
Agent-Oriented Visual Programming for the
Web of Things

Samuele Burattini1, Alessandro Ricci1, Simon Mayer2,
Danai Vachtsevanou2, Jeremy Lemee2, Andrei Ciortea2, and Angelo Croatti1

1 Dipartimento di Informatica - Scienza e Ingegneria,
Alma Mater Studiorum, Università di Bologna, Cesena Campus, Italy

samuele.burattini@studio.unibo.it, {a.croatti|a.ricci}@unibo.it
2 Interaction- and Communication-based Systems, Institute of Computer Science,

University of St. Gallen, Switzerland
{andrei.ciotea|danai.vachtsevanou|jeremy.lemee|simon.mayer}@unisg.ch

Abstract. In this paper we introduce and discuss an approach for multi-
agent-oriented visual programming. This aims at enabling individuals
without programming experience but with knowledge in specific tar-
get domains to design and (re)configure autonomous software. We ar-
gue that, compared to procedural programming, it should be simpler
for users to create programs when agent abstractions are employed. The
underlying rationale is that these abstractions, and specifically the belief-
desire-intention architecture that is aligned with human practical reason-
ing, match more closely with people’s everyday experience in interacting
with other agents and artifacts in the real world. On top of this, we de-
signed and implemented a visual programming system for agents that
hides the technicalities of agent-oriented programming using a blocks-
based visual development environment that is built on the JaCaMo plat-
form. To further validate the proposed solution, we integrate the Web
of Things (WoT) to let users create autonomous behaviour on top of
physical mashups of devices, following the trends in industrial end-user
programming. Finally, we report on a pilot user study where we veri-
fied that novice users are indeed able to make use of this development
environment to create multi-agent systems to solve simple automation
tasks.

Keywords: Agent-Oriented Programming · Visual Programming
· Hypermedia-MAS · Web of Things

1 Introduction

In this paper we introduce and discuss an approach for agent-oriented visual
programming. We argue that this is a first and very important step to investi-
gate whether Multi-Agent Oriented Programming (MAOP) actually may enable
individuals without experience in programming to create or modify ever more
pervasive and ever more autonomous systems in their surroundings, by raising

2 S. Burattini et al.

the level of abstraction from procedures or objects to agents, which people are
more familiar with from their everyday experience. In doing so, we also revisit
one of the core tenets of agent-oriented programming: the intentional stance
and ascribing mental qualities to systems. Having a visual agent programming
language geared towards non-technical users would allow us to validate this as-
sumption in the context of systems engineering.

Our endeavor is furthermore motivated by two concrete issues experienced
in an industrial scenario based on the Web of Things (WoT). The first one is the
ever-increasing interest in forms of end-user programming that shall enable not
only experienced programmers but ideally domain experts without programming
experience to create or modify software systems of different complexity. The
second one is the need to create or modify solutions featuring different degrees of
autonomy of software components in performing tasks in a flexible way, dealing
with open, dynamic, distributed WoT environments. From this angle, at the
same time, the use of semantic-web technologies allows to discover high-level
actions at run-time, which promotes the serendipitous creation of applications
in such environments – given a proper level of abstraction for exploiting them.

Our approach is built on a blocks-based visual programming environment to
create Multi-Agent Systems (MAS) that are then executed on top of existing
platforms – namely the JaCaMo[5] platform – and on Yggdrasil, a framework
for Hypermedia MAS[11] with native support for hypermedia environments.

2 Background and Related Work

2.1 Visual Programming for End-Users

Visual Programming (VP) is defined as the action of programming using more
than one dimension to convey semantics [10]. Traditional text-based program-
ming is considered mono-dimensional since, although visually organized on a 2D
screen, code can be seen as a single string of characters. In general, the main
goals of VP are to make programming more accessible to some particular au-
dience and to improve the correctness and speed with which people perform
programming tasks.

VP has been often paired with the idea of End-User Programming (EUP)
and End-User Development (EUD), which can be seen as programming done
by someone who is not a programmer in their regular work life [25]. This field
is highly relevant if we think about the fact that most software (in terms of
quantity) is written by these people. EUP is sometimes also defined depending
on the goal that the programmer has when writing software rather than his skill
level. This is usually to automate a personal task, thus not necessarily taking
into consideration all the features that are typical in software engineering such
as maintenance or testing [19].

