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Abstract. In this contribution, we propose an extension of the Knowl-
edge Level as introduced by Newell in the A.I. context and refined by
Jennings in agent-based software engineering to include also the envi-
ronment as a first-class analysis/design dimension. We revisit and refine
the Agents & Artifacts (A&A) conceptual model to be at the Knowledge
Level by explicitly introducing a semantic layer based on Knowledge
Graphs, and we discuss the benefits with some practical examples.
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1 Introduction

Four decades ago, Allen Newell introduced the knowledge level analysis to
characterise intelligent agents as knowledge-based systems, abstracting from
application-specific details and implementations [14,16]. According to this char-
acterisation, a computational system can be viewed across multiple levels of
abstraction — a hierarchy of computer system descriptions3. The Knowledge
Level is just another level within that same hierarchy: a way to describe the be-
haviour of (intelligent) systems with wide-ranging capabilities, where capability
is defined in terms of having “knowledge” and behaving in light of it. The key
feature of the Knowledge Level from a software engineering viewpoint is that it
abstracts completely from the internal processing and the internal representa-
tion: all that is left is the content of the representation and the goals towards
which that content will be used.

The concept has become a keystone in agent-oriented software engineer-
ing [10], along with the very similar characterisation introduced, in the same
period, by Dennett with the intentional stance [6] — effectively setting the level
of abstraction that we expect when modelling and designing a software compo-
nent as an intelligent agent. Two decades ago, the concept was further extended
by Jennings in the context of agent-oriented software engineering to also include
the social/organisational dimensions [10]4.
3 Appendix A reports the levels as depicted by Newell in [15].
4 Appendix B reports a description of the knowledge level and the social level as

depicted by Jennings in [10].
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After two decades, we further extend this important conceptual framework
with a missing element that proved to be, both in the case of humans and
in Agent-Oriented Software Engineering (AOSE), an important dimension for
analysing and designing systems: the environment. This extension aims at pro-
viding a uniform level of abstraction to describe both the goal-oriented behaviour
of software agents and the environment they can exploit to achieve such goals
by discovering, manipulating and creating resources and services.

Accordingly, the first contribution of this paper is about framing and dis-
cussing the role of the environment as a first-class design abstraction at the
Knowledge Level. To achieve that, we look at ways in which knowledge about
the real world is currently being represented and shared in other kinds of sys-
tems, following the evolution of the digital transformation of different domains
using the Semantic Web — for instance, in the Web of Things5. In Section 2, we
discuss this point, using the Agents & Artifacts (A&A) conceptual modelling [17],
which was implicitly conceived to be at the Knowledge Level.

The A&A meta-model was conceived informally, without identifying a clear
connection at the knowledge level with domains. Accordingly, as a second core
contribution of this paper, in Section 3 we discuss a refinement and extension of
the A&A meta-model to be fully effective for supporting the Knowledge Level,
and in Section 4 we briefly describe a first extension of the CArtAgO frame-
work [19] implementing it. We conclude the paper with a brief road-map for
future work in Section 5.

2 Enriching the Knowledge Level with Artifact-Based
Environments

As remarked in AOSE literature [22,23,21], the environment can be used as a
first-class abstraction when designing and programming agent-based systems.
In particular, it can be used for encapsulating and providing functionalities to
agents at different levels [22]: a basic level, to enable direct access to the deploy-
ment context; an abstraction level, providing agents with an abstraction level that
shields low-level details of the deployment context — as well as other resources
in the system; an interaction-mediation level, providing agents an interaction-
mediation level to support mediated interaction in the environment; a reflective
level, providing a reflective interface to the functionality supported by the en-
vironment, enabling agents to modify the functional behavior of the environ-
ment [18].

