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Abstract. The emergence of smart grid technology has opened the door
for wide-scale automation in decision-making. A distribution company,
an integral part of a smart grid system, has to procure electricity from
the wholesale market and then sell it to customers in the retail market by
publishing attractive tariff contracts. It can deploy autonomous agents to
make decisions on its behalf. In this work, we describe the tariff contracts
generation strategy of one such autonomous agent, which is based on
a Contextual Multi-armed Bandit (ConMAB) based learning technique
to generate tariff contracts for various types of customers in the retail
market of smart grids. We particularly utilize the Exponential-weight
algorithm for Exploration and Exploitation (EXP-3) for ConMAB-based
learning. We call our proposed strategy GENERATETARIFFS-EXP3. Our
previous work shows that maintaining an appropriate market share in
the retail market yields high net revenue. Thus, we first present a game-
theoretic analysis that determines an optimal level of market share. Then
we train our proposed strategy to achieve and maintain the suggested
level of market share by adapting to the market situation and revising
the tariff contracts periodically. We validate our proposed strategy in
PowerTAC, a close-to real-world smart grid simulator, and showcase that
it is able to maintain the suggested market share.

Keywords: Contextual Multi-armed Bandit (ConMAB), EXP3, Smart
Grids, Tariff Generation in Multi-agent Environment, PowerTAC

1 Introduction

Recent years have seen rapid growth in smart grid technology. Some developed
nations have already adopted smart grid technology to replace the conventional
grid system. Fundamentally, just like a conventional grid, a smart grid is also
an electricity network that supplies electricity to customers; however smart grid
enables two-way digital communication where customers can also communicate
with electricity providers. It also allows for monitoring, analysis, control and
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communication between participants to improve the efficiency, transparency, and
reliability of the system [14].

The smart grid system comprises the wholesale and retail markets, transmis-
sion lines, and distribution company (DC) as the prominent players. The DCs
play a significant role in smart grid operations and are responsible for the effi-
cient functioning of the system. The major tasks of DC are to buy electricity
from the wholesale market, sell electricity to retail customers by generating lu-
crative yet profitable tariff contracts, and manage the supply-demand balance
in the smart grid system. The transmission lines are responsible for electricity
transmission from GenCos to retail customers.

The retail market of a smart grid, which is the focus of this work, incorpo-
rates various types of customers like households, office spaces, villages, producers
(customers having solar panels or wind turbines), electric vehicles, battery stor-
age, and a few others. Some of these customers have the capability to change
their electricity usage pattern based on the signals from the DC, commonly in
the form of tariff contracts. To cater to the variety of customers, tariff contracts
too can be of multiple types. For example, (i) Fixed Price Tariff (FPT) having
the same rate values for all hours in a day/week, (ii) Time of Use (ToU) tariff
having different rate values for different hours in a day/week, (iii) Tier tariffs
having different rate values corresponding to different usage slots, (iv) variable
tariffs where rate values can change dynamically, or (v) combination of any of
the above tariff types. DCs decide the appropriate tariff types and tariff rate
values for the customers in its portfolio.

The smart grid system is quite complex in nature, and it is practically im-
possible to test or validate the new strategies on the real-world smart grid sys-
tem. Thus, in order to aid in smart grid research, Power Trading Agent Com-
petition (PowerTAC) designed a close-to-real-world smart grid simulator [4].
PowerTAC simulates all the crucial elements of a smart grid system mentioned
above. In PowerTAC, DC are commonly known as electricity broker or broker
or agent. PowerTAC embodies a variety of customer models to represent the
wide variety of customers as seen in the real world. It supports all kinds of tar-
iff contracts mentioned earlier. Furthermore, PowerTAC introduces a balancing
market that handles the real-time balancing of supply and demand. It penalizes
agents in case of an imbalance in their portfolio.

The smart grid technology enables the use of adaptive autonomous agents to
make crucial decisions on behalf of DC, and a simulator like PowerTAC helps
analyze the effectiveness of such agents. To this end, PowerTAC organizes an
annual tournament where participating teams design an autonomous agent that
acts as DC and makes all the decisions in the simulated smart grid environment.
The agents are required to design suitable strategies for the wholesale, retail and
balancing markets. In this work, we specifically focus on the emphtariff contract
generation problem in the retail market of the smart grid. To generate a new
tariff contract, an agent needs to decide the tariff contract type and the tariff
contract’s rate values. The tariff contracts are public information; any agent and
a customer in the simulation can see all the active tariffs in the retail market.
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Thus, if an agent does not adapt to the changing market situation and does not
update its tariff contracts periodically, any opponent agent can offer better tariff
contracts and take away all the customers. Thus, it is paramount to update tariff
contracts periodically, which can be done using either heuristic-based approaches
or learning-based approaches.