The two most popular examples of Visual Programming Environments ap-
plied to end-user (and novice users) are block-based visual programming and
flow-based visual programming[22]. In block-based programming the core idea

Agent-Oriented Visual Programming for the Web of Things 3

is to present the user with a primitives-as-puzzle-pieces metaphor to give users
visual cues indicating where and how instructions may be used by dragging-
and-dropping them together. Syntax errors are prevented since the programming
environments forbids to snap together blocks that shouldn’t be connected[36].
Flow-based abstractions instead see programming as the coordination of parallel
flows to transform data. This is achieved through the use of components acting
as “black boxes” that can be joined together to create streams of computation.
The focus is on reusing predefined functions and combining them together to
achieve the final result[24].

Both approaches have been proven successful in introducing people to pro-
gramming spanning a range of different domains, including IoT[29] which is
the one taken in consideration as the use case for our Visual AOP language as
well. Some popular examples of block based tools are MIT AppInventor[27] and
Scratch [21]. Among of the most famous examples of flow-based programming
instead are Node-RED3 and IFTTT4.

With the spreading of automation and, hence, the use of computers, through-
out all aspects of our lives, there is an ever-growing gap between domain exper-
tise and implementation expertise. The tasks that are delegated to automation
systems are becoming increasingly abstract – to give an example, in today’s
building automation the user is not anymore expected to manually control win-
dow blinds; rather, the goal of keeping the building in a comfortable state with
respect to lighting, temperature, and glare is delegated to the system, and users
merely set the parameters of this goal.

Against this backdrop, it is important that EUP is extended to scenarios
where domain experts (e.g., building automation systems engineers) are enabled
to create and configure the behavior of a system at a higher abstraction level as
well – this extension leads to an extension of the EUP concepts to something akin
to domain-expert programming (DEP), where the programmer is not necessarily
just any final customer of a software solution, but a person with deep knowledge
of the domain in which the software may be useful. With this, though, we’re not
meaning to exclude “regular end-users” since everybody can be considered the
domain expert of his own home.

We argue that by empowering such experts with visual tools it would be
possible to reduce this gap. Due to the aforementioned higher abstraction level, it
is at the same time highly compelling to build such DEP systems not on the basis
of paradigms that traditionally underlie EUP programming (e.g., procedural,
flow-based, or object-oriented programming) but to instead use MAOP and its
abstractions as the foundation of our system.

2.2 Related Agent-Oriented approaches

The idea presented in this paper is strongly related to works in literature that
investigate high-level approaches to agent-oriented programming, that have been
proposed since the very beginning of agent programming literature.

3 https://nodered.org/
4 https://ifttt.com/docs

https://nodered.org/
https://ifttt.com/docs

4 S. Burattini et al.

In [35], authors proposed an end-user programming system enabling users
to program the behaviour of their personal software agent using rules for their
agents to follow. This work can be considered a specific example of approaches
that explored programming by demonstration or programming by example [20],
investigating a different way to think about programming, towards a perspective
in which the programmer is more a teacher instructing an agent what to do. A
main seminal example in this case is the KidSim environment [13], designed for
children, to support their creative constructions of simulations to learn.

In the related context of teaching novice programming [33], [17] proposed
a visual programming language/environment (an extension of Scratch called
BYOB, today known as Snap!5) makes it possible to specify goals and plans
using a block-based visual notation.

2.3 Hypermedia Environments, the WoT, and Web-based MAS

The World Wide Web is a distributed hypermedia system. Roy T. Fielding,
who led the development of the architectural style of the Web [14], defined
hypermedia as “the simultaneous presentation of information and controls such
that the information becomes the affordance through which the user obtains
choices and selects actions”6. A hypermedia environment can then be understood
as a virtual environment that provides hypermedia affordances to the user—and,
through these affordances, allows the user to explore and exploit the environment
in order to achieve their objectives. This design rationale is captured by the
Hypermedia As The Engine of Application State (HATEOAS) principle defined
by the REST architectural style [14]—and is a core tenet of the architecture of
the Web: it helped to reduce coupling between Web components, which in turn
allowed the Web to scale up to the size of the Internet.

