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Abstract. Agent Programming Languages have been studied for over
20 years for programming complex decision-making for autonomous sys-
tems. The GOAL agent programming language is particularly interesting
as it does not require any preprogrammed planning by developers, but
instead relies on automated planning based on beliefs and goals to de-
termine its behavior.

Model checking is a powerful verification technique to guarantee the
safety of an autonomous system. Despite studies of model checking in
other agent programming languages, GOAL lacks support for model
checking of GOAL programs. The fundamental challenge is to make
GOAL programs feasible for model checking in the first place.

In this paper, we tackle this fundamental issue. We devise an algorithm
for transforming a (considerable) subset of GOAL programs to a tran-
sition system that is equivalent in terms of operational semantics, en-
abling model checking. We prove the correctness of this algorithm. We
implement the transformation algorithm, and we discuss the scalability
through Blocks World examples of increasing size. Moreover, we point
out that we will extend the applicability of the transformation algorithm
and its implementation to all stratified GOAL programs.

Keywords: GOAL agent programming language · Model checking ·
Decision-Making

1 Introduction

Autonomous systems, like robots in an Industry 4.0 setting [18], self-driving ve-
hicles, and even autonomous software systems are exciting and promising areas,
for which however quite some challenges remain. Making correct decisions in a
complex world is obviously one of these challenges, and even more, being able to
assure safe behavior is another. Providing solid evidence that safety in decision
making is ensured will be a key element to have the public accept autonomous
systems in their environments [7], [14].

In artificial intelligence, the concept of an agent refers to an entity that
functions continuously and autonomously in an environment in which other pro-
cesses take place and other agents exist [17]. Agent-oriented programming (AOP)
provides programming languages for properly specifying autonomous decision-
making. However, most agent programming languages rely on plan specifications.
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GOAL distinguishes itself by automated plan generation, and as such is a prime
candidate vehicle for rendering features of autonomous behavior [8].

The verification of agent programming languages is challenging, and there
is no widely accepted solution at the current stage. Model checking is the most
studied verification technique in agent programming languages [6] [3] [19]. The
Model Checking Agent Programming Language (MCAPL) framework is a gen-
eral verification framework for different agent programming languages. However,
every agent programming language has to be implemented as a sub-class of the
Agent Infrastructure Layer (AIL) agent class [6]. The faithfulness of the imple-
mentation is a crucial issue. GOAL agents were implemented as sub-classes of
the AIL agent class [5]. However, the faithfulness of the implementation remains
to be proved. Furthermore, the efficiency issue is a bottleneck of MCAPL. Un-
like for other agent programming languages, there is little work to verify GOAL
programs by model checking. The first verification framework of GOAL was
proposed in [2]. This paper shows a direction on how to apply theorem prov-
ing on GOAL. This paper provides a complete theory of agent programming,
thereby verifying the correctness of GOAL. However, first-order properties of
GOAL cannot be expressed in the framework. In [9], the verification idea in [2]
was implemented in Isabelle [13]. The verification framework has high confidence
due to Isabelle’s implementation, yet it provides no automated verification pro-
cess, and it can not express first-order properties. [10] presented a model checker
specifically for Goal, but there is no access to the model checker. Moreover,
many efficient symbolic model checkers, such as [4] and [12], have been devel-
oped in recent years. Using the existing high-performance model checker is more
reasonable than developing a model checker for GOAL from scratch.

In this paper, we explored how to make model checking feasible for GOAL
programs. In summary, we make the following contributions.

– We propose an algorithm to transform a stratified GOAL program for a
single agent and a single goal to its equivalent transition system in terms of
operational semantics, and we justify the correctness of the algorithm.

– We implement the transformation algorithm, and we discuss the scalability
with several Blocks World examples.

The paper is structured as follows. Section 2 gives the theoretical and tech-
nical background of the work of the paper. Section 3 describes an algorithm
for transforming a substantial subset of GOAL programs to a transition system
that is equivalent in terms of operational semantics and proves the correctness
of this algorithm. Section 4 presents the scalability with several Blocks World
examples. Section 5 draws conclusions and indicates future work.

