitions demonstrates a3’s action, while other agents’
decisions are omitted.

form (M, u⃗1), (M1, u⃗1), . . . (Mi, u⃗1) or (M, u⃗2), (M1, u⃗2), . . . (Mi, u⃗2). So, in
this epistemic state the agent does not know what the actual context is as well
as what the decisions of a1 and a2 are, i.e. how they react to the context u⃗. But
a3 still knows that (P = 1 ∧ a1 = 0) → (a3 = 0), (P = 2 ∧ a2 = 1) → (a3 = 1),
etc. In other words, even though a3 does not know what configuration of the
environment is (will be) and how other agents (will) react on it, he still knows
his own response to any possible situation (because the choice is up to him).

Syntactically, we can extend any of the previously mentioned languages with
knowledge operators Ki, where the formula Kiφ reads as ’agent i knows φ’. The
standard semantics of this operator is defined as

(Γ, q) ⊧Kiφ iff ∀q′ ∈ Q, q ∼i q′ ⇒ (Γ, q′) ⊧ φ
Being able to model agents’ strategic abilities and uncertainty, we can define

such notions as strategic responsibility (or blameworthiness) in the proposed
framework.

5.1 Expressing Strategic Responsibility

There are a number of approaches dealing with notions of responsibility and
blameworthiness proposed in a literature on causal models [5, 13, 10, 2] as well
as for CGS semantics [4, 19, 22]. The various definitions differ in details, but the
main idea is that the group of agents G is responsible for some outcome φ if G
could prevent φ independently of their epistemic state. For blameworthiness it
is usually required that G had a knowledge how to (and hence could) prevent φ.
Though this distinction is useful in many settings, in this section we discuss the
notion of strategic responsibility, which takes into account both strategic ability
and epistemic state.

Another important criteria for the definition of responsibility is a minimality
condition. We want to claim that the group G is responsible for φ only if G is the
minimal coalition that could prevent φ. Without this condition, responsibility

Dynamics of Causal Dependencies in Multi-agent Settings 15

would always be distributed to super-groups, so the grand coalition AG would
be responsible for φ whenever a sub-group G ⊂ AG is. Note that there can be
multiple minimal coalitions responsible for the same φ.

Finally, some approaches (e.g. [5, 13, 10, 2]) deal with a notion of a degree of
responsibility (or blameworthiness). In these settings, if the group G is respon-
sible (blameworthy) for some outcome φ, then this responsibility (blameworthi-
ness) can be shared and distributed over individual members of G. In this paper
we do not discuss the degree of responsibility and assume that the group respon-
sibility is not distributed to the individual members of the group. But, of course,
additional procedure for such distribution of responsibility can be defined as an
extension. So, in our framework it is the case that if a group G is responsible
for φ, then for all i ∈ G it holds that i is not responsible for φ. If it does not
hold and some i ∈ G is responsible for φ, then G does not satisfy the minimal-
ity condition, which contradicts our initial assumption. This property may look
counterintuitive, but it guarantees that agents are not considered responsible for
φ until they have no strategic power to prevent it (given their uncertainty).

Before we provide a formal definition, we need to introduce the notion of a
uniform strategy. Formally, a strategy stra for agent a ∈ AG is called uniform
if for any states q, q′ ∈ Q, such that q ∼a q′, it holds that stra(q) = stra(q′). A
coalition strategy strG is uniform if it is uniform for every a ∈ G. As we said
before any q ∈ Q is reachable from q0 in one step. So, it is sufficient to check the
strategic ability of agents in the initial state q0. Let φ be a Boolean combination
of basic formulas of the form Y = y for Y ∈ V, y ∈R(Y).

Definition 9 (Strategic Responsibility). A group G is strategically respon-
sible for φ in (Γ, q) if the following three conditions hold:
1. Γ, q ⊧ φ;
2. There is a uniform strategy strG for G, such that for all q′, s.t. q0 ∼G q′ and
for all λ ∈ plays(q′, strG) it holds that Γ,λ[1] ⊧ ¬φ;
3. No proper subset of G satisfies (2),

Using this definition we can better illustrate the role of general interventions
proposed in Section 4.