The HATEOAS principle and the use of hypermedia affordances was picked
up, among other initiatives, by the World Wide Web Consortium (W3C) stan-
dardization efforts for the Web of Things (WoT) to reduce coupling and to
promote interoperability in the Internet of Things (IoT) by hiding the protocols
and interfaces used to access IoT devices behind abstract interaction patterns
and hypermedia affordances. Central to the approach is the W3C Recommen-
dation for the WoT Thing Description (TD) 7, which can be used to create
machine-readable descriptions of device interfaces and services. The WoT TD
defines three types of so-called Interaction Affordances that can be exposed by
a Thing (or Web Thing)

– Property Affordances expose the state of the Thing (e.g., the on/off state
of a lamp);

– Action Affordances allow invoking a function of the Thing, which ma-
nipulates state (e.g., toggling a lamp on or off) or triggers a process on the
Thing (e.g., dim a lamp over time);

5 https://snap.berkeley.edu
6 Roy T. Fielding, A Little REST and Relaxantion, ApacheCon 2008: https://roy.
gbiv.com/talks/200804_REST_ApacheCon.pdf

7 https://www.w3.org/TR/wot-thing-description/

https://snap.berkeley.edu
https://roy.gbiv.com/talks/200804_REST_ApacheCon.pdf
https://roy.gbiv.com/talks/200804_REST_ApacheCon.pdf
https://www.w3.org/TR/wot-thing-description/

Agent-Oriented Visual Programming for the Web of Things 5

– Event Affordances describe an event source that asynchronously pushes
event data to consumers (e.g., overheating alerts).

The HATEOAS principle and the design rationale behind the Web architec-
ture have also been applied to the engineering of Web-based MAS—to design
Hypermedia MAS (e.g., see [11,26]). In [11], the authors introduce Yggdrasil, a
platform for Hypermedia MAS that follows the Agents & Artifacts (A&A) meta-
model [31]. A&A provides a direct conceptual bridge to the W3C WoT through
the environment dimension and, in particular, the artifact model, whose interface
is defined in terms of observable properties, observable events, and operations.
Yggdrasil can thus be used to bring MAS to hypermedia environments and, in
particular, WoT environments.

3 Agent-Oriented Domain-Expert Programming

With Agent-Oriented DEP we refer to activities and tools that allow domain
experts – individuals with domain expertise but who are not professional software
developers – to program multi-agent systems.

One the most popular end-user development tool in the mainstream [19],
spreadsheets, allows relatively un-sophisticated users to write programs that
represent complex data models, while shielding them from the need to learn
programming languages and reducing the potential for errors by constraining
users to a specific environment and the possibilities this affords to them. In a
similar way, Agent-Oriented DEP should allow its users to implement MAS,
shielding them as much as possible from the need to learn the technical aspects
and mechanisms that concern traditional AOP languages.

In this paper we focus in particular BDI-based AOP: The BDI model al-
ready provides a level of abstraction which could be considered strongly human-
oriented. Its definition, motivated by the need of having a resource-bounded
intelligent agent capable of both means-end planning and weighting of compet-
ing alternatives[8], was inspired by human practical reasoning. To reduce the
time spent on deliberation, the model introduced the idea of intentions, along-
side beliefs and desires, to indicate that, once chosen, an agent should commit to
an intention to some degree instead of continuously reconsidering all the possible
routes – similar to how people behave.

We argue that it is possible to exploit this alignment between human practical
reasoning and the BDI architecture to create DEP systems that people can
effectively use to program MAS since they more closely match our everyday
experience in interacting with artifacts and other agents. Then, the hurdle that
remains to be cleared is how to design a DEP interface that could reinforce the
alignment of agent and human reasoning, hiding the technicalities instead.

Based on these hypotheses, we have created a visual tool with a blocks-based
abstraction that we believe takes an important first step in this direction to
support domain experts when programming MAS.

6 S. Burattini et al.

3.1 A Case Study: WoT Environments managed by Agents

This exploration was carried out in the context of the European project Intel-
lIoT8 aimed at shaping the next generation of intelligent IoT systems.

The goals of the project served as an ideal use case to apply our idea of Agent-
Oriented DEP since the core objectives are to develop autonomous IoT systems
while keeping humans “in the loop”. There have been other works already in
the direction of providing a simple visual tool for users to configure their smart
systems (as in [2] and [23]). Our system, though, directly empowers domain
experts to program MAS using agent-oriented abstractions.

