
Load Balancing in Distributed Multi-Agent Path
Finder (DMAPF)

Poom Pianpak1, Jiaoyang Li2, and Tran Cao Son1

1 New Mexico State University, Las Cruces, NM, USA
{ppianpak,tson}@cs.nmsu.edu

2 Carnegie Mellon University, Pittsburgh, PA, USA
jiaoyangli@cmu.edu

Abstract. The Multi-Agent Path Finding (MAPF) is a problem of find-
ing a plan for agents to reach their desired locations without colliding.
Distributed Multi-Agent Path Finder (DMAPF) solves the MAPF prob-
lem by decomposing a given MAPF problem instance into smaller sub-
problems and solve them in parallel. DMAPF works in rounds. Between
two consecutive rounds, agents may migrate between two adjacent sub-
problems following their abstract plans, which are pre-computed, until
all of them reach the areas that contain their desired locations. Previous
works on DMAPF compute an abstract plan for each agent without the
knowledge of other agents’ abstract plans, resulting in high congestion
in some areas, especially those that act as corridors. The congestion neg-
atively impacts the runtime of DMAPF and prevents it from being able
to solve dense MAPF problems.
In this paper, we (i) investigate the use of Uniform-Cost Search to mit-
igate the congestion. Additionally, we explore the use of several other
techniques including (ii) using timeout estimation to preemptively stop
solving and relax a subproblem when it is likely to get stuck; (iii) allow-
ing a solving process to manage multiple subproblems – aimed to increase
concurrency; and (iv) integrating with MAPF solvers from the Conflict-
Based Search family. Experimental results show that our new system is
several times faster than the previous ones; can solve larger and denser
problems that were unsolvable before; and has better runtime than PBS
and EECBS, which are state-of-the-art centralized suboptimal MAPF
solvers, in problems with a large number of agents.

Keywords: Multi-Agent Path Finding (MAPF) · Distributed Multi-
Agent Path Finder (DMAPF) · Load Balancing · Distributed Computing.

1 Introduction

Multi-Agent Path Finding (MAPF) is a problem of finding collision-free paths
for a team of agents to move from their initial locations to desired locations. It
plays an important role in the field of human-robot interaction where humans and
robots collaborate and has important applications in autonomous warehouse [13,
8], traffic management [7], and video games [15], etc. The problem is known to



2 P. Pianpak et al.

be NP-hard to solve optimally [30]; therefore, a sacrifice on solution quality is
usually made to make the MAPF solver practical.

Two main approaches to solving the MAPF problem are (i) search-based [5]
and (ii) compilation-based [27]. Search-based MAPF solvers focus on developing
search algorithms for MAPF problems. Some of the most prominent search-based
techniques include conflict-based search [23], where conflicts between single-
agent plans are detected by a high-level search on a constraint tree and resolved
by a low-level search; and prioritized planning [25, 14], where agents with lower
priority need to avoid conflicts with agents with higher priority. Compilation-
based MAPF solvers translate the MAPF problem into another well-established
formulation such as Answer Set Programming (ASP) [17, 16], Boolean Satisfia-
bility (SAT) [2], and Constraint Satisfaction (CSP) [4], for which efficient solvers
exist.

Distributed Multi-Agent Path Finder (DMAPF) [21, 19, 20] is our framework
that solves the MAPF problem by applying the divide-and-conquer idea. It de-
composes a given MAPF problem instance into smaller subproblems; assigns the
subproblems to solving processes – which can run on a single or multiple ma-
chines; then uses an existing MAPF solver, in any approach mentioned, to solve
the smaller MAPF problem instances. The partial solutions from every solving
process are combined at the end to provide a solution to the original problem.

In this paper, we introduce several mechanisms to scale up DMAPF and
improve its efficiency. More specifically,

1. Improved Abstract Planning –We investigate the use of Uniform-Cost Search
to make abstract plans in an attempt to mitigate congestion at a high level.
An abstract plan of an agent is a sequence of subproblems that the agent
needs to traverse to reach the area that contains its desired location. This
enables DMAPF to take on denser maps as it decreases the chance of being
in a situation where no agent is able to progress to the next subproblem in
its abstract plan because the next subproblem of every agent is overcrowded.
It also reduces the runtime because the MAPF problem instances to solve
tend to be less dense. See Subsection 3.1 for details.

2. Timeout Mechanism – We introduce a timeout estimation mechanism to
allow DMAPF to preempt its underlying MAPF solver from solving sub-
problem instances that are likely to take a prohibitively long time to solve.
Any subproblem instance that is stopped will be relaxed by having some of
its agents’ targets temporarily removed. Then, it will be solved again until
either a plan is found or it cannot be relaxed further. This helps to prevent
DMAPF from getting stuck on subproblem instances that would be unsolv-
able without the relaxation, thus, improving the success rate. In many cases,
it also improves the overall runtime as it tends to be faster to avoid solving
difficult subproblem instances. See Subsection 3.2 for details.

3. Multiple Subproblems Assignment –We extend our previous work on DMAPF
in [20] by allowing each solving process to manage multiple subproblems in-
stead of one. This enables DMAPF to handle MAPF problem instances of
any size as it would not be restricted by the number of subproblems, which



Load Balancing in Distributed Multi-Agent Path Finder (DMAPF) 3

corresponds one-to-one to the number of solving processes in the old design.
This improvement has a significant impact on the applicability of DMAPF,
but is purely engineering. It involved heavy re-organization of the code base;
therefore, we omit the details here. Instead, its implications can be seen from
the experimental results in Subsection 4.1.

4. Integration with CBS-based MAPF Solvers – We investigate the use of (i)
CBSH2-RTC [11]; (ii) EECBS [12]; and (iii) PBS [14], as an underlying
MAPF solver for DMAPF, in addition to ASP that is used in our previ-
ous works. The requirements for integrating a MAPF solver with DMAPF
and modifications to the CBS-based MAPF solvers are explained in Subsec-
tion 3.3.