In the PowerTAC literature, authors have proposed gradient-based MDP-
based strategies [2], optimization strategies [15], and genetic algorithm based
approaches [16] to publish tariff contracts in the retail market. The experimen-
tal evidence suggests that the seemingly optimal class of strategies of capturing
all the market share may suffer from high grid balancing penalties as all the cus-
tomers are subscribed to one agent, and that agent alone has to bear the total
penalty for the grid imbalance. To remedy this, agent TUC TAC proposed a
strategy aimed at acquiring only half the retail market share [10]. However, all
the above strategies except TUC _TAC sought to maximize the revenue/profit
without explicitly controlling the agent’s market share. Furthermore, the major-
ity of the above retail strategies, including TUC _TAC, have been generic and
are not effectively specialized for different player configurations and therefore
fail to maintain performance across different player configurations.

To overcome the above problems, we, team VidyutVanika, designed an au-
tonomous agent that emerged as the champion of the PowerTAC tournament in
the year 2021 and 2022 [1]. The tariff strategy of our agent is inspired by the
game theory literature that decides the optimal market share for various player
configurations and uses heuristic-based techniques to achieve and maintain that
market share during the simulation. In this work, we replace our heuristics-based
strategy with a learning-based strategy to achieve similar performance. For that,
we design a tariff strategy that learns to achieve and maintain the optimal mar-
ket share. We model this problem by utilizing techniques derived from Con-
textual Multi-armed Bandit (ConMAB) and solve using the Ezponential-weight
algorithm for Exploration and Exploitation (EXP-3). Our novelty lies in the for-
mulation of the learning framework; as opposed to previous strategies that aim
to maximize profit, we aim to maintain the optimal market share via a learning-
based strategy which in turn reduces other costs and makes our agent profitable.
We use ConMAB as its problem setting resembles the tariff generation problem
in hand, where given a context, an agent has to pick an appropriate tariff (an
optimal arm of ConMAB) that enables it to maintain the appropriate market
share and, in turn, delivers higher returns. In summary, our contributions are as
follows:

— We present game theoretical analysis to determine an optimal market share
for various player configurations by modeling the PowerTAC games as two-
player zero-sum games and calculate their mixed strategy Nash equilibrium.

— We propose a novel Contextual Multi-armed Bandit-based tariff contract
generation strategy GENERATETARIFFS-EXP3, that learns to achieve and
maintain the market share suggested by game theoretical analysis.

— We showcase the policies learned by the proposed strategy and its efficacy
in maintaining the suggested market share during the PowerTAC games.
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2 Related Work

Many approaches in the literature have been suggested to tackle the tariff gen-
eration problem, and a few have been implemented in PowerTAC as well. In the
retail market of smart grids, techniques such as demand response, peak demand
pricing, and learning-based approaches have been proposed to design compet-
itive tariffs. Many multi-armed bandit-based strategies have been proposed to
publish tariffs in the smart grid domain. Most of this work focuses on demand
response in a smart grid where customers are incentivized via tariffs to curtail
their usages in response to electricity supplier’s signals [3,13,7,6,9, 5].

In the past PowerTAC tournaments, Markov Decision Process (MDP) based
strategies were most popular in the retail market. The past brokers like COLD
Energy and VidyutVanikal8, as well as Reddy & Veloso, modeled the decision
process in the retail market as an MDP to generate tariff contracts [11,12,2]. In
fact, both COLD Energy and VidyutVanikal8’s tariff strategies were motivated
by Reddy & Veloso. In these approaches, the state space is constituted by market
parameters such as market rationality, agent’s portfolio status etc. and action
space was designed with actions to increase or decrease the rate value of tariffs
by a certain amount. The reward function was profit in the market. TacTex’13
employed a gradient-based optimization method for tariff generation, and Agen-
tUDE17 utilized a genetic algorithm-based tariff strategy [15,16]. However, all
the above strategies incur high grid imbalance costs as they do not focus on
the market share of customers in their portfolio. Agent TUC _TAC proposed a
strategy to acquire only half the retail market share [10] for each type of game
configuration. Motivated by TUC TAC’s idea, we designed a heuristic-based
tariff strategy backed by game theoretical analysis to determine the optimal
market for various game configurations [1]. Furthermore, instead of focusing
on revenue,/profit, we aimed to maintain the appropriate market share, which
helped us earn high returns. However, none of the previous works present an
equilibrium-based strategy that can be learned online in the retail market. The
novelty of this work lies in designing a game-theory-inspired ConMAB-based
retail strategy that learns to achieve and maintain equilibrium market share in
the retail market.