WoT technologies are used to connect devices and let them be operated seam-
lessly from the agent point of view following the principles of Hypermedia MAS.
For this reason, not only the visual language was designed and implemented,
but also a Runtime Environment integrating multi-agent systems and the WoT
is proposed and used in the evaluation step of this project.

4 Designing a Visual IDE for Agents and WoT

4.1 Choice of Visual Abstraction

The first step in designing our visual language was choosing the most appropriate
abstraction to work with. Three factors were taken into consideration:

– Ease of use for individuals without programming experience;

– Coherence with the agent paradigm;

– Development support.

Blocks-based programming and flow-based programming were taken into con-
sideration when analyzing the possible abstractions of choice. Being the agent
paradigm behaviour oriented, and since BDI agents often implemented with the
Procedural Reasoning (PRS) System[15] which is based on the fact that the
agent doesn’t need to plan since it’s equipped with a plan library a blocks-
based language was seen as the best option. The idea was to have a separate
“chunk” of blocks for each plan similarly to what has been done by the MIT
App Inventor[27] project to model event handling.

Also, the App Inventor project was originally backed by Google which is
still supporting a JavaScript library to create, customize and manage blocks on
a canvas named Blockly9. This is a strong base model on top of which lots of
custom other block languages have been developed, and forms an ideal basis for
creating our agent-oriented visual language.

8 https://intelliot.eu/
9 https://developers.google.com/blockly

https://intelliot.eu/
https://developers.google.com/blockly

Agent-Oriented Visual Programming for the Web of Things 7

4.2 Reference Syntax and Constructs

To begin the design of the visual language, it was necessary to study and un-
derstand the syntax and identify the individual “building blocks” of the agent-
oriented programming language chosen as a reference: Jason [7], an extended
version and implementation of the conceptual language AgentSpeak [28]. This
language was selected because it is among the most popular agent-oriented lan-
guages also due to the support given by the JaCaMo platform.

By looking at the language grammar [6] some observations were made: An
agent is composed from an initialization section where the programmer can
establish the knowledge that the agent has since the beginning of its execution
by defining a set of beliefs, a set of goals to pursue, and a set of deductive rules
that can be used to simplify the checking of logic conditions.

After the initialization, the programmer can define a plan library, where all
the procedural knowledge of the agent is stored. This defines what the agent can
do and eventually how to handle failure.

From a syntactical point of view, beliefs and goals are represented as logic
predicates that can have zero or more terms. A term can be either:

– an atom which is any lowercase string with no spaces;
– a string which is some text surrounded by quotes;
– a number which is any integer or floating-point number;
– a variable (only in plans) which is identified by a name starting with an

uppercase letter and no spaces;
– or lists, arithmetic formulas, or even other predicates.

Plans are defined by their triggering event – agent goal changes or agent
belief changes – an optional context, which is a logic expression, and the plan
body which is a sequence of actions that the agent can perform in its environ-
ment. These considerations about the language structure were used to design
the language following the following set of principles:

– Single Responsibility: Each block should map only one concept of the
language. However, to avoid an explosion in the number of blocks, blocks
with similar functionality are grouped together in a single block.

– Composition: Individual blocks with single responsibilities should be com-
posable to create constructs that implement more complex functionality.

– Convey Semantics: Blocks should be designed to let users understand
easily what makes them unique and how they can be combined with other
blocks.

4.3 Components and Architecture

During the design process it was necessary to identify all the software compo-
nents needed to realize the requirements for the system. This was done trying to
understand and separate the responsibilities, to maintain a clean, and expand-
able, architecture. In total, six modules were identified to compose the system:

8 S. Burattini et al.

Fig. 1: Components and their relationships to implement the systems’ require-
ments

– Smart Environment TD Repository This module is responsible for stor-
ing and serving TDs of all available things in the environment. This is nec-
essary to provide access to the TDs for domain experts to be able to bet-
ter understand them, try them out manually, and utilize the corresponding
blocks in the agent code.

– Thing Explorer This module is an interface to the TD Repository, it pro-
vides an easy way for users to test the affordances masking the details of
composing the right request to the Thing itself behind forms and buttons
generated from the description.

– Web IDE This module allows the user to program agents through a visual
language and submit them for execution.

– Storage Manager This module is responsible for the persistence of the
user-created agents’ code and of the designed run-time configurations that
specify which agents should be run together in a MAS.