2 Background

2.1 Multi-Agent Path Finding

The MAPF problem can be defined as P = (G,A, I, T ), where G = (V,E) is a
graph such that V is a set of vertices corresponding to locations in the graph;
E ⊆ V ×V denotes pairs of locations where agents can traverse in some direction;
A is a set of agents; and I, T ⊆ A × V denote start and goal locations of the
agents, respectively. An agent at location v1 can either move from v1 to v2 in
one timestep if (v1, v2) ∈ E or stay at v1. The most common restrictions are
that (i) each location can be occupied by at most one agent at a time; and (ii)
two agents cannot swap locations in a single timestep. Violating any of these
restrictions is said to cause a conflict. A solution to a MAPF problem instance is
a set of movement plans (i.e., a sequence of vertices) for every agent that allows
them to go to their goal locations without causing the conflict. The quality of
a solution is usually measured in terms of (i) makespan – the longest length of
the movement plans in the solution; and (ii) sum-of-cost – the sum of lengths
of the movement plans in the solution.

There are several variants of the MAPF problem [26]. DMAPF follows the
mentioned restrictions and assumes that every agent has unique start and goal
locations; and they need to stay at their goals at the end of the solution.

2.2 Distributed Multi-Agent Path Finder

Distributed Multi-Agent Path Finder (DMAPF) applies the divide-and-conquer
idea to solve the MAPF problem. Given a MAPF problem instance P , DMAPF
partitions P into a set of smaller subproblems S = {S1, . . . , Sn}. A subproblem
Si is defined as ((Vi, Ei), Ai, Ii, Ti) where Vi ⊆ V , Ei ⊆ E, Ai ⊆ A, Ii ⊆ I, and
Ti ⊆ T . Pairs of locations in Ei are only between vertices in Vi; agents in Ai

are only those that have their start location in Vi; and start and goal locations
respectively in Ii and Ti are only for agents in Ai. In our previous works, each
solving process is only assigned one different subproblem in S. In this work,
we extend the system to allow assigning multiple subproblems to each solving
process, provided that every subproblem is only assigned to one solving process.



4 P. Pianpak et al.

Solving processes work together in parallel. Every solving process has full
knowledge of adjacency between all the subproblems. Subproblems S1 and S2 are
adjacent and are called neighbors iff there exists vertices v1 ∈ S1 and v2 ∈ S2 such
that v1 and v2 are adjacent (i.e., (v1, v2) ∈ E). In addition, each solving process
knows every vertex in its assigned subproblems that is adjacent to a neighboring
subproblem. DMAPF allows subproblems to contain sets of disconnected vertices
called areas and operates on them, but for simplicity, we will use the term
subproblem throughout the paper unless a clear distinction is required.

Every solving process starts by creating an abstract plan for each agent
residing in any of its assigned subproblems. Figure 1 shows an example of a
MAPF problem instance decomposed into 4 subproblems: S1, S2, S3, and S4.
Suppose that subproblem S1 is assigned to a solving process s, then s has the
responsibility to create abstract plans for agents a1 and a2 to reach subproblem
S4 that contains their goal locations g1 and g2, respectively. Possible abstract
plans for agents a1 and a2 are 〈S1, S2, S4〉, and 〈S1, S3, S4〉.

Fig. 1. An example of how a MAPF problem instance is decomposed into 4 subprob-
lems: S1, S2, S3, and S4. Start and goal locations of agents are denoted by small squares
and circles with corresponding numbers, respectively.

After an abstract plan has been created for each agent, solving processes
work together round-by-round, following the protocol described in [19, 20]. Let N
contain pairs of solving processes that have adjacent subproblems (i.e., they are
called neighbors). The protocol consists of 3 phases: (i) negotiation – every pair
inN decides which agents tomigrate (i.e., progress to the next subproblem in the
abstract plan) and to which border locations. Priority is given to agents with the
longest remaining steps in the abstract plan and border locations are chosen such
that the aggregate distance between agents and their assigned border locations
is minimized; (ii) rejection – every pair in N detects which previously-agreed
migrations will result in collision and rejects them. This ensures a collision-free
migration agreement across all subproblems; and (iii) confirmation – every pair
in N confirms agents that can successfully move to their assigned border loca-
tions. The agreed adjacent border locations, which are in their next subproblems,
will be used as their start locations in the next round. The protocol allows solv-



Load Balancing in Distributed Multi-Agent Path Finder (DMAPF) 5

ing processes to either solve or relax (see Subsection 3.2) their own subproblem
instances in parallel between the rejection and the confirmation phases.

The algorithm terminates when either (i) a plan is found where at the end
every agent stays at its goal location – the solution is then reported; or (ii) there
is a subproblem instance that cannot be solved nor relaxed further – the system
then reports that it cannot find a solution.

2.3 The CBS Family

CBSH2-RTC [11] is a state-of-the-art version of Conflict-Based Search (CBS) [23].
CBS is an optimal search-based MAPF solver where a path for each agent is indi-
vidually planned from its start to goal location using a space-time A* search [25]
at a low level. Conflicts between agent plans are detected in a high-level search
on a constraint tree. They are resolved in a low-level search by making new plans
for a subset of conflicting agents that avoid the imposed constraints. CBSH2-
RTC introduces several improvements that make CBS smarter in determining
which conflict to resolve first, and how, using various heuristics. CBSH2-RTC is
well known for its performance compared to other optimal MAPF solvers.

EECBS [12] improves on the idea of ECBS [1], which is a bounded-suboptimal
variant of CBS, by replacing focal search that acts as a high-level search in ECBS
with Explicit Estimation Search [28]. It uses online learning to guide the search
and employs various techniques that have been used to improve CBS. It has
recently been improved by replacing the space-time A* that is used as a low-
level search in ECBS with SIPPS [10], allowing EECBS to be even more efficient.

PBS [14] is a suboptimal MAPF solver that uses the idea of prioritized plan-
ning [25] where agents are given different priorities and those with lower priority
need to avoid higher-priority agents. Instead of planning based on some fixed
priority ordering, PBS is able to (lazily) explore all total priority orderings. PBS
is not complete, but very efficient, and able to find solutions for many MAPF
instances where standard prioritized MAPF algorithms cannot.