3 PowerTAC Simulator: An Overview

PowerTAC is a simulation platform that mimics essential components of a smart-
grid ecosystem comprising retail, wholesale, balancing markets, and distribution
companies (DCs). The wholesale market consists of GenCo, which sells electric-
ity via auctions; the balancing market manages the real-time balance of supply
and demand. The retail market consists of state-of-the-art customer models that
simulate real-world smart grid users, including consumers, producers, and stor-
age users such as households, offices, villages, hospitals, and renewable energy
producers. Storage customers use electric vehicles or batteries to store electricity
and supply it to the grid on demand. PowerTAC allows deploying an autonomous
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agent to automate a DC’s operations in retail, wholesale, and balancing mar-
kets to earn profits. PowerTAC also organizes an annual tournament in which
numerous teams deploy autonomous brokers to compete in all three markets.
The tournament consists of multiple games organized between agents in differ-
ent player configurations and varying weather conditions, with each game lasting
around 60 simulation days. During the game, an agent aims to develop a sub-
scriber base in the retail market by offering competitive tariffs, such as FPT,
tiered, variable or ToU, to sell energy bought in the wholesale market. Agents
can also manage grid imbalances through subscriptions to storage customers.
Agents update their tariffs periodically based on other available tariffs in the
market, market and weather conditions, and customers’ responses to previous
tariffs. In the simulation environment, agents are provided with information that
helps them make decisions. All agents in the retail market can see new and re-
voked tariffs and weather information. The final cash position of all brokers
across games is aggregated to determine the tournament winner. A comprehen-
sive simulator description is available in the 2020 PowerTAC specifications by
Ketter et al. [4].

4 VidyutVanika (VV): Retail Module

In this section, we show the generic system architecture of our agent Vidyut-
Vanika, which emerged as the champion in the last two editions of the PowerTAC
tournaments, namely PowerTAC’21 and PowerTAC’22. As shown in Fig. 1,
VidyutVanika incorporates a wholesale module and a retail (tariff) module. It
also has various repositories to store the important information received from the
server. These repositories contain information about the weather, wholesale mar-
ket procurement cost, all available tariffs in the market and customers’ electricity
usage patterns. In the current work, we only focus on the retail module; thus, we
take our wholesale module as a black box that places bids in the wholesale mar-
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Algorithm 1 TariffDesigner(avgPrice, powerType)

pattern < DefineWeekly TariffPattern().
s[] + DefineSurplusMultipliers(pattern)
1

X s;*normRate .
find normRate : =“=1—sr——— = avgPrice

68
rate[i] < s; * normRate, fori € {1,2,...,168}
ToUTariff < CreateTariff(rate, powerType)
return ToUTariff

ket auction and procures the required energy. We replaced the heuristic-based
retail strategy used in the PowerTAC’21 and PowerTAC’22 tournaments with
proposed ConMAB-based retail strategy, GENERATETARIFFS-EXP3.

As shown in the figure, the retail module consists of two submodules, namely,
GENERATETARIFFS-EXP3 Tariff Enhancer (TE) and Tariff Designer (TD). The
TE submodule comprises the proposed ConMAB-based tariff contract generation
strategy, which is solved using the EXP-3 algorithm. This submodule observes
the optimal market share for the ongoing game’s player configuration by con-
tacting the game theory module, then based on the ConMAB-based learning
till that point, it picks the suitable action to enhance the current tariff. This
TE sub-module calculates mean tariff rates that would maintain the appropri-
ate market share. The TD sub-module designs weekly ToU tariffs by taking the
mean rates suggested by TE as input. Below, we describe the details of the TD
sub-module, while the details of the TE sub-module are deferred to the following
sections.