– Runtime Environment This module executes a MAS given the generated
source code and a run-time configuration specifying which and how many
agents need to exist in the system. The environment is also extended to
natively support agent-to-thing interactions.

– Runtime Orchestrator This module is an optional module that schedules
the execution of run-time configurations within different Runtime Environ-
ments. Although this was not in the requirements when it came to planning
the support for execution of MAS, the possibility of having multiple sepa-
rated systems running was considered an interesting feature to add.

Agent-Oriented Visual Programming for the Web of Things 9

As shown in Fig. 1, these components collaborate to implement the require-
ments: The Smart Environment TD Repository exposes an interface to
serve TDs to the other components. The Thing Explorer consumes the de-
scriptions to generate a user-friendly interface, whereas the Web IDE does
the same to provide programming constructs that can be inserted in the agent
visual language. The Web IDE persists the defined agents through CRUD10

operations provided by the Storage Manager and interacts with the Run-
time Orchestrator to schedule the execution of MAS using the Runtime
Environment as execution platform.

5 Prototype Implementation

5.1 Creating the Block Language

Blocks have been developed based on the Blockly framework. Starting from the
analysis of the Jason language and following the principles stated above, the
process of defining blocks involved specifying the shape and connections that
each block should have to allow syntactically correct combinations.

Blocks programs are transformed to code through the Blockly code generator
that allows to implement for each type of block a custom serialization method
in a way that resembles classical parsers with the parsing phase already done by
the block structure itself. When defining blocks it is possible to include so-called
mutations, which are values embedded in the block to keep extra information
that is not necessarily visible in the graphic representation. This mechanism was
heavily used to generate affordances blocks and store values needed in the code
generation phase without showing the users technical details such as affordances
URIs.

In total, six categories were defined to group blocks:

– The Values category contains blocks for raw values that can be used in
combination with other blocks such as atoms, strings, numbers, booleans
and variables;

– The Operations category comprises operations (e.g., math and logic) with
Values blocks as operands;

– Blocks from the Initialization category are used to define the initial knowl-
edge of the agent in the form of beliefs, goals, and rules;

– Plan definition blocks are used to define plans given their triggering events
and context;

– Agent actions blocks represent all the actions available to be used in plans
and can be extended to support more of the internal actions that Jason
supports;

– A Communication category is also defined for blocks related to agent-to-
agent communication. In Jason communication is expressed by the .send

Internal Action that requires to specify alongside the content of the message

10 Create, Read, Update, Delete

10 S. Burattini et al.

the intended receiver and the performative as well. At the time being, only
the tell (that translate in belief sharing) and achieve (that translate in goal
delegation) performatives are actually implemented in block form because
they were the easier to convey naturally, but all the others can be easily
added in a future expansion of the visual language.

Additionally, a category is dynamically created based on the TDs of each
smart thing in a workspace to easily group and distinguish blocks related to the
use of affordances on different things.

(a) A “ping” agent implemented with the block language.

//This is the initial state of agent ping

wait_time (2).

!ping.

//Plan library:

+!ping : wait_time(T)

<- .wait(T*1000);

.send(pong , achieve , pong).

(b) The Jason code generated from the blocks above

Fig. 2: An example of the block language with the generated Jason code

Fig. 2a shows several of the blocks available in the block language. This is an
implementation of a simple agent with a plan that asks another agent to achieve
a “pong” goal that is expected to ask the sender to “ping” again creating back
and forth communication. The initialization of the agent (green blocks) is easily
distinguishable from the plan definition (brown). In the initialization, a goal is
assigned to the agent and the plan is defined with a matching trigger. The plan
is defined with a context that needs to be checked at run time, in this case the

Agent-Oriented Visual Programming for the Web of Things 11

plan will be chosen only if the agent has a belief (note) telling it how long to
wait before sending a new message.

We have created block labels so as to convey to users that they are instructing
agent “colleagues” on how they should behave, and have used colors to make it
easier to understand which blocks fit together. This is visible in the comparison
with the generated Jason code (Fig. 2b) which is definitely less readable for
unexperienced users.

5.2 Smart Environment TD Repository

We used the Yggdrasil infrastructure to enable our system to discover TDs at
run time. However, as this discovery functionality is only one of Yggdrasil’s
features that is rather generic, our implementation does not depend on this
specific infrastructure. In fact, any service that is capable of exposing TDs can
be used by our system as long as it organizes TDs according to the Agents &
Artifacts metamodel’s environments and workspaces.