3 Methodology

3.1 Abstract Planning Methods

In addition to the ASP encoding used for creating abstract plans in our previous
works, we introduce 4 new abstract planning methods to DMAPF using (i)
Breadth-First Search (BFS); (ii) Random Search (RAND); (iii) Uniform-Cost
Search (UCS); and (iv) Centralized Uniform-Cost Search (UCSC).

Let F be a frontier containing sequences of areas that have not yet been
explored. To find an abstract plan for an agent a, an initial plan containing only
the area where agent a starts from is added to F . Then, one of the plans in F is
removed and checked whether the last area in the plan contains the goal location
of agent a. If not, new plans are created and added to F by extending the plan
with every one of the adjacent areas that have not been explored. This process
repeats until either an abstract plan is found or F is exhausted.



6 P. Pianpak et al.

In BFS, F acts as a queue, so plans are selected in the order when they were
added to F , resulting in the shortest abstract plan. RAND only differs from BFS
in that F acts as a set instead of a queue, so a plan is randomly selected in each
iteration, resulting in an abstract plan that may not be the shortest.

In UCS and UCSC, F acts as a priority queue where the ordering (lowest-
first) is based on the congestion within each area in a plan. We define congestion
within an area a at an abstract step t as n/v, where n is the number of agents in
a at abstract step t; and v is the number of vertices in a. The overall congestion
is tracked using a congestion matrix which contains congestion within every
area at every abstract step. In UCS, every solving process makes an abstract
plan for each agent in its assigned subproblems and uses the plan to update its
congestion matrix locally in each iteration. In UCSC, only one solving process
is designated to make an abstract plan for each agent in the original problem
P and use the plan to update a single congestion matrix in each iteration. At
the end, the plans are distributed to each responsible solving process. Resulting
abstract plans from UCSC create less overall congestion than UCS since only a
single congestion matrix is consulted and updated.

An example of how a congestion matrix is updated in each iteration by UCSC
is shown in Figure 2 where it takes the problem from Figure 1 and sequentially
updates it with abstract plans of agents a1, a2, a3, and a4, which are 〈S1, S2, S4〉,
〈S1, S3, S4〉, 〈S3〉, and 〈S4, S2〉, respectively.

Fig. 2. An illustration on how a congestion matrix is updated over time by UCSC. (a)
initial. (b) with 〈S1, S2, S4〉. (c) with 〈S1, S3, S4〉. (d) with 〈S3〉. (e) with 〈S4, S2〉.
Updated values are highlighted in red.

3.2 Timeout Mechanism

For a MAPF subproblem instance Si to be processed, there must exist some
agent with a target, either its original goal or an assigned border location in Si.
If there is some agent with an assigned border location in Si, then the other
agents without an assigned border location will be considered as having no goal



Load Balancing in Distributed Multi-Agent Path Finder (DMAPF) 7

Algorithm 1 Solving a MAPF problem instance with timeout
Input: Si – MAPF subproblem instance; n – #agents in Si

Parameter: ta – Approximate timeout per agent
f – Timeout penalty factor; ε – Timeout tolerance factor
Output: sol – Solution of Si

1: while true do
2: if Si is solved within n · ta · ε then
3: if Some agent in Si has a goal or border location assigned then
4: ta ← ts/n where ts is the time used to solve Si

5: else
6: ta ← f · ta
7: return sol
8: else
9: Stop solving Si

10: if Some agent in Si has a border location assigned then
11: Remove an assigned border location from one agent in Si

12: else
13: terminate

(in the current round) to create the least constraint for the agents with assigned
border locations to reach their targets.

Algorithm 1 shows the timeout estimation mechanism added to the subprob-
lem solving procedure. Line 2 tries to solve Si within the time limit of n · ta · ε,
where n, ta, and ε are the number of agents, an approximate timeout per agent,
and a timeout tolerance factor, respectively. The value of ε is a multiplicative
constant that accommodates errors from the approximation. If Si is solved where
some agent has a target, then ta is re-estimated to the time used to solve Si per
agent (Line 4). However, if Si is solved but there is no agent with a target, it
means that Si is has been relaxed too much. It then will be tried to solve again
in the next round with a higher timeout limit of f · ta where f is another mul-
tiplicative constant greater than 1 (Line 6). If Si cannot be solved within the
time limit, then the MAPF solver is stopped (Line 9) and Si is checked whether
it is relaxable (Line 10). Si can be relaxed if it has some agent that needs to
migrate and is assigned with a border location. Line 11 relaxes Si by removing
an assigned border location from one of the migrating agents. The heuristic is to
select an agent with the least number of steps left in its abstract plan. Otherwise,
DMAPF terminates at Line 13 and reports that it cannot find a solution.

3.3 Integration with CBS-based MAPF Solvers

To integrate a MAPF solver with DMAPF, it needs to satisfy the requirements
that: (i) agents without a goal location are allowed in the problem; and (ii)
agents need to be able to avoid being in a set of certain vertices VP at the end
of the plan unless they need to go to a location in VP . The second condition
accommodates the design of DMAPF that improves its success rate by making
sure there are unoccupied vertices for migrating agents to move in.



8 P. Pianpak et al.

CBSH2-RTC, EECBS, PBS all use an A*-style algorithm (i.e., space-time
A* [25], SIPP [18], or SIPPS [10]) to plan paths for individual agents. We modify
the heuristic function and the goal test function for agents without goals as
follows. For the heuristic function, the h-value of a node at a vertex that is in
the prohibited set VP is 1, and the h-value of a node at a vertex that is not in
VP is 0. For the goal test function, we claim a node at vertex v at timestep t as
a goal node iff vertex v is not in VP and there are no vertex constraints that
prohibit this agent from being at vertex v at any timestep after timestep t.