Tariff Designer (TD): Algorithm 1 outlines TD, which is responsible for de-
signing a weekly ToU tariff based on the average input price (avgPrice) received
from TE. TD first generates a binary weekly tariff pattern using the Define-
Weekly TariffPattern() method, which identifies peak and non-peak hours by
analyzing historical net market demand values retrieved from past PowerTAC
tournaments. Peak hours are determined to be times of high demand, such as
morning and evening hours. TD then uses the DefineSurplusMultipliers() method
to set surplus multipliers s; for each of the 168 hours in a week. These multipliers
are greater than 1 for peak hours and 1 for non-peak hours. s; depends on the
peak magnitude observed from market demand data for peak hours. Thereafter,
we calculate the normRate, which, after getting multiplied with s; values of the
week, results in avgPrice on an average. These normRate values with surplus s;
values are the rate values of the newly generated ToU tariff.

5 Game Theory to Determine Optimal Market-share

This section presents the game-theoretical analysis to decide an optimal market
share for various player configurations of PowerTAC games, which is then used in
the TE submodule to design suitable ToU tariffs. We show the analysis for three
different player configurations of PowerTAC games, namely, 2-Player, 3-Player,
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and 5-Player games. We construct a utility matrix for each player configuration
by modeling the PowerTAC games as two-player zero-sum games, solving which
results in an equilibrium market share. To assist the reader, we introduce a few
definitions before proceeding further.

The below analysis is first presented in our previous work [1], where we
presented the analysis briefly. Here, we include more details and present the
complete analysis for all three player configurations under consideration, along
with respective utility matrices. Furthermore, we utilized the below analysis
to design a heuristics-based tariff strategy for our broker VidyutVanika during
the PowerTAC’21 and PowerTAC’22 tournaments. The tariff strategy aimed to
maintain the market share suggested by the game theory analysis using intel-
ligent heuristics. In this work, too, we aim to maintain the suggested market
share, albeit by following a more methodological way, that is, by incorporating
the game theoretical analysis in the tariff strategy and framing the tariff con-
tracts generation problem as a learning problem; and learning to improve tariffs
online by looking at the market situation with the help of ConMAB-based tech-
niques. A detailed description of the tariff strategy framework is included in
Section 6.

Definition 1 (Mixed Strategy). For player i, its mized strategy o; is a prob-
ability distribution over the strategy set S;, i.e., 0;(s;),s; € S; indicates the
probability with which player © plays s;.

Definition 2 (Mixed Strategy Nash Equilibrium (MSNE)). Given a N
player game I' =< N, (S;), (u;) >, a mized strategy profile (07, ...,0%) is called

a mized strategy Nash equilibrium if, Vi € N, w;(of,0%,) > u;(0;,0%,),Yo; €
A(S;). o*,; denotes mized strategies of all players except i.

The utility of the row player is defined in Equation 1, which is the difference
between the average final cash positions of the row and column players. This
way of modeling the utility matrix helps us to maximize the difference between
VidyutVanika’s average cash position and the opponent’s average cash position,
thereby helping VidyutVanika generate higher profits than opponents. As we
formulate this as a zero-sum game, the column player gets negative of the utility
calculated in Equation 1.

T T
i= i=

wlses) = £ 3m =307 3w (1

1 1

In Eq. 1, z; denotes the final cash balance of VidyutVanika in the game i,
while y;, denotes the final cash balance of opponent agent & in the game 7 and
n denotes the number of opponent agents in the game. For our analysis, the
average values are taken over T' = 5 games.

In our modeling, we select VidyutVanika as the row player, and a subset of
opponents, depending on the player configuration, act as a sole column player.
The row player’s (VidyutVanika’s) strategy set is given by S; = {0%, 15%, 30%,
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Fig. 2: 3-Player Games Analysis (Utility Values in Millions)

45%, 60%, 75%, 100%}, where each element in the set S1 specifies the target mar-
ket share that VidyutVanika has to maintain during the simulated games. We
have five agents from past PowerTAC tournaments to act as opponents in our
analysis, namely, TUC_TAC (TT) [10], VidyutVanikal8 (VV'18) [2], Vidyut-
Vanika20 (VV20), CrocodileAgent (C) and AgentUDE (A) [16]. The column
player strategy set S2 depends on the player configuration. For example, in a
2-Player game configuration, we need only one opponent against VidyutVanika;
thus, S2 = {TT, VV18, VV20, C, A}. Similarly, in a 3-Player game configura-
tion, we need two opponents against VidyutVanika, which is to be selected from
the available set of five agents; thus, total 5¢2 elements is the set S2 as shown
in Figure 2.
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(a) 5-Player Games Analysis (b) 2-Player Games Analysis