At the Knowledge Level, this accounts for enriching Newell’s and Jennings’s
conceptual framework to include the environment at the same level of abstrac-
tion with agents and agent organisations, modelling the open of resources and
tools as first-class artifacts — as introduced by A&A [17] — that agents and or-
ganisations may build, use, and share in order to accomplish their individual and
social goals. The concept of artifact and the overall A&A conceptual model were

5 See the W3C Web of Things: https://www.w3.org/TR/wot-architecture/

https://www.w3.org/TR/wot-architecture/
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mainly inspired by Activity Theory [20,18] and Distributed Cognition [9], which
are prominent conceptual frameworks and theories that investigated the role
the environment for supporting human activities at large (cognition, reasoning,
learning, etc.).

From an engineering point of view, artifacts model those parts of the system
that are not effectively described as goal-oriented knowledge-based systems, act-
ing to attain goals, but more as function-oriented or service-oriented components
used by the goal-oriented ones. Like artifacts designed for humans, a key feature
of artifacts designed for agents is given by the affordances that they provide to
enable their (effective) use by agents, defining the underlying interaction model
at the proper level of abstraction. In the A&A model, these affordances are based
on observable properties, operations (actions, from the agents’ viewpoint), and
observable events [19]. Another concept is the artifact manual, i.e. a document
describing what are the functionalities of an artifact and how to interact with it.

Nevertheless, in order to be exploited by intelligent agents at the Knowledge
Level, artifacts should be designed and conceived at the same level. In the next
section, as a core contribution of this paper, we discuss how the A&A conceptual
model can be further refined and extended for this purpose.

3 Artifact-Based Environments at the Knowledge Level

Using A&A at the Knowledge Level means that the artifact-based environment is
meant to be used by intelligent agents to perceive and act upon domain entities
— possibly representing assets in the real world — as well as to create and
exploit resources and tools that are instrumental for attaining their goals. For
this purpose, we envision a further refinement or characterisation of the A&A
model in which:

– Artifacts should be semantically ground to domain entities at the Knowledge
Level : their affordances and their manuals should be described at that same
level of abstraction;

– Relationships among entities at the domain level should be explicitly rep-
resented and reified at the artifact level so that agents can reason about
them;

– Workspaces – another main concept in A&A - can be used to define bound-
aries for agent activities, i.e. contexts where one or multiple agents can create
and share one or multiple artifacts, as well as logical contexts that share the
same domain vocabulary to describe the entities within them.

To support this refinement, we introduce an explicit semantic layer for A&A,
not bound to any specific domain but expressive enough to support the design
of artifact-based environments eventually involving multiple domains and on-
tologies. The semantic layer is based on the concept of knowledge graph [8]. A
Knowledge Graph (KG) is “a graph of data intended to accumulate and convey
knowledge of the real world, whose nodes represent entities of interest and whose
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Fig. 1. Smart room scenario. On the left: the three artifacts, representing a room, a
presence sensor, and a light. On the right: the corresponding Knowledge Graph.

edges represent relationships between these entities” [8]. An artifact-based envi-
ronment can then be mapped into a KG where each artifact has a corresponding
node in the graph — representing an entity of interest at the domain level. Fol-
lowing the A&A meta-model, artifacts feature observable properties, actions, and
observable events. These are represented in the KG by (dynamic) data properties
of the corresponding entity, i.e. as a relationship between the entity and a typed
value. To capture relations among entities (edges between nodes) we extend the
artifact meta-model with the concept of (observable) relationship.

As an example, let’s consider a toy smart room scenario in an Internet of
Things (IoT) context (see Figure 1). The scenario includes a room, a presence
detector, and a light as domain entities. The figure shows the three artifacts
modelling this environment (on the left), and the corresponding KG (on the
right). Let’s consider a very simple intelligent agent, situated in this environ-
ment, designed to accomplish an energy-saving goal by turning off the light
when no one is in the room, and turning it on if someone enters (and the light
is off). In order to accomplish its goal — defined at the Knowledge Level — the
agent can exploit the artifact-based environment, whose semantics are defined
by the corresponding KG. In particular, the agent may continuously observe
the presence detector and turn on/off the light by acting on the lamp. For this
purpose, the agent may start observing the presence detector by doing a focus
on the corresponding artifact. In A&A, by issuing a focus on some artifact Ar,
an agent starts perceiving the observable state of Ar and the observable events
generated by Ar, including those related to changes about observable properties.
Then, as soon as it perceives that someone has been detected, e.g. by perceiving
an observable event generated by the artifact representing the presence detector,
the agent may turn on the light by acting on the corresponding artifact — if the
light was not already on (this state can be perceived by the agent by observing
the lamp as well).

