
Exploiting Service-Discovery and OpenAPI in
Multi-Agent MicroServices (MAMS)

Applications

Eoin O’Neill and Rem W. Collier

University College Dublin, Dublin 4, Ireland
eoin.o-neill.3@ucdconnect.ie,rem.collier@ucd.ie

Abstract. One of the key benefits of the MAMS [12,15,11] architecture
is to allow agents to make use of the software engineering community’s
industry standard technology while being deployed in a microservices
architecture. This paper is going to showcase a tool that allows MAMS
agents to utilise an industry standard discovery tool to interact with a mi-
croservice based on the OpenAPI Specification document that describes
the service. This interaction will be based on the “shape” of the service
which is identified by the accepted HTTP verbs at the various endpoints.
This tool also identifies the pitfalls associated with the current industry
standard with regard to service descriptions and how they could be im-
proved through the introduction of Linked Data and use of specifications
such as Hydra and Hypermedia Controls Ontology (HCTL) to make a
push from machine-readable towards machine-understandable.

Keywords: Multi-Agent MicroServices (MAMS) · OpenAPI · Hydra · Hyper-
media Controls

1 Introduction

One of the key concepts in a microservice (MS) architecture, is the notion of
bounded context. This states that each MS, following the Domain Driven De-
sign [5,6] principle, is to provide a singular ’business’ functionality. With the
shift in software engineering from monolithic software structures towards service-
oriented architectures, the integration of microservices is a key issue, as identified
by Bogner et al. [2]. The standard specification for describing an API is currently
the OpenAPI specification (OAS) 1. These descriptions, although defined as be-
ing “machine-readable” are available in formats that provide no context. The
documents themselves are geared towards the consumer having a level of tacit
knowledge with regards to integrating the services and the protocols and domain
knowledge associated with doing so.

We have built a tool that allows agents deployed in a MS context to consume
the OAS document of a service registered with an industry standard service-
discovery tool in order to facilitate interaction between software agents and a

1 OpenAPI Specification

https://swagger.io/specification/


2 F. Author et al.

service in a more generalised form in order to conform to the loose-coupling
principle of a microservice architecture. Through the use of this tool, we can
see that from an agents perspective, this standard is not fit for purpose as it
does not provide enough context with regards to the interaction which led to
the implementation of vocabularies such as Hydra [9] and Hypermedia Controls
Ontology (HCTL)2. The paper is laid out as follows, Section 2 will discuss the
related work in this area and why this work is relevant. Section 3 will discuss
the implementation of our tool, followed by our conclusion.

2 Related Work

Roy Fielding stated in [1] ”RESTful applications are, at all times, encour-
aged to use human-meaningful, hierarchical identifiers, in order to maximise
the serendipitous use of the information beyond what is anticipated by the origi-
nal application.” If we provide semantically enriched, “machine-understandable”
descriptions of services and imbue agents with the ability to integrate them how
they deem fit, then we can also ’maximise the serendipitous use of’ the appli-
cations themselves. We present work that has been done on extending service
descriptions in order to facilitate interaction and ease of integration. The re-
search presented by Yang et al in [16] presents a tool called D2Spec that iterates
through a Web API specification and determines the number of characteris-
tics that the specification includes. These characteristics include the Base IRI
of the Application, the HTTP methods used within the application and also
generates path templates to be utilised. Guo et al[7] have established a service
called APIphany which tries to achieve type directed program synthesis by se-
mantically describing the types required and returned by APIs. They manage
to achieve this by means of two methods; firstly, they create witnesses from the
OAS document of the API and run a test suite in a sandbox environment and
secondly, they observe live API traffic. From here, they rank the APIs suitability
to that of the user’s needs.