In addition, CBSH2-RTC and EECBS use some speedup techniques that rely
on the assumption that the agents have unique goal locations. We therefore turn
off those techniques when the involved agents do not have goals. Specifically, they
both build MDDs [24], i.e., a direct acyclic graph that consists of all shortest
paths from the start vertex to the goal vertex of an agent, for individual agents,
which are used for finding cardinal conflicts [3] and rectangle conflicts [11]. We
do not build MDDs for agents without goals. Thus, if such agents are involved in
a conflict, we classify this conflict as semi-cardinal or non-cardinal (depending
on how the MDD of the other agents involved in the conflict looks like), and do
not perform rectangle reasoning for it. Moreover, target reasoning [11] happens
when an agent runs into another agent that has already reached its goal location
and sat there, so we perform target reasoning only if the second agent has been
assigned a goal vertex.

4 Experiments

We conduct experiments in Subsections 4.1-4.4 sequentially to determine the
best parameters for DMAPF on our machine. Subsection 4.1 determines the
optimal number of solving processes to be executed in parallel. Subsection 4.2
determines the optimal size of subproblems that gives the best tradeoff between
performance and success rate. Subsection 4.3 determines the optimal sensitivity
of timeout that allows DMAPF to appropriately stop its underlying MAPF
solver. Subsection 4.4 determines the abstract planning method that computes
abstract plans with the least overall congestion. Finally, Subsection 4.5 uses the
best parameters obtained from the previous subsections to compare variations
of DMAPF with CBSH2-RTC [11], EECBS [12], and PBS [14].

The experiments are performed on a Dell Precision 3630 Tower with an Intel
Core i9-9900K @3.60 GHz and 64 GB of RAM. The software used includes
Ubuntu 20.04.5 LTS, ROS Noetic Ninjemys [22], and Clingo 5.6.2 [6]. We use
maps and random scenarios from the MAPF benchmark3 [26]. The scenarios have
at most 1000 agents (limit). Each agent in the scenarios has unique start and
goal locations. The maps used in our experiments are den312d, random-64-64-
20, maze-128-128-2, lak303d, and warehouse-20-40-10-2-2, which contain 2445,
3270, 10858, 14784, and 38756 vertices, respectively. Unless stated otherwise, we
use 20 solving processes, subproblems that contain roughly 40 vertices, timeout

3 https://movingai.com/benchmarks/mapf/index.html



Load Balancing in Distributed Multi-Agent Path Finder (DMAPF) 9

penalty factor (f) of 2, timeout tolerance factor (ε) of 10, centralized Uniform-
Cost-Search to make abstract plans, and ASP as an underlying MAPF solver
in DMAPF. To automatically decompose a map into subproblems that contain
roughly 40 vertices, for example, we would specify bv/40c where v is the number
of vertices in the map, as the number of desired subproblems to the problem
divider which is implemented using balanced k-means with real distance [20].

For the reproducibility of our results, the experiments in the following sub-
sections also state seed values used by the problem divider. Because the perfor-
mance of DMAPF greatly depends on how the input map is decomposed, the
seed values used to decompose the maps in Subsections 4.2-4.5 are chosen from
101 to 110 for the one that gives the best runtime in the first scenario. Then,
the maps decomposed with the chosen seed values will be used throughout the
whole experiments. The reported values come from an average of running each
random scenario from 1-10 once in the same (decomposed) map, under the time
limit of 5 minutes, for the total of 10 times.

4.1 The Numbers of Solving Processes

Table 1 attempts to determine the optimal number of solving processes by com-
paring runtimes of DMAPF using 4, 8, 12, . . . , 32 solving processes on lak303d
map with 200, 400 and 600 agents from the first random scenario. The map
is decomposed into 240 subproblems using the seed value of 2. Every reported
runtime is averaged from solving the first random scenario 10 times.

Table 1. Comparing runtimes of DMAPF using p solving processes on lak303d map
with n agents.

n
Runtime (s)

p = 4 p = 8 p = 12 p = 16 p = 20 p = 24 p = 28 p = 32

200 32.1 25.1 21.8 20.0 19.4 18.9 20.5 19.6
400 97.0 75.1 63.1 66.2 52.8 56.2 53.8 63.5
600 214.2 158.7 129.3 127.5 110.7 113.3 116.0 120.0

On our machine that is equipped with a CPU that has 8 cores and 16 hard-
ware threads, the results suggest that using 20 - 24 solving processes, or 125%
- 150% of the number of hardware threads provides the best runtime. Using
too few solving processes underutilizes the computational resources and using
too many solving processes introduces too much competition for the resources,
which are both detrimental to the performance.

4.2 The Size of Subproblems

Table 2 attempts to determine the optimal size of subproblems by comparing
runtimes, makespan, sum-of-cost, and success rate of DMAPF on random-64-
64-20 map that has been decomposed into subproblems of different sizes: 30, 40,



10 P. Pianpak et al.

Table 2. Comparing runtimes, makespan, sum-of-cost, and success rates of DMAPF on
random-64-64-20 map, decomposed into subproblems that contain roughly v vertices,
with 1000 agents.

v Runtime (s) Makespan SoC (×1k) Success Rate
30 39.9 864 558.4 0.4
40 46.6 906 598.5 1.0
50 88.2 1041 627.9 0.8
60 80.0 1107 676.6 1.0
70 86.8 1070 633.6 1.0

50, 60, and 70 vertices, using the seed values of 107, 105, 101, 109, and 105,
respectively. DMAPF with ASP as an underlying MAPF solver is optimized
for makespan; therefore, makespan is a better indicator of solution quality than
sum-of-cost.

The results show that, with small subproblems, DMAPF tends to run faster
and give better solution quality, but have a lower success rate. DMAPF runs
faster in small subproblems because ASP, which its runtime is known to be
very sensitive to the number of vertices, is less affected by the sizes of the sub-
problems since they are small. It also gives better solution quality because as
the subproblems become more fine-grained, it results in less agents waiting to
move between consecutive rounds. However, the success rate is now lower be-
cause there is more chance that some subproblem instance becomes unsolvable
as the ratio b/v, where b is the number of border vertices (i.e., vertices that
are adjacent to vertices in another subproblem) and v is the number of vertices
in the subproblem, increases. In DMAPF, agents follow their abstract plans to
move into the next subproblems between two consecutive rounds. The greater
the ratio b/v is, the more agents can enter (or leave) subproblems while the
subproblems may contain only a few vertices, making it difficult (or impossible)
to find a movement plan. Our results are consistent with the original work on
DMAPF [21] that suggests that the size of subproblems around 40 - 60 vertices
provide the best performance and solution quality.