The semantic extension based on KG allows to substantially empower the
expressiveness of the basic capabilities provided by artifact-based environments.
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3.1 Querying and Observing at the Knowledge Level

In A&A, an agent has a primitive action read-obs-property(Ar,P) to retrieve the
current value of an observable property P of an artifact Ar. By mapping an
artifact-based environment into a KG view it is possible to make more expressive
queries, involving graphs of entities (artifacts).

In this paper, we consider RDF6 as a standardised data model for represent-
ing KGs. A KG can be represented as an RDF graph, that is a set of triples
(subject, predicate, object) where each triple represents a property or re-
lationship of the subject entity. For instance, in our case, the subject could
be an artifact identified by a uniform identifier (e.g., a URI7 or an IRI8). The
predicate could describe a data property – as triples where the identifier of the
property is used as predicate – or a relationship to another artifact – as triples
where the identifier of the relationship is used as predicate and the object is the
identifier of another artifact. Given an RDF representation of a KG, the graph
can then be queried using SPARQL9.

Accordingly, any artifact-based environment extended at the Knowledge
Level can then be described in RDF and queried by agents using SPARQL.
For example, in the toy scenario suppose that the room may have multiple lights
referred to by the light relationship. An agent can query the environment to find
out which lights in the room are on:

SELECT ?light
WHERE { "room-4022" :light ?light .

?light :state "on" .}

Besides querying, continuous observation can also be empowered. In particu-
lar, we can introduce and exploit a variant focus-all of the focus primitive action
so that by issuing a focus-all on an artifact Ar, an agent may perceive the ob-
servable state and future observable events not only of the specific artifact but
of all artifacts linked to that artifact, according to the relationships in place.
In the toy scenario, for instance, a focus-all on room-4022 would imply to start
observing the room, as well as the presence detector and the light.

3.2 Semantic-driven Creation of Artifacts in Workspaces

Framing an artifact-based environment at the Knowledge Level implies that the
dynamic construction and extension of the environment should be characterised
at that level as well. In particular, the dynamic creation of an artifact, possibly
linked to or linked by some other artifacts, should be a possibility provided by
the environment — grounded at the domain/semantic level.

For instance, extending the smart room example introduced above, a personal
assistant agent could detect that its user has entered a room. Accordingly, it
6 https://www.w3.org/TR/rdf11-concepts/
7 https://www.rfc-editor.org/rfc/rfc3986
8 https://www.rfc-editor.org/rfc/rfc3987
9 https://www.w3.org/TR/sparql11-query/

https://www.w3.org/TR/rdf11-concepts/
https://www.rfc-editor.org/rfc/rfc3986
https://www.rfc-editor.org/rfc/rfc3987
https://www.w3.org/TR/sparql11-query/
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might want to make some data about the user available to other agents (e.g.
a room manager agent) by creating a UserProfile artifact in the smart room
workspace, linked by the room artifact by means of a user relationship, to expose
data about his desired light level.

In basic A&A, a primitive action make-artifact is provided for instantiating a
new artifact by specifying the template and construction parameters [19]. The
action corresponds to an operation provided by a pre-defined workspace artifact
available in each workspace, providing basic capabilities to work inside that
workspace (to create and dispose of artifacts, to focus on artifacts, etc.).