Fig.3: Games Analysis (Utility Values in Millions)

Equilibrium Calculation:Figures 3b, 2 and 3a show the utility matrices for
2-Player, 3-Player, and 5-Player configurations, respectively. Each cell describes
the utility value, a cash difference in millions calculated by playing a set of T
games. The same process is repeated for all the combinations of VidyutVanika’s
strategies (S1) and opponents’ strategies (52) to create the full utility matrix.
Thereafter, we use Gambit [8] to solve the game and output the Nash Equi-
librium. We found that each of the above three player configurations exhibits
Mixed Strategy Nash Equilibrium (MSNE).

— For 2-Player Configurations: Based on Figure 3b, the utility matrix
leads to Pure Strategy Nash Equilibrium of 60% market shares.

— For 3-Player Configurations: Based on Figure 2, the utility matrix leads
to MSNE of randomizing between 45% and 60% market shares with proba-
bilities 0.8 and 0.2, respectively, which results in equilibrium market share
of 48% (0.8 x 45 4 0.2 % 60).
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— For 5-Player Configurations: Based on Figure 3a, the utilitys matrix
leads to MSNE of randomizing between 30% and 45% market shares with
probabilities 0.43 and 0.57, respectively, which translates to equilibrium mar-
ket share of 38.55% (0.43 % 30 + 0.57 * 45).

The same results can be seen visually as well; the green-shaded regions in
the figures show the strategies having the higher utilities w1 (o7, 0" ) than the
remaining strategies uj(o1,0*;) for row-player VidyutVanika, which leads to
above-calculated MSNEs.

Adopting Equilibrium in PowerTAC Games: The above analysis suggests
how we should randomize to achieve equilibrium market share. However, due to
the stochasticity of the PowerTAC simulation and customer models, it is not
easy to maintain one particular market share across different games. Hence, we
aim to maintain market share within specific bounds ([middle, high]). Thus,
in our experiments, we treat the above-calculated equilibrium market shares as
the higher bounds (high) on the desired market share. We further define the
middle bounds (middle), which is 0.7 * high. We aim to maintain the market
share between middle and high, and thus, to train GENERATETARIFFS-EXP3,
we give 0.85 % high ((1+ 0.7)/2 = 0.85) as the target optimal market share. So,
for 2-Player, 3-Player, and 5-Player configurations, target optimal market shares
for GENERATETARIFFS-EXP3 are 51%, 40.8%, and 32.3%, respectively.

6 Tariff Strategy: A Contextual MAB Approach

In the previous section, we showcase how we determine the optimal market
for various player configurations. Based on our previous work, we also stated
that maintaining a market share close to the optimal market share is sufficient
to achieve effective profits in the market. Motivated by this, in this section,
we showcase the formulation of the proposed GENERATETARIFFS-EXP3. The
proposed strategy is modeled as a Markov Decision Process (MDP) consisting of
a tuple < S, A, P, R >. S represents the state space of the MDP, A denotes the
action space and R denotes the rewards of the MDP. P represents the transition
probabilities of the MDP, that is, the probability with which MDP transition
to the next state by taking action in the current state. However, the model
does not know the transition probabilities. To learn the optimal action in each
state (called a policy) in the absence of transition probabilities, we use ConMAB
techniques along with the EXP-3 algorithm. Below we describe how the MDP is
formulated and optimal policies are learned.

6.1 State Space

Here, we define the state space of the GENERATETARIFFS-EXP3 We construct
state space depending on the difference between the current market share (CM S)



10 Sanjay Chandlekar et al.

of the GENERATETARIFFS-EXP3 and the optimal market share (OMS) sug-
gested by the game theory module in Section 5. Let us denote the difference
between both the market shares by A, so

A=(OMS—-CMS)
. We categorize A into seven buckets, as shown below.