4.3 Timeout Sensitivity

Table 3 attempts to determine the optimal value of the timeout tolerance factor
ε by comparing runtimes, makespan, sum-of-cost, and the number of times that
DMAPF preemptively stops its underlying MAPF solver because it exceeds the
estimated timeout limit, under different values of ε. The greater the value of ε is,
the longer DMAPF allows each subproblem instance to be solved. We decompose
random-64-64-20 map with the seed value of 105 to use in this experiment.

The results show that setting the value of ε too small (i.e., ε < 10 in Ta-
ble 3) causes DMAPF to be too sensitive and stops its MAPF solver too early,
resulted in worse performance. However, when the value of ε is too big such
as when ε = 14, DMAPF waits too long to stop its MAPF solver from solv-
ing problem instances that are likely to be too difficult, which also resulted in



Load Balancing in Distributed Multi-Agent Path Finder (DMAPF) 11

Table 3. Comparing runtimes, makespan, sum-of-cost, and the number of times
DMAPF stops its an underlying MAPF solver under different timeout tolerance factors
ε, on random-64-64-20 map with 1000 agents.

ε Runtime (s) Makespan SoC (×1k) #Stops
4 51.9 906 611.9 25
6 49.2 906 600.1 13
8 48.6 903 607.3 7
10 46.6 906 598.5 3
12 46.3 906 603.2 1
14 49.1 908 606.8 2

worse performance. The number of times that DMAPF stops its MAPF solver
increases when the value of ε increases from 12 to 14. This shows that in practice
there is a chance, especially in dense maps, that DMAPF will have to face a few
difficult subproblem instances. Without the timeout mechanism (i.e., ε = +∞)
like in our previous works, DMAPF would likely get stuck or take a very long
time to solve those subproblem instances. In these situations, it would be more
efficient to stop the MAPF solver early, relax the subproblem instance, and retry,
which the timeout mechanism allows DMAPF to do. The results also suggest
the optimal value of ε to be around 10 - 12, and there is no significant deviation
of solution qualities between the different values of ε overall.

4.4 Congestion

Figure 3 compares congestion resulting from abstract plans created by different
methods: ASP, BFS, RAND, UCS, and UCSC, on random-64-64-20 map with
600, 800, and 1000 agents. The map is decomposed with the seed value of 105.
The charts depict the trend of the congestion (min and max) in each abstract
step. We are mainly concerned with the max congestion as that is usually when
some subproblem instance becomes too difficult or unsolvable. The max conges-
tion is the highest congestion across all areas at particular abstract steps. The
opposite is true for the min congestion.

In Figure 3, both ASP and BFS produce the shortest abstract plans among
all the plans from all the methods; however, their plans also create the highest
congestion. In the case of 800 and 1000 agents, their plans result in the value
of congestion greater than 1 at abstract step 3. This means that if every agent
is able to follow its abstract plan until abstract step 2, there must be at least
one area at abstract step 3 where the number of agents who want to be there is
greater than the number of vertices in the area!

Abstract plans from both RAND and UCS show significantly lower conges-
tion compared to those from ASP and BFS; however, the length of abstract plans
from RAND is quite random (but would still be less than the total number of
areas) as it selects nodes to expand randomly; and the plans from UCS, which
uses the knowledge of congestion, are only slightly better than the plans from
RAND. This is because the knowledge is incomplete when abstract plans are



12 P. Pianpak et al.

(a) ASP (b) BFS

(c) RAND (d) UCS

(e) UCSC

Fig. 3. Comparing the trend of congestion from abstract plans created by using An-
swer Set Programming (ASP), Breadth-First Search (BFS), Random Search (RAND),
Uniform-Cost Search (UCS), and Centralized Uniform-Cost Search (UCSC). Each chart
depicts the min and max congestion from a particular method on random-64-64-20 map
with 600, 800, and 1000 agents.



Load Balancing in Distributed Multi-Agent Path Finder (DMAPF) 13

made independently by different solving processes. It results in solving processes
unknowingly create abstract plans that still have high congestion collectively. In-
stead of having solving processes independently create abstract plans for agents
within their responsible subproblems, UCSC uses the same technique as UCS,
but designates one of the solving processes to create abstract plans for all agents
in the problem. This results in a collection of abstract plans with significantly
lower congestion among all the other methods.

Table 4 shows that runtime and solution quality of DMAPF significantly im-
prove when UCSC is used to make abstract plans. It also shows a close inverse
relationship between congestion and runtime in DMAPF, following the trend in
Figure 3. The runtimes spent on abstract planning are also shown to confirm
that UCSC does not incur a significant overhead. In fact, the ASP encoding
used in the previous works is even slower than UCSC. According to the success
rates, our previous works which do not have the congestion avoidance mecha-
nism would only be able to solve about 60% of the problem instances with 800
agents and unable solve any problem instance with 1000 agents. The congestion
avoidance mechanism allows DMAPF to perform at least 3 times faster, reduce
the makespan by almost half, and be able to solve all the problem instances.