2 Background

This section briefly explains how GOAL generates its decision-making, and it
briefly introduces all necessary theoretical backgrounds of our work.
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2.1 Decision-Making in GOAL

GOAL is a high-level programming language to program rational agents that
derive their choice of actions from their beliefs and goals [8]. GOAL employs
reasoning strategies to automatically generate its decisions. For more details of
GOAL, we refer to [8] and [2].

We refer to those specifications in a GOAL program in relation to the auto-
mated generation of decision-making as logical specifications in this paper. The
logical specifications of a GOAL program consist of six modules: a belief base,
a goal base, a knowledge base, a set of constraints of action generation, a set of
enabledness of actions, and a set of action specifications. GOAL automatically
generates its decision-making on the basis of the first-order logic derivation. We
explain how GOAL generates its decision-making by a Blocks World example.

The Blocks World example consists of seven blocks and a table. Figure 1
shows the initial state of the Blocks World, and figure 2 presents the goal state
of the Blocks World. The task is to find a sequence of actions transforming the
Blocks World from the initial state to the goal state. For the source code of the
GOAL implementation of Blocks world, we refer to the GOAL example project
BlocksWorld provided in the Eclipse plugin for GOAL.
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Fig. 1.
Initial State
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Fig. 2.
Goal State

Belief Base A belief base describes all beliefs that the agent currently needs
to know. The belief base of the Blocks World example is encoded in GOAL as
follows:

– on(b1,b2). on(b2,b3). on(b3,table). on(b4,b5). on(b5,table). on(b6,b7). on(b7,table).

The logical interpretation of the belief base is a set of atoms. In this example,
the logical interpretation of the belief base is as follows:

– {on(b1, b2), on(b2, b3), on(b3, table), on(b4, b5), on(b5, table), on(b6, b7), on(b7, table)}

Goal Base A goal base describes all beliefs that the agent should achieve. The
goal base of the Blocks World example is encoded in GOAL as follows:

– on(b1,b5), on(b2,table), on(b3,table), on(b4,b3), on(b5,b2), on(b6,b4), on(b7,table).

The logical interpretation of the goal base is a set of atoms. In this example, the
logical interpretation of the goal base is as follows:

– {on(b1, b5), on(b2, table), on(b3, table), on(b4, b3), on(b5, b2), on(b6, b4), on(b7, table)}
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Knowledge Base A knowledge base represents the collection of domain rules
the agent needs to know. The knowledge base of the Blocks World example is
encoded in GOAL as follows:

– block(X) : −on(X, ).
– clear(table)
– clear(X) : −block(X), not(on( , X)).
– tower([X]) : −on(X, table).
– tower([X,Y |T ]) : −on(X,Y ), tower([Y |T ]).

The logical interpretation of the knowledge base is a theory containing both
ground atoms and closed formulas. In this example, the logical interpretation of
the knowledge base is as follows:

– ∀x.∃y.on(x, y) → block(x)
– clear(0)
– ∀x, y.block(x) ∧ ¬on(y, x) → clear(x)
– ∀x.on(x, 0) → tower([x])
– ∀x, y, t.on(x, y) ∧ tower([y|t]) → tower([x, y|t]).

In a GOAL program, all current beliefs are derived from its belief base and its
knowledge base. Logically speaking, the current beliefs are the minimal model
of the theory consisting of the belief base and the knowledge base. Similarly, all
desired beliefs are derived from its goal base and its knowledge base. The current
beliefs and the desired beliefs are used to evaluate which constraints of action
generation will be feasible. In this example, the set of current beliefs and the set
of desired beliefs are listed as follows:

– current beliefs = {on(1, 2), on(2, 3), on(3, 0), on(4, 5), on(5, 0), on(6, 7),
on(7, 0), clear(0), block(1), block(2), block(3), block(4), block(5), block(6),
block(7), tower([3]), tower([5]), tower([7]), clear(1), clear(4), clear(6),
tower([2, 3]), tower([4, 5]), tower([6, 7]), tower([1, 2, 3])}

– desired beliefs = {on(1, 5), on(2, 0), on(3, 0), on(4, 3), on(5, 2), on(6, 4),
on(7, 0), clear(0), block(1), block(2), block(3), block(4), block(5), block(6),
block(7), tower([2]), tower([3]), tower([7]), clear(1), clear(6), clear(7),
tower([4, 3]), tower([5, 2]), tower([1, 5, 2]), tower([6, 4, 3])}

Constraints of action generation A constraint of action generation specifies a
collection of triggering conditions involving the current beliefs and desired be-
liefs. The set of constraints of action generation of the Blocks World example is
encoded in GOAL as follows:

– define constructiveMove(X,Y ) as a−goal(tower([X,Y |T ])), bel(tower([Y |T ])).
– define misplaced(X) as a− goal(tower([X|T ])).