— State 0: |[A] < OMS x0.1

— State 1: A >OMS *x0.1 and A <OMS x0.4

— State 22 A > OMS %04 and A <OMS 0.7

— State 3: A > OMS % 0.7

— State 4: —A > OMS 0.1 and —A<OMS 0.4
— State 5: —A > OMS 0.4 and —A < OMS x0.7
— State 6: —A > OMS *0.7

The above state space is designed in such a way that it gives the reflection
of the GENERATETARIFFS-EXP3’s current situation in the tariff market. For
example, suppose the OMS for a game configuration is 50%, then the State
0 occurs when the broker’s CMS is within +£5% difference of the OMS (i.e.,
between 45% to 55%). Similarly, State 1 happens when the broker’s CMS is
lower than the OM S, and the difference between OMS and CMS (OMS —
CMS) is more than 5%, but less than 20% (between 30% to 45%). The states
1, 2 and 3 represent the situation when the broker’s C'M.S is lower than the
OMS. Replicating the similar logic for the other side as well, states 4, 5, and 6
represent the situation when the broker’s C'M .S is higher than the OMS. The
State 4 results in when the difference between CM S and OM S (—OMS+CMS)
is more than 5%, but less than 20% (between 55% to 70%). The above seven
states cover all possible differences between the broker’s CM .S and the OMS.

6.2 Action Space

The action space of the GENERATETARIFFS-EXP3 generates a new tariff con-
tract in the tariff market. As discussed in Section 3, a broker needs to come up
with rate values to design a new tariff contract. GENERATETARIFFS-EXP3’s ac-
tion space modifies the currently active tariff or suggests keeping the sane tariff
active. Below is the action space,

— Action 0: step = 0.0 [Maintain]
Action 1: step = —0.02 [Lower]]
Action 2: step = —0.04 [Lower2]
— Action 3: step = 0.02 [Higherl]
— Action 4: step = 0.04 [Higher2]

As shown in the action space, GENERATETARIFFS-EXP3 can choose one
of the five actions at any instance. The action selection problem is modeled
as a MAB problem, which is solved using EXP-8 algorithm in Section 6.4. At
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any instance, GENERATETARIFFS-EXP3 can choose to maintain or modify the
current tariff. If it chooses to modify the current tariff, it can either decrease
the rate value of the currently active tariff or increase the rate value. The above
action space provides two options for both scenarios; Lowerl or Lower2 to
decrease the rate value and Higherl or Higher2 to increase the rate value.
After selecting an action, we decide the rate value of the new tariff by adding
the step value of the selected action to the currently active tariff’s average rate
value. Thus generated new rate value is given to the TD sub-module that designs
and publishes the new ToU tariff in the market. Note that, in PowerTAC sign
convention, consumption tariffs are negatively valued as customers need to pay
that amount; thus, actions such as Lowerl and Lower2 would make tariffs more
negative (less attractive for customers), and actions such as Higherl and Higher2
would make tariff less negative (more attractive for customers).

6.3 Reward

The reward function is defined in line with the state space, as shown below.

— reward = 1.00, if |4] < 5%
— reward = 0.50, if |A| <20%
— reward = 0.25, if |A| < 35%
— reward = 0.00, otherwise

The above reward function awards the GENERATETARIFFS-EXP3 based on
its ability to achieve market share close to the OMS. It gets the highest reward
of 1 when the absolute difference between the broker’s CM S and the OMS is
less than 5%. Similarly, it gets a slightly worse reward when the difference is
more than 5% (but less than 20%). The worst case happens when the market
share achieved by GENERATETARIFFS-EXP3 is far away from the OMS (the
difference is more than 35%); in that case, GENERATETARIFFS-EXP3 receives
a zero reward.

6.4 EXP-3 Algorithm

The above contextual MAB-based tariff generation problem is solved using the
Ezxponential-weight algorithm for Exploration and Ezxploitation (EXP-3 algo-
rithm). Generally, EXP-3 is used for non-contextual MAB problems but can also
be extended for contextual MAB problems. For each state in the state space,
It maintains a list of weights for each action in the action space. Using these
weights, it stochastically decides which action to take next, and based on the
reward received, it increases or decreases the relevant weights. Thus generated
table resembles with Q-Table in Reinforcement Learning (RL). In RL Q-Table,
the values of the state-action pairs denote how good it is to take that action in
the given state in the long run, whereas, in ConMAB, the state-action pairs have
the same interpretation albeit for an immediate future. Due to the similarity,
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Algorithm 2 Contextual EXP-3(state s)

1: Initialize/Load table[|S|][|A]]
2: pTOb(S,i,t) = (1 - 7)% + {YTPVZ € {1727 ) |A|}

table(s,a,t)

a=1

3: Sample next action act stochastically from
[prob(s,1,t), prob(s,2,t),...,prob(s,|A|,t)]