Table 4. Comparing runtimes used in abstract planning, the total runtimes, makespan,
sum-of-cost, and success rates of DMAPF on random-64-64-20 map with n agents using
different abstract planning methods: ASP, BFS, RAND, UCS, and UCSC.

n Method Runtime (s) Makespan SoC (×1k) Success RateAbs. Total

600

ASP 0.3 48.4 914 247.3 1.0
BFS 0.0 110.2 1185 265.6 0.8
RAND 0.0 19.8 673 236.8 1.0
UCS 0.0 28.2 779 258.4 1.0
UCSC 0.0 16.1 564 207.2 1.0

800

ASP 0.4 106.6 1241 511.7 0.6
BFS 0.0 162.1 1367 525.3 0.1
RAND 0.0 74.2 893 424.8 0.8
UCS 0.0 56.1 934 451.0 0.4
UCSC 0.0 26.1 757 379.1 1.0

1000

ASP 0.5 - - - 0.0
BFS 0.0 - - - 0.0
RAND 0.0 204.6 1058 703.9 0.1
UCS 0.0 103.8 1109 740.2 0.1
UCSC 0.0 46.6 906 598.5 1.0

4.5 Comparison Between MAPF Solvers

Table 5 compares runtimes, solution quality (indicated by makespan and sum-
of-cost), and success rate of DMAPF that has been integrated with 4 different



14 P. Pianpak et al.

Table 5. Comparing runtimes, makespan, sum-of-cost, and success rate between
MAPF solvers: (i) DMAPF w/ASP (DMAPF-A); (ii) DMAPF w/CBSH2-RTC
(DMAPF-C); (iii) DMAPF w/EECBS (DMAPF-E); (iv) DMAPF w/PBS (DMAPF-
P); (v) EECBS; and (vi) PBS, on different maps: (i) den312d; (ii) random-64-64-20
(random); (iii) maze-128-128-2 (maze); (iv) lak303d; and (v) warehouse-20-40-10-2-
2 (warehouse), and different number of agents (shown under the map names). The
number of vertices in each map is shown on the right hand side of its name.

Solver
— Runtime (seconds) —

den312d (2445) random (3270) maze (10858) lak303d (14784) warehouse (38756)
200 300 400 600 800 1000 100 200 300 200 400 600 600 800 1000

DMAPF-A 6.9 18.4 39.3 16.1 26.0 46.6 20.7 40.7 - 15.6 37.9 75.9 32.5 42.4 52.3
DMAPF-C - - - - - - 8.5 - - 35.7 - - 14.2 19.8 35.2
DMAPF-E 170.6 - - - - - 9.8 - - 10.7 - - 14.8 20.4 62.9
DMAPF-P 3.1 - - - - - 8.1 - - 7.5 44.2 - 13.1 17.0 20.8
EECBS 0.4 1.4 6.4 2.5 21.4 141.7 2.6 135.8 279.6 1.2 6.5 42.6 5.8 13.1 22.0
PBS 15.1 217.5 - - - - 50.5 - - 17.2 266.9 - 9.4 26.1 57.2

— Makespan —
DMAPF-A 475 722 980 564 757 906 3075 3704 - 1014 1794 2774 748 774 795
DMAPF-C - - - - - - 3091 - - 1017 - - 753 781 804
DMAPF-E 643 - - - - - 3072 - - 1033 - - 780 828 893
DMAPF-P 477 - - - - - 3069 - - 1016 1690 - 761 779 803
EECBS 180 288 377 145 218 302 1474 1571 1702 483 511 583 451 455 457
PBS 132 158 - - - - 1475 - - 482 479 - 451 455 457

— Sum-of-Cost (×1000) —
DMAPF-A 51.8 117.3 248.9 207.2 379.1 598.5 181.4 511.8 - 112.9 362.2 794.9 233.1 331.3 448.3
DMAPF-C - - - - - - 187.2 - - 110.7 - - 230.7 335.8 443.2
DMAPF-E 56.4 - - - - - 175.4 - - 110.4 - - 236.7 356.6 498.8
DMAPF-P 54.1 - - - - - 176.2 - - 111.8 358.7 - 231.8 334.8 449.1
EECBS 13.8 28.0 46.9 34.8 60.6 101.6 56.1 119.7 191.4 38.2 78.6 131.1 109.6 146.4 181.1
PBS 11.6 19.1 - - - - 56.4 - - 37.9 74.1 - 109.5 146.2 180.9

— Success Rate —
DMAPF-A 1.0 1.0 0.7 1.0 1.0 1.0 1.0 0.8 0.0 1.0 1.0 0.6 1.0 1.0 1.0
DMAPF-C 0.0 0.0 0.0 0.0 0.0 0.0 0.8 0.0 0.0 1.0 0.0 0.0 1.0 1.0 0.7
DMAPF-E 0.4 0.0 0.0 0.0 0.0 0.0 0.9 0.0 0.0 1.0 0.0 0.0 1.0 0.9 0.6
DMAPF-P 0.6 0.0 0.0 0.0 0.0 0.0 0.9 0.0 0.0 1.0 0.4 0.0 0.6 0.5 0.3
EECBS 1.0 1.0 1.0 1.0 0.9 1.0 0.9 0.9 0.1 1.0 1.0 1.0 1.0 1.0 1.0
PBS 1.0 0.8 0.0 0.0 0.0 0.0 1.0 0.0 0.0 1.0 0.3 0.0 1.0 1.0 1.0

MAPF solvers : (i) ASP; (ii) CBSH2-RTC4; (iii) EECBS5; (iv) PBS6, denoted as
DMAPF-A, DMAPF-C, DMAPF-E, and DMAPF-P, respectively; and EECBS
and PBS, representing state-of-the-art bounded-suboptimal and optimal MAPF
solvers, respectively. We enable SIPPS in EECBS and PBS (including the ones
integrated with DMAPF) and set the suboptimality factor of EECBS to 5 to
ensure it gives the best runtime without caring for optimality guarantee [10].
We also compared with CBSH2-RTC, but it was not able to solve any problem
instance, so we do not include it in the table. The maps used in the comparison
are den312d, random-64-64-20 (random), maze-128-128-2 (maze), lak303d, and
warehouse-20-40-10-2-2 (warehouse). For DMAPF, they have been decomposed

4 https://github.com/Jiaoyang-Li/CBSH2-RTC
5 https://github.com/Jiaoyang-Li/EECBS
6 https://github.com/Jiaoyang-Li/PBS



Load Balancing in Distributed Multi-Agent Path Finder (DMAPF) 15

into sub-problems, each containing (roughly) 40 vertices, with the seed values of
107, 105, 110, 102, and 108, respectively.

In terms of runtime, EECBS typically outperforms the other solvers, but its
speed deteriorates much quicker than DMAPF as the number of agents increases.
This is shown when DMAPF-A is able to outperform EECBS in the random
map with 1000 agents and in the maze map with 200 agents. DMAPF-P also
outperforms EECBS in the warehouse map with 1000 agents.