Since Yggdrasil can also run digital artifacts remotely, it can integrate both
Things and Artifacts seamlessly from the point of view of the agent, using the
TD model. This means that agents can also use any other external service or
even coordinate through artifacts.

5.3 Building the Runtime Environment wrapping JaCaMo

Through the visual language, users can build agents and generate valid Jason
source code that could be exported and used in any Jason application. The goal
of the project though was to not only support people in the building phase but
also in the execution phase like any modern IDE would do. The JaCaMo MAS
platform [5] has been used to support the execution of the agents. It is worth
remarking that JaCaMo allows for developing and running MAS that can exploit
also the environment and organisation as first-class abstractions. In this work we
considered only the agent dimension—nevertheless, the extension of the work to
include also the environment and organisation is part of future work.

The visual language is also specific for interaction with the WoT and thus
requires a run-time environment properly configured and equipped with the en-
abling tools. For these reasons a proper Runtime Environment was required,
which is implemented as a Web Server that exposes REST APIs to receive both
agent source code and run-time configurations to start the execution and to later
stop it at any given moment. The idea of having a Web server comes from the
fact that our agent-oriented DEP system is Web-based so it makes sense to have
the possibility to directly submit the coded agents to an execution node.

The integration of JaCaMo with REST has been already studied by the
original creators of the platform in a recent paper [1] that led to the creation of
JaCaMo-REST: a resource-oriented Web-based abstraction for the multi-agent
programming platform implemented in Java. In its essence, JaCaMo-REST is
a JaCaMo application that directly exposes APIs to modify all the relevant
entities in a MAS from agents to artifacts and organizations. The idea at the

12 S. Burattini et al.

core level is to have a MAS always running and allow an external application to
edit which agents are present, the environment and even the behaviour of agents
by communicating with them or injecting new plans.

Since the requirements of the Runtime Environment planned for the system
were different, JaCaMo-REST was wrapped and slightly modified to work as
needed. Agent source code and configurations are received through the API,
converted to the right kind of files to work with the JaCaMo-REST instance. The
latter is executed as a subprocess and is started whenever a new configuration is
posted. Communication with the running instance of JaCaMo-REST is achieved
using its original APIs over the local network. The only difference with the
original implementation is that, to accept the dynamic creation of new agents
in a running MAS, the name of the source file for the new agent is passed as a
parameter in the API since the original implementation always deployed agents
based on an empty template instead.

5.4 WoT integration in JaCaMo

Both Jason and JaCaMo were built knowing that, depending on the specific
application, developers might have needed additional control over what agents
can achieve especially when interacting with external services. This can be done
either by creating new internal actions of the Jason language using Java or by
defining CArtAgO artifacts [31] (once again in Java) that agents can use.

The two methods, although quite similar in practice, have a substantial se-
mantic difference that was considered when choosing how to support proper
interaction with Web Things. Actions can be seen as something that an agent
can do, they are internal by definition thus they are not shared between agents.
Artifacts, on the other hand, can be seen as tools providing functionalities to an
agent, they have a life cycle, internal state and they can be shared among agents
in the same environment.

For these reasons both methods were used to realize the integration with
the WoT. In particular, a WoTHttpClientArtifact was defined providing func-
tionalities for agents to invoke affordances on things and retrieve the result as
a JSON object. Internal actions were used instead to add JSON parsing and
assembling capabilities to agents.

6 Initial Evaluation

After developing a working draft of the entire system, in-house testing proved
that the solution was robust enough to allow new users to test it out in a con-
trolled environment. A qualitative user study was conducted to understand if
the implemented visual language could actually empower people with little or
no experience in programming to implement agent-based solutions.

For the first evaluation, we let 20 users with no common background ap-
proach simple and understandable domains and things that are familiar from
everyday experience. Participants for the study were recruited by word-of-mouth

Agent-Oriented Visual Programming for the Web of Things 13

and thanks to the help of the Behavioural Lab11 of the University of St. Gallen.
In Table 1 the most relevant demographic features are shown.

Participants were asked to complete several specific tasks with our DEP
system and it was measured how long it took each user to complete these tasks
individually within a one hour and a half maximum time-slot. An audio recording
was also kept on since it was interesting to apply the think-aloud protocol that is
commonly used for usability testing in order to follow the user thought process
and be able to understand better what they struggled with. To further evaluate
more objectively the usability of our system, the System Usability Scale (SUS) [9]
was chosen for an after-study survey.