In [3], Ciortea et al. present research that proposes agents creating a mashup
of services and devices as a result of their goal-driven behaviour. Agents are ini-
tialised with pre-compiled mashups and cooperate at runtime in order to achieve
their goals. This work showcases a similar goal of enabling agents with enough
information at runtime to achieve their goals, but in an IoT context. The research
presented in [14] presents a system that parses an OAS document, generates an
OWL-S ontology for each service that is present in the OAS document. This
research shows the necessity for such translations and the need for a parallel
standard to exist in order to establish machine-understandability. Furthermore,
the work presented in [10] showcases a system that consumes OAS documents,
stores them in a relational database and uses RDRML in order to convert the
relational database entries into RDF format in order to be stored in a knowl-
edge graph. The work detailed in [8] shows an attempt to bridge the gap be-
tween Linked Data and REST-based architectures, using the OAS document as

2 https://www.w3.org/2019/wot/hypermedia

https://www.w3.org/2019/wot/hypermedia


Title Suppressed Due to Excessive Length 3

the medium. Furthermore, Espinoza et al [4] have implemented a system that
translates from the Web Ontology Language (OWL) into OAS document (OAS
document) documents in order to facilitate ease of use between web developers
and users of the semantic web. These works show the level of importance being
placed on introducing Linked Data concepts to API descriptions.

3 Demonstrating the Approach

In order to allow an agent to reason about a given service, it is essential that it
first be able to develop a logical depiction of that service. In an OAS document,
the "paths" section describes the endpoints associated with the service and the
HTTP verbs that each endpoint accepts. Using this combination of endpoints
and HTTP verbs, the agent can build a logical model based on the shape of
the resource, created by the IRI of the APIs endpoints and the HTTP verbs
accepted at each endpoint. While building this tool, we developed the rules of
the agent to match a logical depiction of the service. The idea behind this is
to enable the agent to understand what the resource looks like and to use it’s
knowledge of that resource to determine how to interact with it.

As a means of evaluating this approach, we propose a simple game of High/Low.
This game will operate with the agent requesting a number and guessing whether
the next number will be higher or lower than the received number. In order to
achieve this we needed to not only facilitate interaction between software agents
and microservices, but we also wanted to conform to the current standards of
software engineering, as well as utilising components designed for and used by the
microservices community. The goal of this experiment is to get an autonomous
agent to participate in a game of high-low by identifying the correct microser-
vice and interacting with that resource based on its shape that is identified by
parsing the OAS documents of each service.

3.1 Experimental Setup

We created three applications and registered them with a service-discovery tool
as Application 1, Application 2 and Application 3. The purpose of this naming
convention is to enforce the anonymity of the service that we are trying to
allow the agent to discover and utilize. A layout of the system can be found
in Figure 1. One of these applications is an implementation of a very simple,
REST compliant, game of High/Low. By utilising CArtAgO [13] Artifacts
to implement this tool, it remains agent programming language agnostic. This
system is composed of three different agents, the Main Agent queries the service-
discovery instance and creates an Application Agent that is instantiated with the
IRI of each application registered. Once the Application Agent been created, this
agent will then visit the base URI of the application, at the /api-docs endpoint
to view the OAS document. Once the Application Agent has determined that
the application has an OAS document, it begins to create a logical depiction of
the resource it has been tasked with identifying. Should this application match



4 F. Author et al.

the shape of the application it will create High/Low Agent to interact with
the resource. The High/Low Agent has a logical depiction of how to play the
High/Low game based on the “shape” of the service. Figure 1 describes the
layout of the system. The code is available at the Git repo https://gitlab.

com/eoin.o-neill.3/longlivedwebopenapi with instructions on how to run
it.

Fig. 1. System Layout

4 Conclusion

In conclusion, by building this tool we have identified some of the pitfalls that
exist with the current standard of service descriptions when exposing them to
Web-enabled intelligent software agents and the tacit knowledge that is required
when integrating microservices with one another. Section 2 has identified the
issues that face the software engineering community from an integration per-
spective. In order to facilitate agents being able to have a profound impact, the
incorporation of Linked Data within service descriptions to define domain specific
knowledge, while also providing explicit interaction definitions using vocabular-
ies such as Hydra and Hypermedia Controls Ontology (HCTL), is paramount.
This could provide enough context for agents at runtime to determine how to
utilise a service and what the request and response requirements are in order to
become the integrating bodies of microservice-based environments.

https://gitlab.com/eoin.o-neill.3/longlivedwebopenapi
https://gitlab.com/eoin.o-neill.3/longlivedwebopenapi