The logical interpretation of the constraints of action generation is a theory. In
this example, the logical interpretation of the constraints of action generation is
as follows:
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– ∀x, y.∃t.(current beliefs → ¬tower([x, y|t])) → flag1(x, y, t)

– ∀x, y.∃t.(desired beliefs → tower([x, y|t])) → flag2(x, y, t)

– ∀x, y.∃t.f lag1(x, y, t)∧flag2(x, y, t)∧tower([y|t]) → constructiveMove(x, y)

– ∀x.∃t.(current beliefs → ¬tower([x|t])) → flag3(x, t)

– ∀x.∃t.(desired beliefs → tower([x|t])) → flag4(x, t)

– ∀x.∃t.f lag3(x, t) ∧ flag4(x, t) → misplaced(x).

Enabledness of actions An enabledness of actions specifies which action is trig-
gered under which collection of triggering conditions. The set of enabledness of
actions of the Blocks World example is encoded in GOAL as follows:

– if constructiveMove(X,Y) then move(X, Y).

– if misplaced(X) then move(X, table).

Action specifications An action specification describes the preconditions and
postconditions of an action. The action specifications of the Blocks World ex-
ample is encoded in GOAL as follows:

– define move(X,Y) with
pre clear(X), clear(Y), on(X,Z), not(on(X,Y))
post not(on(X,Z)), on(X,Y)

An action can be triggered only when the constraints of action generation, its
enabledness of actions, and its preconditions are satisfied. The logical interpreta-
tion of the generation of decision-making is a theory. In this example, the logical
interpretation of the generation of decision-making is as follows:

– ∀x, y.∃z.constructiveMove(x, y)∧clear(x)∧clear(y)∧on(x, z)∧¬on(x, y) →
move(x, y)

– ∀x.∃z.misplaced(x)∧clear(x)∧clear(0)∧on(x, z)∧¬on(x, 0) → move(x, 0).

The set of current beliefs, the set of desired beliefs, the logical formulas of
the constraints of action generation, the logical formulas of the enabledness of
actions compose a theory. GOAL derives its decision-making from the theory. In
this example, the first possible decision-making can be move(1, 0), move(4, 0),
and move(6, 0).

The agent transforms its state on the basis of the current belief base, the
postcondition of the action, and the feasible action. The logical interpretation
of the state transformer is a theory. In this example, the logical interpretation
of the state transformer is as follows:

– ∀x, y, z.move(x, y) ∧ on(x, z) ∧ ¬on(x, y) → ¬on(x, z) ∧ on(x, y).

The agent generates decision-making by automated logical derivation until it
reaches the desired state, or it tries all possibilities but cannot reach the desired
state.
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2.2 Theoretical Foundation

All lemmas, theorems, and definitions listed in this subsection will be used in
the following sections.

Lemma 1. (Universal Quantifier Elimination in Closed First-Order Formulas
with a Finite Domain)

∀x.F (x) → g ≡
∧
i∈D

F (i) → g,

∀x.F (x) → h(x) ≡
∧
i∈D

(F (i) → h(i)),

where F (x) is a conjunction of atoms, g is an atom without x, h is an atom
containing x, D is the finite domain of x.

Lemma 1 presents how to eliminate universal quantified variables in closed
first-order formulas. The first logical equivalence shows how to eliminate the
universal variable only occurring at the left side of the implication. The second
logical equivalence presents how to eliminate the universal variable occurring at
both sides of the implication. We distinguish universal variables in the imple-
mentation presented in Section 4.

Theorem 1. (Minimal Model for a Stratified Logic Program) [16]
If a normal logic program is stratified then it has a minimal model.