In terms of solution quality, DMAPF returns solutions with makespan and
sum-of-cost about 2-6 times higher than those returned by EECBS and PBS.
However, they are comparable in the number of movements agents need to make
to reach the goals – the results are omitted due to space limitation. This suggests
that agents planned by DMAPF spend about the same number of movements
as those planned by EECBS and PBS, but they waste a lot of time in waiting
to move from one subproblem to the next between subsequent rounds.

DMAPF-C, DMAPF-E, and DMAPF-P are about twice as fast as DMAPF-
A in sparse maps (i.e., maps where the number of agents is low compared to the
number of vertices) such as in the warehouse map. However, they are only able to
solve a few problem instances in dense maps, especially after the original map has
been decomposed into smaller subproblems which introduces more conflicts. On
the other hand, DMAPF-A is less affected by the number of conflicts, allowing
it to solve significantly more problems instances.

The issue that hinders DMAPF-A is not the conflicts, but rather about how
the problem is decomposed. Figure 4 shows subproblem instances that can easily
prevent DMAPF from finding the solutions. Figure 4a typically happens in maps
with narrow corridors such as the maze map – agent a1 needs to go to location
g1 but is blocked by agent a2 that does not need to go anywhere. Figure 4b
depicts a similar problem, but it is caused by a mixture of congestion and bad
problem decomposition, so an improvement in either area should help to prevent
this scenario.

(a) (b)

Fig. 4. Issues from bad problem decomposition. Start and goal locations of agents are
denoted by small squares and circles with corresponding numbers, respectively.



16 P. Pianpak et al.

5 Related Work

There are very few works on MAPF that share the idea of spatially decompos-
ing the problem. To our knowledge, other works with a similar idea includes (i)
Spatially Distributed Multiagent Planner (SDP) [29] separates a given MAPF
problem into low-contention and high-contention areas. Special searching rules
are enforced in high-contention areas to speed up the search and agents are not
allowed to have a goal location in those areas; (ii) Hierarchical Multi-Agent Path
Planner (HMAPP) [31] shares a very similar approach with DMAPF. The main
difference is that it limits the direction of border vertices between adjacent sub-
problems, whereas DMAPF does not; and (iii) the shard system [9] designates
special areas, connecting subproblems, to be used as buffers to improve the so-
lution quality. In the current implementation, agents are not allowed to have a
goal location in the buffer areas.

The only recent related works are HMAPP and the shard system. Their
source codes are not readily available, so in our experiment we decided to com-
pare DMAPF with EECBS and PBS instead. This design choice serves two
purposes: (i) our results can be indirectly compared with the two systems –
HMAPP has been compared with ECBS [1], the baseline of EECBS, and the
shard system has been compared with EECBS; and (ii) it shows the behavior
of DMAPF when EECBS and PBS are used as its underlying MAPF solver
compared to their standalone versions.

6 Summary

We introduce several techniques to improve DMAPF, including (i) allowing each
solving process to manage multiple subproblems; (ii) timeout estimation mech-
anism; (iii) congestion avoidance in abstract plans; and (iv) integration with
other MAPF solvers. Allowing each solving process to manage multiple sub-
problems enables DMAPF to work with maps of any size – not limited by the
number of subproblems like in our previous works. The combination of time-
out estimation mechanism and congestion avoidance in abstract plans enables
DMAPF to solve dense maps more efficiently and also increases the success rate.
The integration with MAPF solvers from the CBS family provides an insight
on the kinds of MAPF solvers that will be suitable with DMAPF for different
situations. Even though the improvements we introduce may seem simple, they
provide significant improvement over our previous works (as shown in Table 4).
Moreover, they can serve as the basis for future improvements.

DMAPF still has many rooms for future improvements. From the experi-
ments, we found that its performance is sensitive to how the problem is decom-
posed. Having a tool [20] that automatically decomposes a given MAPF problem
is convenient, but it still does not guarantee good results. Improvements on prob-
lem decomposition technique is still much desirable. This may include developing
a visualizing tool to aid the user in manually decomposing the problem. We also
expect DMAPF to be able to solve more problems and has better performance
with the use of more advanced load balancing mechanisms.



Load Balancing in Distributed Multi-Agent Path Finder (DMAPF) 17

References

1. Barer, M., Sharon, G., Stern, R., Felner, A.: Suboptimal variants of the conflict-
based search algorithm for the multi-agent pathfinding problem. In: Seventh An-
nual Symposium on Combinatorial Search (2014)

2. Biere, A., Heule, M., van Maaren, H.: Handbook of satisfiability, vol. 185. IOS
press (2009)

3. Boyarski, E., Felner, A., Stern, R., Sharon, G., Tolpin, D., Betzalel, O., Shimony,
E.: Icbs: Improved conflict-based search algorithm for multi-agent pathfinding. In:
Twenty-Fourth International Joint Conference on Artificial Intelligence (2015)

4. Dechter, R., Cohen, D., et al.: Constraint processing. Morgan Kaufmann (2003)
5. Felner, A., Stern, R., Shimony, S., Boyarski, E., Goldenberg, M., Sharon, G., Sturte-

vant, N., Wagner, G., Surynek, P.: Search-based optimal solvers for the multi-agent
pathfinding problem: Summary and challenges. In: International Symposium on
Combinatorial Search. vol. 8 (2017)

6. Gebser, M., Kaminski, R., Kaufmann, B., Ostrowski, M., Schaub, T., Wanko, P.:
Theory solving made easy with clingo 5. In: Technical Communications of the 32nd
International Conference on Logic Programming (ICLP 2016). Schloss Dagstuhl-
Leibniz-Zentrum fuer Informatik (2016)

7. Ho, F., Geraldes, R., Gonçalves, A., Rigault, B., Sportich, B., Kubo, D., Cavazza,
M., Prendinger, H.: Decentralized multi-agent path finding for uav traffic manage-
ment. IEEE Transactions on Intelligent Transportation Systems (2020)