Example 3. Imagine a simple model with two agents i and j. Let j depend on
i’s decision, so Fj(z⃗) = x iff (i = x) ∈ z⃗. Variable O (outcome) depends on both
i and j as follows: O = 1 if i ≠ j and O = 0 otherwise. All variables are binary:
R(i) = R(j) = R(O) = {0,1}. Assume also that j is uncertain about the actual
context as well as about i’s actions.

Clearly, agent i cannot prevent O = 0 in this settings, so, i is not responsible
for O = 0. But for agent j the situation is more complicated. If the set of available
actions for j is defined by the interventions [X⃗ ← x⃗] from L(C) language, then
j has an option to guess i’s decision and make an intervention j ← x, where x =
Fi(u⃗). But until we assume that j is unaware of i’s decision and/or the context
u⃗, then Definition 9 does not identify j being responsible for O = 0. According
to our definition the group {i, j} is the minimal coalition that can prevent O = 0

16 M. Gladyshev et al.

i

j

O

Fig. 6. Dependency graph for Example 3.

given the uncertainty (by choosing either (i ← 1, j ← 0) or (i ← 0, j ← 1)). But
if we allow the generalized interventions [X⃗(z⃗)← x⃗] from L(Cg) to form the set
of available actions Act, then {i, j} is no longer the minimal coalition that can
enforce O = 1. Now agent j has available action

noti ∶= ⋃
(i=0)∈z⃗

(j(z⃗)← 1) ∪ ⋃
(i=1)∈z⃗

(j(z⃗)← 0)

Now j can enforce the fact that his decision is opposed to that of i in any context.
Thus, action noti for j can prevent O = 0 in his epistemic state and hence j is
strategically responsible according to Definition 9. So, the distinction between
standard X⃗ ← x⃗ and proposed X⃗(z⃗)← x⃗ interventions is important for reasoning
about responsibility.

6 Discussion

In this paper we demonstrate how causal models can be used for modeling multi-
agent interaction in organizational structures, where decisions of agents may de-
pend on other agents as well as the environment. Such causal models provide us
a tool for specification of the behaviour of the agents and the changes of the envi-
ronment. Moreover, these models contain additional counterfactual information.
So, they describe the behaviour of agents and the environment not only for the
actual context, but also for any counterfactual scenario. Then we demonstrate
how to reason about updates (interventions) of such models in terms of concur-
rent game structures. In such CGS, agents can choose to modify their reaction on
the environment and other agents’ decisions by updating their part of a causal
model. Then we discuss how the notion of intervention on a causal model can be
generalized for reasoning about more complex behavior. Finally, we demonstrate
how strategic responsibility can be defined in our settings. We believe that the
proposed framework can be useful for reasoning about multi-agent systems.

However, there are still many open questions left for future work. Firstly,
as we mentioned before, different restrictions of the set of available actions for
agents require closer study. The choice of these restrictions affects the strategic
power of the agents and thus determines what these agents can achieve, which
may obviously affect responsibility statements. Secondly, we represent the trans-
formations of a causal model in terms of standardly defined CGS, which allows us
to deploy a well-known machinery developed in the field of multi-agent systems
for reasoning about such structures. The obvious examples of such machinery
are widely used logics dealing with strategic power, such as Coalition logic CL
[20], Alternating-time temporal logic ATL [7] and Strategy logic SL [18].

Dynamics of Causal Dependencies in Multi-agent Settings 17

References

1. Ahmady, G.A., Mehrpour, M., Nikooravesh, A.: Organizational structure. Procedia
- Social and Behavioral Sciences 230, 455–462 (2016)

2. Alechina, N., Halpern, J.Y., Logan, B.: Causality, responsibility and blame in team
plans. In: Das, S., Durfee, E., Larson, K., Winikoff, M. (eds.) Proceedings of the
16th International Conference on Autonomous Agents and Multiagent Systems
AAMAS ’17 (2017)