Since there was interest in understanding how easily individuals with no
experience could grasp the concepts of agent-oriented programming, very little
training was given to users: A one-page text and a three-minute tutorial video
presented agent basics together with the DEP user interface and its features
before participants started working on the study tasks.

The results of our initial study are promising: Twelve participants out of
twenty managed to complete three out of five tasks. A lot of time was spent on
the first task to enter in the correct mindset and understand blocks behaviour.
This is reflected by the difficulty score that participants attributed to task one
and its average completion time which was significantly higher than that of
the following tasks. This was underestimated and thus a lot of people ran out
of time before attempting the last task. Generally, blocks-based interfaces are
intuitive but are purposefully built in a way that lets people play and explore the
possible combinations which, for people that have never used anything similar,
can take some time to get used to. Users also struggled with understanding the
idea of interacting through W3C WoT affordances, often confusing properties
and actions.

The hardest agent programming concepts to grasp were loops and flow con-
trol, especially for people who had some experience with other programming
languages and – when using our DEP system – did not find what they were used
to since the agent paradigm is significantly different from procedural program-
ming. Users also failed in making use of beliefs to simplify solutions which poses
the question on how to suggest better how BDI agent minds works and how to
exploit these abstractions.

Overall, the system was considered usable receiving an average score on the
System Usability Scale of 73.3 out of 100 which is considered above average. An
analysis of the participants’ reasoning processes showed that they were able to
understand the general flow and, with a little more time and guidance, might
have been able to solve even more complex problems.

7 Future Directions

Our case study has been helpful both to have a first positive evaluation of the
value of agent-oriented visual programming and to identify issues and insights

11 https://behaviorallab.unisg.ch/en

https://behaviorallab.unisg.ch/en

14 S. Burattini et al.

Study Participants

Total 20

Age 11 under 25

8 between 25 and 50

1 50 or older

Gender 11 female, 9 male

Level of Schooling 8 high-school or lower

4 bachelor’s degree

8 master degree or above

Current Occupation 13 students

5 working students

2 workers

Programming Experience 8 Yes, 12 No

Table 1: Demographic data of the study participants

useful for further developing the idea and the tools. The development of the
visual language is an ongoing process that requires many iterations to be able
to pinpoint the basic concepts of agent programming in such a way to make it
easily understandable for any user, finding the right metaphors that convey the
agent behaviour and empower people to program them efficiently.

In this paper, BDI has been taken as reference agent programming mod-
el/architecture. Nevertheless, the research exploration about agent-oriented vi-
sual programming languages is not meant to be be limited to a specific agent
architecture or language. For instance, the exploration appears valuable also for
recent practical agent programming languages or frameworks that are not BDI-
based (main examples include SARL [32], JADEL [4], JIAC [16], GAML [34]).

The current version of our DEP system is focusing exclusively on the agent
dimension of the developed MAS. Developing an understandable visualization
of BDI agents code can help changing not only the interface on which agents
are programmed but the whole process as well—introducing either features like
programming by example or even “human-supported automatic planning” in
which the system proposes a plan that can be then edited by the human before
approval [12]. In addition, in previous work, we have also explored how the
organization dimension in MAS can provide high-level abstractions that allow,
for instance, production engineers to repurpose manufacturing lines on-the-fly
through an intuitive Web-based front-end [12]. We expect it would be essential
to include organizational specifications and environment configuration as well in
our DEP system to fully support users in building complex MAS.

The agent visual programming language proposed in this paper features a
level of abstraction which is similar to the corresponding non visual counter-
part (i.e., Jason). Actually, this could be just the starting point for identifying
(visual) languages featuring a higher level of abstraction, towards models reduc-

Agent-Oriented Visual Programming for the Web of Things 15

ing the conceptual gap with respect to e.g. the application domain, like in the
case of domain specific languages. To this purpose, it will be interesting to ex-
plore the relationships with existing research works in Agento Oriented Software
Engineering (AOSE) about model-driven approaches and agent-based method-
ologies [3], in particular those proposing diagrams for specifying the structure
and behaviour of agent-based systems.