Raising A&A at the Knowledge Level implies to revise this mechanism in
order to allow for driving and constraining artifact creation at the domain/se-
mantic level. Accordingly, each workspace, as a context of semantically-driven
agents’ activities, may be initially configured — at workspace creation time —
with an artifact representing from the agent point of view the single entry point
of the context, providing the initial set of actions to extend/develop it, accord-
ing to the possibility defined for that context at the semantic level. In the smart
room scenario, the SmartRoom artifact would function as an entry point, pro-
viding a notifyNewUser operation, creating a new UserProfile artifact and the
relationship user linking to it.

4 Bringing CArtAgO at the Knowledge Level

To start exploring in practice the vision brought by this paper, we developed
a semantic layer on top of the existing CArtAgO framework, which is the main
reference implementation for the A&A meta-model and part of the JaCaMo [1]
platform. For this first integration, we focused on generating a semantic descrip-
tion of the artifacts so that agents could exploit the resulting Knowledge Graph
to query the environment. We considered examples with just one workspace with
a centralised KG associated to it to start with.

The KG is empty at the beginning of the application. When instantiat-
ing new artifacts, they automatically add their own semantic description and
generate an ontology based on the artifact class implementation. The imple-
mentation uses Apache Jena10 framework and RDF triplestore wrapped in
a SemanticEnvironment interface. The class SemanticArtifact extends the
CArtAgO Artifact base class, adding to the base behaviour the automatic in-
sertion and update of RDF triples to the KG when needed (e.g. when initialising
the artifact, when updating observable properties, etc.).

Listing 1.1 shows how an artifact can be defined with the new API. The
lightswitch artifact has a pressed observable property and a controls relation-
ship with the light artifact it is controlling.

1 public class LightSwitchArtifact extends SemanticArtifact {
2

3 void init(boolean isPressed , String idConnection){

10 https://jena.apache.org/

https://jena.apache.org/
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4 super.init(this , this.getId().getName ());
5 defineObsProperty("pressed", "boolean", isPressed);
6 defineRelationship("controls", idConnection);
7 }
8 @OPERATION void press() { setPress(true); }
9 @OPERATION void release (){ setPress(false); }

10

11 private void setPress(boolean p){
12 updateValue(pressProperty , this.press);
13 }
14 }

Listing 1.1. An example of how to use the SemanticArtifact API to define an artifact.

The corresponding Knowledge Graph will have the definition of the ontology,
and of the instances of the artifacts in the environment. In Listing 1.2, an RDF
serialisation of the knowledge graph with the instances of two artifacts is shown
using Turtle syntax.

1 @prefix : <http :// example.org/> .
2 @prefix owl: <http :// www.w3.org /2002/07/ owl#> .
3

4 :lamp_0 a owl:NamedIndividual , :Lamp ;
5 :stateOn false .
6

7 :lightSwitch_0 a owl:NamedIndividual , :LightSwitch ;
8 :controls :lamp_0 ;
9 :pressed false .

Listing 1.2. Knowledge Graph serialisation with a Lamp and a LightSwitch

Agents can then query the generated Knowledge Graph containing all the
data about the environment exploiting the semantic layer to discover information
about the available artifacts. (Listing 1.3).

1 +! findSwitch
2 <- query("SELECT ?lamp WHERE {?l rdf:type :Lamp}", R1);
3 getValue(0, "l", R1, LampId);
4 .concat("SELECT ?d WHERE { ?d :controls :",LampId ,".}",Q);
5 query(Q, R2);
6 getValue(0, "d", R2, SwitchId);
7 .println(SwitchId , " controls ", LampId).

Listing 1.3. A Jason agent plan performing SPARQL queries on the environment to
find a Lamp and then the Switch connected to it.

5 The Road Ahead

In this paper we started crunching a vision extending A&A at the Knowledge
Level, doing some first experiments using CArtAgO. The idea has been strongly
influenced by existing work in literature about Hypermedia MAS [4,5], in which
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A&A and artifact-based environments have been taken as a conceptual model to
characterise agents situated on the Web, in a wide perspective including also Se-
mantic Web and Web of Things. Besides Hypermedia MAS, related works include
the wide literature in MAS and AOSE about integrating ontologies and Semantic
Web technologies in agent/MAS languages and platforms [13,11,12,7,3].