Theorem 1 justifies that a stratified logic program has a minimal model. We
use this theorem in Section 3.2.

Theorem 2. (Soundness and Completeness of first-order logic)
Let Σ be a first-order theory, and ϕ be a well-defined first-order formula:

Σ ⊢M φ ↔ Σ |= φ

For a first-order theory, if φ can be derived syntactically, φ can be derived
semantically, vice versa. We use this theorem in Section 3.2.

Definition 1. (Conditions of Stratified Logic Program) [15]
The logic program P is stratified iff the dependency graph for P contains no cycles
containing a negative edge.

Definition 1 defines a stratified logic program. We use this definition in Sec-
tion 3.

Definition 2. (Transition System) [1]
A transition system TS is a tuple (S,Act,→, I, F,AP,L) where

– S is a set of states,
– Act is a set of actions,
– →⊆ S ×Act× S is a transition relation,
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– I ⊆ S is a set of initial states,
– F ⊆ S is a set of final states,
– AP is a set of atomic propositions, and
– L : S → 2AP is a labeling function.

Definition 3. (Execution Fragment) [1]
Let (S,Act,→, I, AP,L) be a transition system TS. A finite execution fragment
ϱ of TS is an alternating sequence of states and actions ending with a state

ϱ = s0α1s1α2...snαn such that si
αi+1−−−→ si+1for all 0 ≤ i < n

where n ≥ 0.

A transition system can be used as the input in the model checking. In this
paper, we want to build a connection from a GOAL program to its equivalent
transition system in terms of operational semantics. In this paper, we define a
transition system following Definition 2, and we define an execution fragment
following Definition 3.

Definition 4. The first-order theory underlying any GOAL programs consists
of only ground atoms and closed formulas.

ground atom = Ai(a1, ..., an)

r = ∀x ∈ X.∃y ∈ Y.
∧
i

Fi ∧
∧
j

¬Aj → C

theory of Prolog = {M1, ...,Mn}
a-goal F = (modelC → ¬F ) ∧ (modelG → F )

c = ∀x ∈ X.∃y ∈ Y.a-goal F ∧
∧
i

Fi ∧
∧
j

¬Aj → R

e = ∀x ∈ X.∃y ∈ Y.R ∧
∧
i

Fi ∧
∧
j

¬Aj → Act

TheoryGOAL State = {modelC ,modelG, H1, ...,Hn}

post Act = ∀x ∈ X.Act ∧
∧
i

Bi ∧
∧
j

¬Cj →
∧
m

Dm ∧
∧
n

¬En

Here is a brief explanation of the above first-order theory. Syntactically, Ai

denotes a predicate; ai denotes a constant; Fi, Aj , C, F , R, Act, Bi, Cj , Dm,
and En are atoms; c, e, r, Mi, Hi, and post Act are first-order logical formulas;
modelC and modelG denote a set of ground atoms. Semantically, r denotes a
rule in the knowledge base; Mi is an item of the belief base, or an item of the
goal base, or an item of the knowledge base; c denotes a constraint of action
generation; and e denotes an enabledness of actions; TheoryGOAL State denotes
the first-order theory underlying the current state of the GOAL agent; modelC
represents all beliefs held in the current state; modelG denotes all beliefs held in
the goal state, Hi is either a constraint of action generation (c) or an enabledness
of actions (e). We use this definition in Section 3.2.
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Definition 5. (State of a GOAL agent)
A state of an GOAL agent with single goal is a pair < Σ, Γ > where Σ is the
agent’s current belief base and Γ is the agent’s goal base.

Given a knowledge base, a belief base is the minimal representation of a collection
of beliefs. The set of a GOAL agent’s all current beliefs is the minimal model
of its belief base and knowledge base, and the set of a GOAL agent’s all desired
beliefs is the minimal model of its goal base and knowledge base.