Title Suppressed Due to Excessive Length 5

References

1. Yahoo — mail, weather, search, politics, news, finance, sports amp; videos, http:
//groups.yahoo.com/group/rest-discuss/message/3232

2. Bogner, J., Fritzsch, J., Wagner, S., Zimmermann, A.: Industry practices and chal-
lenges for the evolvability assurance of microservices. Empirical Software Engineer-
ing 26(5), 1–39 (2021)

3. Ciortea, A., Boissier, O., Zimmermann, A., Florea, A.M.: Responsive decentralized
composition of service mashups for the internet of things. In: Proceedings of the
6th International Conference on the Internet of Things. pp. 53–61 (2016)

4. Espinoza-Arias, P., Garijo, D., Corcho, O.: Mapping the web ontology language to
the openapi specification. In: International Conference on Conceptual Modeling.
pp. 117–127. Springer (2020)

5. Evans, E., Evans, E.J.: Domain-driven design: tackling complexity in the heart of
software. Addison-Wesley Professional (2004)

6. Fowler, M.: Domain driven design (Apr 2020), https://www.martinfowler.com/
bliki/DomainDrivenDesign.html

7. Guo, Z., Cao, D., Tjong, D., Yang, J., Schlesinger, C., Polikarpova, N.: Type-
directed program synthesis for restful apis. arXiv preprint arXiv:2203.16697 (2022)

8. Idehen, K.U.: Swagger, the api economy, rest, linked data, and a se-
mantic web (Aug 2018), https://medium.com/openlink-software-blog/

swagger-the-api-economy-rest-linked-data-and-a-semantic-web-9d6839dae65a,
accessed=07/04/2022

9. Lanthaler, M., Gütl, C.: Hydra: A vocabulary for hypermedia-driven web apis.
LDOW 996, 35–38 (2013)

10. Muhamad, W., Bandung, Y., et al.: Transforming openapi specification 3.0 docu-
ments into rdf-based semantic web services. Journal of Big Data 9(1), 1–24 (2022)

11. O’Neill, E., Lillis, D., O’Hare, G., W Collier, R.: Delivering multi-agent microser-
vices using cartago. In: International Workshop on Engineering Multi-Agent Sys-
tems. pp. 1–20. Springer (2020)

12. O’Neill, E., Lillis, D., O’Hare, G.M., Collier, R.W.: Explicit modelling of resources
for multi-agent microservices using the cartago framework. In: Proceedings of the
18th International Joint Conference on Autonomous Agents and Multi-Agent Sys-
tems, Auckland, NZ, 2020. International Foundation for Autonomous Agents and
MultiAgent Systems (IFAAMAS) (2020)

13. Ricci, A., Viroli, M., Omicini, A.: Cartago: A framework for prototyping artifact-
based environments in mas. In: International Workshop on Environments for Multi-
Agent Systems. pp. 67–86. Springer (2006)

14. SILVA, S.: REST Service Discovery Based on Ontology Model. Ph.D. thesis (2021)
15. W Collier, R., O’Neill, E., Lillis, D., O’Hare, G.: Mams: Multi-agent microservices.

In: Companion Proceedings of The 2019 World Wide Web Conference. pp. 655–662.
ACM (2019)

16. Yang, J., Wittern, E., Ying, A.T., Dolby, J., Tan, L.: Towards extracting web
api specifications from documentation. In: 2018 IEEE/ACM 15th International
Conference on Mining Software Repositories (MSR). pp. 454–464. IEEE (2018)

http://groups.yahoo.com/group/rest-discuss/message/3232
http://groups.yahoo.com/group/rest-discuss/message/3232
https://www.martinfowler.com/bliki/DomainDrivenDesign.html
https://www.martinfowler.com/bliki/DomainDrivenDesign.html
https://medium.com/openlink-software-blog/swagger-the-api-economy-rest-linked-data-and-a-semantic-web-9d6839dae65a
https://medium.com/openlink-software-blog/swagger-the-api-economy-rest-linked-data-and-a-semantic-web-9d6839dae65a

	Exploiting Service-Discovery and OpenAPI in Multi-Agent MicroServices (MAMS) Applications