8. Hönig, W., Kiesel, S., Tinka, A., Durham, J.W., Ayanian, N.: Persistent and robust
execution of mapf schedules in warehouses. IEEE Robotics and Automation Letters
4(2), 1125–1131 (2019)

9. Leet, C., Li, J., Koenig, S.: Shard systems: Scalable, robust and persistent multi-
agent path finding with performance guarantees. In: Proceedings of the AAAI
Conference on Artificial Intelligence. vol. 36, pp. 9386–9395 (2022)

10. Li, J., Chen, Z., Harabor, D., Stuckey, P.J., Koenig, S.: Mapf-lns2: Fast repairing
for multi-agent path finding via large neighborhood search. In: Proceedings of the
AAAI Conference on Artificial Intelligence (2022)

11. Li, J., Harabor, D., Stuckey, P.J., Ma, H., Gange, G., Koenig, S.: Pairwise sym-
metry reasoning for multi-agent path finding search. Artificial Intelligence 301,
103574 (2021)

12. Li, J., Ruml, W., Koenig, S.: EECBS: A bounded-suboptimal search for multi-agent
path finding. In: Proceedings of the AAAI Conference on Artificial Intelligence.
vol. 35, pp. 12353–12362 (2021). https://doi.org/10.1609/aaai.v35i14.17466

13. Li, J., Tinka, A., Kiesel, S., Durham, J.W., Kumar, T.S., Koenig, S.: Lifelong
multi-agent path finding in large-scale warehouses. In: Proceedings of the AAAI
Conference on Artificial Intelligence. vol. 35, pp. 11272–11281 (2021)

14. Ma, H., Harabor, D., Stuckey, P.J., Li, J., Koenig, S.: Searching with con-
sistent prioritization for multi-agent path finding. In: Proceedings of the
AAAI Conference on Artificial Intelligence. vol. 33, pp. 7643–7650 (2019).
https://doi.org/10.1609/aaai.v33i01.33017643

15. Ma, H., Yang, J., Cohen, L., Kumar, T.S., Koenig, S.: Feasibility study: Moving
non-homogeneous teams in congested video game environments. In: Thirteenth
Artificial Intelligence and Interactive Digital Entertainment Conference (2017)

16. Marek, V.W., Truszczyński, M.: Stable models and an alternative logic program-
ming paradigm. In: The Logic Programming Paradigm, pp. 375–398. Springer
(1999)



18 P. Pianpak et al.

17. Niemelä, I.: Logic programs with stable model semantics as a constraint program-
ming paradigm. Annals of mathematics and Artificial Intelligence 25(3), 241–273
(1999)

18. Phillips, M., Likhachev, M.: Sipp: Safe interval path planning for dynamic envi-
ronments. In: 2011 IEEE International Conference on Robotics and Automation.
pp. 5628–5635. IEEE (2011)

19. Pianpak, P., Son, T.C.: DMAPF: A decentralized and distributed solver
for multi-agent path finding problem with obstacles. Electronic Proceed-
ings in Theoretical Computer Science (EPTCS) 345, 99–112 (Sep 2021).
https://doi.org/10.4204/eptcs.345.24

20. Pianpak, P., Son, T.C.: Improving problem decomposition and regulation in dis-
tributed multi-agent path finder (dmapf). In: PRIMA 2022: Principles and Practice
of Multi-Agent Systems. pp. 156–172 (2023). https://doi.org/10.1007/978-3-031-
21203-1_10

21. Pianpak, P., Son, T.C., Toups, Z.O., Yeoh, W.: A distributed solver for
multi-agent path finding problems. In: Proceedings of the First Interna-
tional Conference on Distributed Artificial Intelligence (DAI). pp. 1–7 (2019).
https://doi.org/10.1145/3356464.3357702

22. Quigley, M., Conley, K., Gerkey, B., Faust, J., Foote, T., Leibs, J., Wheeler, R.,
Ng, A.Y., et al.: Ros: an open-source robot operating system. In: ICRA workshop
on open source software. vol. 3, p. 5. Kobe, Japan (2009)

23. Sharon, G., Stern, R., Felner, A., Sturtevant, N.R.: Conflict-based search for opti-
mal multi-agent pathfinding. Artificial Intelligence 219, 40–66 (2015)

24. Sharon, G., Stern, R., Goldenberg, M., Felner, A.: The increasing cost tree search
for optimal multi-agent pathfinding. Artificial intelligence 195, 470–495 (2013)

25. Silver, D.: Cooperative pathfinding. In: Proceedings of the aaai conference on arti-
ficial intelligence and interactive digital entertainment. vol. 1, pp. 117–122 (2005)

26. Stern, R., Sturtevant, N.R., Felner, A., Koenig, S., Ma, H., Walker, T.T., Li, J.,
Atzmon, D., Cohen, L., Kumar, T.K.S., Boyarski, E., Bartak, R.: Multi-agent
pathfinding: Definitions, variants, and benchmarks. Symposium on Combinatorial
Search (SoCS) pp. 151–158 (2019)

27. Surynek, P.: Compilation-based solvers for multi-agent path finding: a survey, dis-
cussion, and future opportunities. arXiv preprint arXiv:2104.11809 (2021)

28. Thayer, J.T., Ruml, W.: Bounded suboptimal search: A direct approach using inad-
missible estimates. In: Twenty-Second International Joint Conference on Artificial
Intelligence (2011)

29. Wilt, C., Botea, A.: Spatially distributed multiagent path planning. In: Proceedings
of the International Conference on Automated Planning and Scheduling. vol. 24,
pp. 332–340 (2014)

30. Yu, J., LaValle, S.M.: Structure and intractability of optimal multi-robot path
planning on graphs. In: Twenty-Seventh AAAI Conference on Artificial Intelligence
(2013)

31. Zhang, H., Yao, M., Liu, Z., Li, J., Terr, L., Chan, S.H., Kumar, T.S., Koenig,
S.: A hierarchical approach to multi-agent path finding. In: Proceedings of the
International Symposium on Combinatorial Search. vol. 12, pp. 209–211 (2021)