Definition 6. (Action Selection)
Given a GOAL program, let S be a state of the GOAL agent, TheoryGOAL State

is defined by the given GOAL program and the state, let Actions be the set of
all possible actions of the GOAL agent. We define enabled(act, S) to evaluate if
an action is enabled at the state as follows:

∀act ∈ Actions.enabled(act, S) =

{
True if TheoryGOAL State |= act

False otherwise

Definition 7. (State Transformer M)
Given a GOAL agent, let < Σ, Γ > be a state of the GOAL program, and act be
a possible action of the GOAL agent, post Act (Definition 4) is the postcondition
of act, Sub is the unifying substitution of act, Σ, and post Act. Then the state
transformer M is defined by:

M(act,< Σ, Γ >) =

{
< T (act,Σ), Γ \ T (act,Σ) > if enabled(act,< Σ, Γ >)

undefined otherwise

where

T (act,Σ) = Σ ∪
m⋃

Dm[Sub] \
n⋃
En[Sub]

Definition 8. (Feasible Trace)
A feasible trace is a finite sequence s0, b1, s1, ..., bn, sn such that si is a state
of a GOAL agent, bi is an enabled action, s0 is the initial state, sn is the state

achieving the desired goal, and for every i we have: si
bi−→ si+1, where Theorysi |=

bi+1.

3 Transformation Algorithm

This section presents an algorithm transforming a substantial subset of GOAL
programs to an equivalent transition system in terms of operational semantics.
We impose three restrictions on the GOAL programs: single agent, single goal,
and stratified GOAL programs. It is worth mentioning here that the stratified
GOAL program is not a severe limitation. In most real cases of GOAL programs,
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there is no negative recursion, which automatically leads to stratified GOAL pro-
grams according to Definition 1. On the basis of the intrinsic logic of GOAL, we
propose an algorithm for transforming a GOAL program under certain restric-
tions to an equivalent transition system in terms of operational semantics. At
the end of this section, we justify the correctness of the algorithm.

3.1 Algorithm

Algorithm 1 presents an algorithm for transforming an underlying first-order
theory of any stratified GOAL program with a single agent and a single goal to
an equivalent transition system in terms of operational semantics.

The inputs are the underlying first-order formulas of the logical specifications
of a GOAL program: BB denotes the belief base; GB denotes the goal base;
KB denotes the knowledge base; constraints denotes the constraints of action
generation; enabledness denotes the enabledness of actions, ActSpec denotes the
action specifications, and D denotes the domain of all variables occurring in the
logical formulas. The output is a transition system following Definition 2.

Algorithm 1 builds a bijection between the state of the transition system
and the states of the original GOAL program. Different states of an agent have
different sets of beliefs. A belief base represents the necessary beliefs the agent
should know, and the agent can derive all current beliefs on the basis of the
belief base and knowledge base. Therefore, we encode a state as a belief base.

I denotes the initial state, and I is encoded with the initial belief base BB.
F denotes the final state, and F is encoded with the desired belief base GB.
State denotes all states of the transition system, which is initialized with a list
containing I and F . transitions denotes all transitions of the transition system,
which is initialized with an empty list. The state property of each state is a
pair consisting of the set of all current beliefs and the set of all desired beliefs.
The beliefs of each state are derived from the belief base, the knowledge base,
and the domain of all variables. atoms F denotes the beliefs of the goal state. L
is a dictionary storing state properties in each state, which is initialized with a
dictionary containing the state property of the goal state. current states denotes
all possible current states, which is initialized with a list containing I.

Line 8 -23 follows the same derivation mechanism of the decision-making in
GOAL. next states denotes all possible next states of the current state, which
is initialized with an empty list. end state denotes the final state where the loop
ends, which is updated with the current states at each iteration. Following the
derivation mechanism, all possible actions and all possible states are generated.
NA denotes all possible next actions of the current state, andNS denotes all pos-
sible next states of the current state. The loop will end when there is no feasible
action of the current states. If the loop only stops at the final state, the algo-
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rithm generates the transition system; otherwise, the algorithm will return None.