This vision introduces challenges and open issues at different levels, to be
tackled in future research efforts. In the following, we discuss three main ones:

Querying and observing graphs of artifacts: A main issue is about the atomicity
and consistency of SPARQL queries involving dynamic graphs of artifacts,
possibly evolving concurrently. Artifacts in an artifact-based environment
may evolve concurrently, for instance, by means of actions performed by
different agents. That is: each artifact is guaranteed to evolve atomically, but
different artifacts may evolve concurrently. The question then is: what kind
of consistency can an agent have by performing a SPARQL query over an
evolving graph? In our first exploration, a simple solution is adopted based
on workspaces, functioning as a context delimiting consistency. SPARQL
queries are guaranteed to be atomic for the graph of artifacts that belong
to the same workspace. Nevertheless, in the model proposed in this paper,
artifacts in one workspace can link via relationships to artifacts in other
workspaces — in a pure Linked Data spirit. This implies handling queries
across workspaces.

Working with ontologies: An artifact-based environment at the Knowledge Level
could concern entities belonging to different domains, possibly described at
the semantic level using different ontologies. For this purpose, the Seman-
tic Web provides a full stack of technologies in addition to RDF, such as
RDF Schema (RDFS), the Web Ontology Language (OWL), or the Shapes
Constraint Language (SHACL). A main exploration concerns then how to
enrich the support for the Knowledge Level as introduced in this paper by
considering the full spectrum of Semantic Web technologies. The abundant
literature about integrating ontologies in agent/MAS design and program-
ming (e.g. [13,11,12,7,3]) will be an important reference here.

Multi-Agent Oriented Programming at the Knowledge Level: In platforms like
JaCaMo [2,1], the agent, environment, and organisation dimensions are in-
tegrated into a coherent and synergistic model. A main issue then is to pre-
serve a coherent view about the Knowledge Level across the different dimen-
sions. In particular, in JaCaMo the A&A conceptual model – implemented
by CArtAgO – is integrated with the BDI model/architecture adopted for de-
signing and programming agents in Jason. Accordingly, the A&A/CArtAgO
extension is going to impact the way in which the knowledge about the
environment is represented on the agent side, in terms of beliefs about ar-
tifacts’ observable state and events, as well as the actions that can be per-
formed on artifacts. Existing work around AgentSpeak-DL [13] –s integrating
Description Logics for knowledge representation in AgentSpeak(L) — and
JASDL [11] — combining BDI and Jason with Semantic Web Technologies
– will be an important reference to consider for tackling this point.
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A The Hierarchy of Computer Systems

Knowledge-level systems

Medium: Knowledge
Laws: Principle of Rationality

Program-level systems

Medium: Data structures, programs
Laws: Sequential interpretation of programs

Register-transfer system

Medium: Bit vectors
Laws: Parallel logic

Logic circuits

Medium: Bits
Laws: Boolean algebra

Electric circuits

Medium: Voltage/current
Laws: Ohm's law, Kirchhoff's law

Electronic devices

Medium: Electrons
Laws: Electron physics

Fig. 2. The hierarchy of computer systems, as reported in [15] (pag. 47)
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B Knowledge Level & Social Level

Dimension Description Knowledge level Social level
System Entity to be de-

scribed
(asocial) Agent Agent organisation

Components The system’s primi-
tive elements

Goals, Actions Agents, Interaction
channels, Dependen-
cies, Organisational
relationships

Compositional
law

How the components
are assembled

Various Roles, Organisation’s
rules

Behaviour law How the system’s
behaviour depends
upon its composition
and components

Principle of rational-
ity

Principle of organisa-
tional rationality

Medium The elements to be
processed to obtain
the desired behaviour

Knowledge Organisation and
social obligations,
Means of influencing
others, Means of
changing organisa-
tional structures

Table 1. Summary of the knowledge and social levels as reported in [10]
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