4: Observe reward r(s, act,t) for taking action act in state s at t

5: Update the reward:
7(s,a,t) = r(s,a,t)/prob(s,a,t), if a = acty
7(s,a,t) = 0, otherwise

6: table(s,i,t + 1) = table(s,i,t) » 7"/ i e {12, |A|}

we call the table generated by ConMAB as Q-Table. We introduce an egalitari-
anism factor v € [0, 1], tuning the desire to randomly pick an action. That is, if
v = 1, the weights do not affect the choices at any step. Algorithm 2 shows the
modified EXP-3 algorithm for contextual MAB:

Algorithm 2 takes the current state s as the input. If the table is empty (at
the start of the training), then initialize it with suitable values; otherwise, load
the previously created table into memory. As described earlier, the dimensions
of this table are |S| « |A| (the size of state space S * the size of action space
A). In the next step, we weigh the actions based on the corresponding values
stored in the table. The probability of selecting an action 7 in state s at time
t (prob(s,i,t)) is directly proportional to the corresponding state-action pair at
time (table(s,i,t)). Here, an egalitarianism factor v € [0,1] also plays a role
in action selection; v = 0 would calculate probabilities purely based on table
values, while v = 1 would assign the same probability to each of the actions.
After calculating the probabilities for each action ¢ in state s, in step 3, the
algorithm stochastically picks one action based on the calculated probabilities.
In step 4, the algorithm observes the reward r(s,a,t) for taking action a in
state s at time t. After that, in step 5, the algorithm updates the reward based
on whether the action was selected or not; the new reward function 7(s,a,t)
is inversely proportional to the probability prob(s,a,t). If the action was not
selected, then the 7(s,a,t) is set to zero, as expected. Finally, in step 6, the
algorithm updates the table; only the state-action pair that got selected at time
t gets updated, while other values in table remain unchanged. These updates are
exponential in nature and proportional to the new reward 7(s, a,t).

The EXP-3 algorithm deals with the explore-exploit dilemma by stochasti-
cally selecting an action based on the calculated probabilities in step 3. This step
ensures picking the best-known action till now with higher probability while also
occasionally selecting 'not so good’ actions. After selecting any action and get-
ting the corresponding reward in that state, it weighs the reward with respect to
the probability. A reward for low-probability actions gets enhanced even further,
allowing the algorithm to revisit those actions. Thus, the EXP-3 algorithm visits
all the state-action pairs a sufficient number of times. In the next section, we
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show how GENERATETARIFFS-EXP3 learns the policies to maintain the optimal
market shares in each player configuration.

7 PowerTAC: Experiments and Results

In this section, we describe how the strategy described in Section 6 is deployed
to the PowerTAC games. We further demonstrate how the learning process for
EXP-3 is carried out in PowerTAC environment. We start by detailing the ex-
perimental setup, followed by the results and discussions.

7.1 Experimental Set-up

Q-Table Training: As the broker needs to adapt to various player configu-
rations in PowerTAC, we deploy separate tariff MDP and EXP-3 algorithms
in each configuration. In this experiment, we train three different models for
three-player configurations, namely, 2-Player, 3-Player, and 5-Player. We chose
these three configurations as the last PowerTAC tournament (PowerTAC22) had
the same configurations. In each player configuration, we played 50 PowerTAC
games, where each game simulates the smart grid operations for two months.
At the start of the training, we initialize Q-Table with appropriate values and
publish an initial tariff in the market. We keep the same tariff active for a day
(24 hours) and then update the tariff at the start of the next day. While updat-
ing the tariff, we note the CM .S and decide the reward to update the Q-Table
as shown in Algorithm 2. This constitutes one epoch of training. After that,
based on the CM S, we calculate the current state and choose an action follow-
ing the EXP-3 algorithm, and publish a new ToU tariff in the market by using
the TD sub-module. We continue this process and record Q-Table after every
checkpoint (typically after every 100 epoch) as well as at the end of the game.
While starting a new game, we read and update the previously stored Q-Table
while training. We train GENERATETARIFFS-EXP3 for around 3000 epochs for
each configuration and store the final Q-Tables.