Algorithm 1: Generate an equivalent transition system for any strat-
ified GOAL program with a single agent and a single goal in terms of
operational semantics

Input: First-order logical formulas of GOAL specifications:
BB, GB, KB, constraints, enabledness, ActSpec, D
Output: A transition system-TS : (S,Act,→, I, F,AP,L)

1 I = BB
2 F = GB
3 S = [I, F ]
4 transitions = []
5 atoms F is derived by GB, KB, and D.
6 L = {F : (atoms F, [])}
7 current states = [I]
8 while current states! = [] do
9 next states = []

10 end states = current states
11 for state in the current states do
12 if state not in the S then
13 Derive atoms state from state, KB, and D.
14 L.update(state : (atoms state, atoms F ))
15 S.append(state)

16 Derive NA based on atoms state, constraints, enabledness.
17 Derive NS based on next actions and ActSpec.
18 Add NS to the next states.
19 while i < len(NS) do
20 transitions.append((state,NA(i), NS(i)))
21 i = i+ 1

22 next states.extend(NS)

23 current states = next states

24 if ∀s ∈ end states.s == F then
25 Add all possible actions to Act
26 Add all ground atoms to AP
27 return (S,Act, transitions, I, F,AP,L)

28 else
29 return None

3.2 Algorithm Correctness

Theorem 3. There is a minimal model for the first-order theory of a stratified
GOAL program.

Proof (sketch). We use Definition 4 to denote the underlying theory of a GOAL
program. If a GOAL program is stratified, the GOAL program has no negative
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recursions by Definition 1. Therefore, The Prolog part of the GOAL program has
no negative recursion, and the Prolog part of the GOAL program is stratified by
Definition 1. According to Theorem 1, theory of Prolog has a minimal model,
because the Prolog part is stratified.

In TheoryGOAL State, modelC is the minimal model of the knowledge base
and the belief base, and modelG is the minimal model of the knowledge base and
the goal base. Therefore, modelC and modelG are both uniquely determined. F
denotes an a-goal predicate in TheoryGOAL State. We denote the minimal model
of F as aP , which is constructed as follows:

aP =

{
True if modelC ⊢ ¬F ∧modelG ⊢ F

False otherwise

aT denotes all a-goal predicates with True interpretation. The minimal model
of R is constructed as follows:

R =

{
True if aT ⊢ F ∧modelC ⊢

∧
i Fi ∧

∧
j ¬Aj

False otherwise

RT denotes all c with True interpretation. The minimal model of Act is con-
structed as follows:

Act =

{
True if RT ⊢ R ∧modelC ⊢

∧
i Fi ∧

∧
j ¬Aj

False otherwise

Therefore, for any TheoryGOAL State of a stratified GOAL program, there is a
minimal model.

Theorem 4. For any stratified GOAL program with a single agent and a single
goal with at least one feasible trace (Definition 7), Algorithm 1 generates its
equivalent transition system(TS) in terms of operational semantics.

Proof (sketch).
First, we prove if a GOAL program has a feasible trace, the TS has an

equivalent execution (Definition 3) in terms of operational semantics.
We denote the feasible trace as

s0
a1−→ s1

a2−→ ...
an−−→ sn

where si =< Σi, Γi > denotes a state of an GOAL agent, the underlying theory
of a state of the GOAL agent is denoted as Theorysi . Given the condition that
the agent has a single goal, and it has a feasible trace, therefore, Γ0 = ... =
Γn−1, Γn = ∅, Σn = Γ0.

We prove there is an equivalent execution in TS of the feasible trace in terms
of operational semantics by induction on n(n ≥ 1).

Induction step (n = 1): By Definition 5, Σ0 denotes the initial belief
base, which is the same as the initial state of TS (line 1). Γ0 denotes the goal
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base, which is the same as the final state of TS (line 2). Given a knowledge
base and a current belief base, all current beliefs held by the agents are uniquely
determined. Precisely, Σ0 and modelI are bijective; Γ0 and modelF are bijective.
Therefore, < Σ0, Γ0 > and < modelI ,modelF > are bijective, and we have
L(I) =< modelI ,modelF >. Therefore, < Σ0, Γ0 > is bijective to L(I).

By Definition 8, we have:

Theorys0 |= a1

By Theorem 2, we have:

Theorys0 ⊢ a1

Therefore, a1 is a element in NA in Algorithm 1 (line 16). Moreover, the cur-
rent belief base, knowledge base, the selected enabled action, and action specifi-
cation will uniquely determine the next state of the transition system according
to Definition 6 and Definition 7.

If < Σ1, Γ1 >=< Γ0, ∅ >, TS will reach its final state F . According to line 6,
we have: L(F ) =< modelF , ∅ >. Therefore, < Σ1, Γ1 > and L(F ) are bijective.