3. Boudou, J., Lorini, E.: Concurrent game structures for temporal STIT logic. In:
Proceedings of the 17th International Conference on Autonomous Agents and
MultiAgent Systems. p. 381–389. AAMAS ’18, International Foundation for Au-
tonomous Agents and Multiagent Systems, Richland, SC (2018)

4. Bulling, N., Dastani, M.: Coalitional responsibility in strategic settings. In: Leite,
J., Son, T.C., Torroni, P., van der Torre, L., Woltran, S. (eds.) Computational
Logic in Multi-Agent Systems. pp. 172–189. Springer Berlin Heidelberg, Berlin,
Heidelberg (2013)

5. Chockler, H., Halpern, J.Y.: Responsibility and blame: A structural-model ap-
proach. Journal of Artificial Intelligence Research 22, 93–115 (2004)

6. Dastani, M., van der Torre, L.W.N., Yorke-Smith, N.: Commitments and interac-
tion norms in organisations. Autonomous Agents and Multi Agent Systems 31(2),
207–249 (2017)

7. Demri, S., Goranko, V., Lange, M.: Temporal Logics in Computer Science: Finite-
State Systems. Cambridge University Press, Cambridge (2016)

8. Fagin, R., Halpern, J.Y., Moses, Y., Vardi, M.: Reasoning about Knowledge. MIT
Press, Cambridge, Massachusetts (1995)

9. Ferber, J., Gutknecht, O., Michel, F.: From agents to organizations: An organiza-
tional view of multi-agent systems. In: Giorgini, P., Müller, J.P., Odell, J. (eds.)
Agent-Oriented Software Engineering IV. pp. 214–230. Springer Berlin Heidelberg,
Berlin, Heidelberg (2004)

10. Friedenberg, M., Halpern, J.Y.: Blameworthiness in multi-agent settings. Proceed-
ings of the AAAI Conference on Artificial Intelligence 33, 525–532 (2019)

11. Halpern, J.Y.: A modification of the Halpern-Pearl definition of causality. In:
Proc. 24th International Joint Conference on Artificial Intelligence (IJCAI 2015).
pp. 3022–3033 (2015)

12. Halpern, J.Y.: Axiomatizing causal reasoning. Journal of Artificial Intelligence Re-
search 12, 317–337 (5 2000)

13. Halpern, J.Y.: Actual Causality. The MIT Press (2016)

14. Halpern, J.Y., Pearl, J.: Causes and explanations: A structural-model approach.
part i: Causes. The British Journal for the Philosophy of Science 56(4), 843–887
(2005)

15. Hübner, J.F., Boissier, O., Kitio, R., Ricci, A.: Instrumenting multi-agent organ-
isations with organisational artifacts and agents. Autonomous Agents and Multi
Agent Systems 20, 369–400 (2010)

16. Khan, S.M., Lespérance, Y.: Knowing why — on the dynamics of knowledge about
actual causes in the situation calculus. In: Proceedings of the 20th International
Conference on Autonomous Agents and MultiAgent Systems. p. 701–709. AAMAS
’21, International Foundation for Autonomous Agents and Multiagent Systems,
Richland, SC (2021)

17. Lewis, D.: Causation as influence. Journal of Philosophy XCVII, 182–197 (2000)

18 M. Gladyshev et al.

18. Mogavero, F., Murano, A., Perelli, G., Vardi, M.Y.: Reasoning about strategies:
On the model-checking problem. ACM Trans. Comput. Logic 15(4) (nov 2014)

19. Naumov, P., Tao, J.: An epistemic logic of blameworthiness. Artificial Intelligence
283, 103269 (2020)

20. Pauly, M.: A Modal Logic for Coalitional Power in Games. Journal of Logic and
Computation 12(1), 149–166 (02 2002)

21. Pearl, J.: Causality: Models, Reasoning, and Inference. Cambridge University Press
(2000)

22. Yazdanpanah, V., Dastani, M., Jamroga, W., Alechina, N., Logan, B.: Strategic re-
sponsibility under imperfect information. In: Proceedings of the 18th International
Conference on Autonomous Agents and MultiAgent Systems. p. 592–600. AAMAS
’19, International Foundation for Autonomous Agents and Multiagent Systems,
Richland, SC (2019)