Performance Testing: We conduct performance testing to verify whether
GENERATETARIFFS-EXP3 is able to maintain the desired market share during
the games after getting trained. As mentioned previously, we store intermediate
Q-Tables after every checkpoint and test the effectiveness of GENERATETARIFFS-
EXP3 at various stages of the training. For this, we take Q-Tables from seven
different checkpoints, play 10 games with each Q-Table, and record the average
market shares during the games. At the end of 10 games, we record the average
and standard deviation of market shares after 10 games; we do this for all seven
Q-Tables. In this paper, we present the performance testing for the 3-Player
configuration. The following section showcases the result of this experiment.
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7.2 Results and Discussion:

In this section, we present the results of the Q-Table training for the above-
mentioned 2-Player, 3-Player, and 5-Player configurations. Furthermore, we also
show the efficacy of the GENERATETARIFFS-EXP3 in maintaining the suggested
market share during the games.

Q-Table Training: Figure 4, 5, and 6 are the final Q-Tables after training
GENERATETARIFFS-EXP3 for 50 games (around 3000 epochs) for each player
configuration. In Q-Tables, the higher the value (green-shaded region) for any
state-action pair, the higher probability of that action getting selected in the
given state.

First, focus on the 2-Player Q-Table in Figure 4. GENERATETARIFFS-EXP3
learns to maintain the currently active tariff if the current state is State 0, which
is the best thing to do as the market share is already in the desired range. In
State 1 as well, it chooses to continue with the current tariff. When the C'M S is
lower than OM S in State 2 and 3, it learns to select Higher2 action to make tariff
cheaper and very much attractive for customers to increase the CM.S and go
closer to OM S (Higher2 would add a high positive step value in the negatively
valued tariff, which makes tariff cheaper from customers’ perspective). The same
explanation is valid for the other side of the state space when the CM S is higher
than OMS. It chooses to Maintain in State 4 and go for Lower2 for remaining
states State 5 and 6 in order to make tariff less attractive for customers and
decrease the CM S and reach closer to OM S.

Fig. 4: Q-Table for 2-Player Configuration [After 50 Games]

The other two player configurations too converge to similar Q-Tables; how-
ever, the values are very different from each other. For example, in State 2,
3-Player Q-Table would select the Higher2 with high probability, while 5-Player
Q-Table would pick Higher! or Higher2 with almost equal probability. In sum-
mary, GENERATETARIFFS-EXP3 learns to decide the suitable action in each
state for all three player configurations, which empirically looks like the correct
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Fig.5: Q-Table for 3-Player Configuration [After 50 Games]

action to pick given the state. To prove that the above Q-Tables actually learn
the best actions in each state to achieve the goal of maintaining the desired
market, we carried out a performance testing for the 3-Player configuration and
report the results below.

Fig. 6: Q-Table for 5-Player Configuration [After 50 Games]

Performance Testing: Figure 7 shows the market share maintained by Q-
Tables stored at various checkpoints (at the Oth epoch, 500th epoch etc.) for a
3-Player configuration. The light blue color strip in the graph shows the desired
market share range for the 3-Player configuration. As seen from the graph, for
the Oth epoch Q-Table which has an equal probability for each section getting
selected, the market share maintained by GENERATETARIFFS-EXP3 is very far
from the desired range. After 500 and 1000 epochs, too, it is not able to maintain
market share in the desired range. However, after getting trained for 1500 epochs,
it reaches closer to the desired range. After that, for the higher number of epochs,
it maintains the market share within the desired range. The variance (shown as
the bars around the dot) is also low after 2500 epochs of training. A similar result
is achieved for the 2-Player and 5-Player configurations as well. This shows the
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Fig. 7: Market Share Maintained by GENERATETARIFFS-EXP3 w.r.t Number of
Epochs of Training for 3-Player Configuration

efficacy of GENERATETARIFFS-EXP3 that learns to update tariffs online and
maintains the desired market share during the games.

8 Conclusion

Using the Contextual Multi-armed Bandit-based technique, we described the
design of an adaptive tariff contract generation strategy, GENERATETARIFFS-
EXP3, to sell electricity in the retail market. In particular, we demonstrated
how tariff contracts could be adapted in real-time based on the market situation
using the EXP-3 algorithm that efficiently managed the explore-exploit dilemma
and visited all the states a sufficient number of times. In our strategy, we first
determined the optimal market share and trained GENERATETARIFFS-EXP3
to achieve and maintain that market share during the game. We showcased
that after training for an adequate number of games, GENERATETARIFFS-EXP3
learns the optimal action for a given state and learns to maintain the appropriate
market share during the PowerTAC games.
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