Otherwise, TS will reach a state S1, such that < Σ1, Γ1 > and L(S1) are
bijective, where L(S1) =< modelS1

,modelF >.
Thus, the claim holds at the induction step.
Induction Hypothesis (n = i): For the first-i steps of a feasible trace in a

GOAL program:

s0
a1−→ s1

a2−→ ...
ai−→ si.

In terms of operational semantics, there is an equivalent execution fragment of
TS:

I
a1−→ S1

a2−→ ...
ai−→ Si, where < Σi, Γi > and L(Si) are bijective.

Induction Step (n = i+ 1): For the step, si
ai+1−−−→ si+1.

Based on the induction hypothesis, < Σi, Γi > and L(Si) are bijective.
By Definition 8, we have:

Theorysi |= ai+1.

By Theorem 2, we have:

Theorysi ⊢ ai+1

The current belief base, knowledge base, the selected enabled action, and ac-
tion specification will uniquely determine the next state of the transition system.
If < Σi+1, Γi+1 > is the desired state of the GOAL program, < Σi+1, Γi+1 >
and L(F ) are bijective; otherwise, < Σi+1, Γi+1 > and L(Si+1) are bijective.

Therefore, the claim holds for all finite feasible traces of a GOAL program.
Second, we prove if the TS has an execution, the GOAL program has an

equivalent feasible trace in terms of operational semantics.
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We denote the execution as

I
a1−→ S1

a2−→ ...
an−−→ F.

The state of the transition system and its state properties are bijective. A state
property of TS and a state of GOAL agent are also bijective. Therefore, we have
a feasible trace as follows:

sI
a1−→ s1

a2−→ ...
an−−→ sF .

Remark: If there is no feasible trace of a GOAL program, no transition system
will be generated by Algorithm 1. Algorithm 1 (line 24) evaluates if all states
stored in end states are the goal states, if one of the ending states is not the
goal state, no transition system will be generated.

4 Implementation

We implemented a framework in Python, which generates the equivalent tran-
sition of a GOAL program that is stratified, single-agent, and single-goal in
terms of the operational semantics. The framework contains two main parts: the
first part is the minimal model generation for the first-order theory of a GOAL
program; the second part is the implementation of Algorithm 1.

Figure 3 presents the workflow of the generation of the transition system
of the framework. We restricted the GOAL programs to stratified GOAL pro-
grams. Therefore, we concern the first-order theory underlying stratified GOAL
programs. The logical derivation part builds a connection between first-order log-
ical syntax and first-order logical semantics. Especially, it allows the automated
generation of the minimal model of a first-order theory. Moreover, it allows the
usage of a classical recursive data type - list. It is worth mentioning that the
implementation for other recursive data types shares the same implementation
pattern of list. On the basis of the automated logical derivation, we are able to
implement Algorithm 1.

Furthermore, we also use an efficient algorithm to calculate the minimal
model of a first-order theory. We briefly explain why our algorithm is efficient
here. For a first-order theory underlying stratified GOAL programs, it has three
key features: finite ground atoms, finite closed formulas, and a finite domain of
any variable. The intuitive way of generating the minimal model is to try all
possibilities of the combination of all ground atoms. According to Lemma 1,
our algorithm distinguishes the universal variables occurring at both sides of an
implication (specified with uni exp2) and the universal variables occurring at
the left side of an implication (specified with uni exp1). Instead of the instanti-
ation of all variables, our algorithm only instantiates the variables specified with
uni exp1. Our algorithm generates the derived ground atoms based on existing
atoms and the closed formulas step by step until the minimal model is found. As-
sume a first-order theory consists of n1 formulas and n2 ground atoms. For each
formula, we assume it contains at most u variables specified with uni exp1, and
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each variable has at most d interpretations in the domain. The time complexity
of the minimal model generation process of our algorithm is O(n1 × du × n2).
It is worth mentioning that the number of the variables specified with uni exp1
is usually very small, and in many cases, it is 0. The algorithm has low time
complexity in most cases. For more details, we refer to the source code [20].

Derivation of first-order theories

State Property Generation

Satisfiable Constraints Generation

Enabled Actions Generation

State Transformer

Fig. 3. Generation of the Transition System

5 Result and Discussion

The major limitation of model checking is the state-space explosion. We use
several Blocks World examples to illustrate the state space of the transition
system from a GOAL program can be properly controlled.

We chose a series of Blocks World with an increasing number from 2 to 20.
Generally speaking, the more blocks are not in the goal state, the more states
will be generated. To make the results more convincing, we only chose examples
where all blocks are not in the goal state. All Blocks World examples share
almost the same GOAL programs except the belief base and the goal base of
each example. Table 1 presents the results of the generated transition system of
all chosen Blocks World examples. The number of misplaced blocks records the
number of blocks that are not in their goal state. The source code of all examples
is available at [20].

As we explained in Section 3.1, we encode a state as a belief base. In the
Blocks World example, the belief base is the set of all locations of each block.
Precisely, for an n-Blocks World example, each state is an n-tuple, where each
item can have n possibilities. Mathematically speaking, the state space can up
to nn. However, we hypothesize that the state space can be controlled to not
grow exponentially. From the result shown in table 1, the state space is not
exponential to the number of blocks. We briefly explain why the state space
of the transition system generated from a GOAL program could be controlled
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Table 1. The Transition System of Blocks World Example

Number of Blocks Number of Misplaced Blocks Number of States Number of Transitions

2 2 3 2

3 3 5 4

4 4 9 12

5 5 15 23

6 6 22 35

7 7 28 52

8 8 42 82

9 9 58 116

10 10 75 154

11 11 94 196

12 12 114 240

13 13 138 296

14 14 240 622

15 15 366 1010

16 16 498 1415

17 17 636 1837

18 18 1272 4310

19 19 3798 15429

20 20 6330 27825

not to exponentially grow. We can restrict the actions by the enabledness of
actions. Precisely, we only allow the action towards the goal state instead of
all possibilities. In the Blocks World, the constraints of action generation are
specified as follows:

– if constructiveMove(X,Y) then move(X, Y).

– if misplaced(X) then move(X, table).

We only allow a block is moved to its goal state or the table. Therefore, each
block moves at most twice with the constraints. The result of these examples
shows that we are able to generate the equivalent transition system for a GOAL
program with a solvable state space if we impose proper action constraints.

6 Conclusion

The starting point of our work is the automated verification of autonomous
decision-making. We use GOAL as the tool to program agents, because it can
automatically generate decision-making. We hope to utilize the existing advanced
symbolic model checkers to achieve automated verification of GOAL programs.
This paper focuses on the key issue of making the model checking feasible for
GOAL: the transformation from a GOAL program to its equivalent transition
system.
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We proposed an algorithm on how to transform a stratified GOAL program
with a single agent and a single goal into an equivalent transition system in
terms of operational semantics, and we proved the correctness of the algorithm.
Therefore, the algorithm makes the model checking approach feasible for a subset
of GOAL programs. We also implemented a framework integrating the proposed
algorithm, where an equivalent transition system is generated from a stratified
GOAL program. Moreover, we illustrate the scalability of the framework through
a series of Blocks World examples. From the result, we hypothesize that the
state space of a complicated GOAL program can be properly controlled under
proper action constraints. Therefore, it is possible to achieve automated formal
verification of GOAL if we use an efficient symbolic model checker to conduct
the automated verification against the transition system.

Extended research on the automated verification of autonomous decision-
making is being conducted. Both the proposed algorithm and the implemen-
tation are suitable for a stratified GOAL program with a single agent and a
single goal. In future work, we will extend the semantics of GOAL presented
in section 2, and we will investigate how to make the approach suitable for
all stratified GOAL programs. Then, we will facilitate the existing framework
with an advanced symbolic model checker. We will also extend the framework
to probabilistic actions, which requires an important change in GOAL: we need
to replace embedded Prolog in GOAL with Problog [11]. Next, we will connect
the verification framework to the Robot Operating System (ROS). We believe
the connection between the verification framework and the ROS will be a crucial
step toward verifying real-time autonomous decision-making. Finally, we will ex-
plore the possibility of the integration of reinforcement learning and automated
verification.
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