Finally, the current blocks-based visual language follows quite strictly tradi-
tional AOP, in which the agent program is fully defined by the developer and
executed by an agent interpreter. Actually, the constraint of considering end-
users instead of developers triggers the exploration of a different perspective
about agent programming itself, turning it more into a form of an interactive
communication in which the end-user would instructs or teach the agent what
to do (possibly omitting how to do it), like in the programming-by-example
or programming-by-demonstration cases [20] or in task instructable agents [18].
Therefore, the investigation of Agent-Oriented Visual Programming in this direc-
tion will call for deeply rethinking to cognitive agent programming and cognitive
agent architectures, into directions that explicitly support learning as basic core
agent capability [30].

8 Concluding Remarks

The main contribution of this work is the novel application of visual program-
ming techniques to the agent-oriented paradigm in a way that fixes as the ulti-
mate goal the full implementation by novice programmers of multi-agent-based
solutions to problems in different WoT powered domains they are experts in.

This project did not only conceptualize a visual agent language but also
the vision for an accessible Integrated Development Environment mixing agent-
oriented programming and the Web of Things in a seamless interface for both
humans and software agents. It then also developed a prototypal implementation
of such a system that was evaluated on a sample of users with promising results
to validate the initial assumptions made when defining the system requirements.

Overall this project brought to the realization of a usable tool and more
importantly to the exploration of new routes to integrate agent-oriented software
engineering with end-user programming in order to enable easy configuration
and make so that humans have the appropriate tools to be always in control of
ever-increasingly complex systems that exhibits different degrees of autonomy.
This of course opened up a lot of potentially interesting challenges to further
investigate in future related works.

Acknowledgements

This research has received funding from the European Union’s Horizon 2020
research and innovation program under grant No. 957218 (IntellIoT) and from
the Swiss National Science Foundation under grant No. 189474 (HyperAgents).

16 S. Burattini et al.

References

1. Amaral, C.J., Hübner, J.F., Kampik, T.: Towards jacamo-rest: a resource-oriented
abstraction for managing multi-agent systems. arXiv preprint arXiv:2006.05619
(2020)

2. Bak, N., Chang, B.M., Choi, K.: Smart block: A visual programming environment
for smartthings. In: 2018 IEEE 42nd Annual Computer Software and Applications
Conference (COMPSAC). vol. 2, pp. 32–37. IEEE (2018)

3. Bergenti, F., Gleizes, M.P., Zambonelli, F.: Methodologies and Software Engi-
neering for Agent Systems: The Agent-Oriented Software Engineering Handbook.
Springer (01 2004). https://doi.org/10.1007/b116049

4. Bergenti, F., Iotti, E., Monica, S., Poggi, A.: Agent-oriented model-
driven development for jade with the jadel programming language.
Computer Languages, Systems & Structures 50, 142–158 (2017).
https://doi.org/https://doi.org/10.1016/j.cl.2017.06.001, https://www.

sciencedirect.com/science/article/pii/S1477842416301075
5. Boissier, O., Bordini, R.H., Hübner, J.F., Ricci, A., Santi, A.: Multi-agent oriented

programming with JaCaMo. Science of Computer Programming 78(6), 747–761
(2013)

6. Bordini, R.H., Hübner, J.F.: A Java-based interpreter for an extended version
of AgentSpeak. University of Durham, Universidade Regional de Blumenau 256
(2007)

7. Bordini, R.H., Hübner, J.F., Wooldridge, M.: Programming multi-agent systems
in AgentSpeak using Jason. John Wiley & Sons (2007)

8. Bratman, M.E., Israel, D.J., Pollack, M.E.: Plans and resource-bounded practical
reasoning. Computational intelligence 4(3), 349–355 (1988)

9. Brooke, J.: SUS: a “quick and dirty” usability scale. Usability evaluation in industry
189(3) (1996)

10. Burnett, M.M., McIntyre, D.W.: Visual programming. COMPUTER-LOS
ALAMITOS- 28, 14–14 (1995)

11. Ciortea, A., Boissier, O., Ricci, A.: Engineering world-wide multi-agent systems
with hypermedia. In: International Workshop on Engineering Multi-Agent Sys-
tems. pp. 285–301. Springer (2018)

12. Ciortea, A., Mayer, S., Michahelles, F.: Repurposing manufacturing lines on the fly
with multi-agent systems for the web of things. In: Proceedings of the 17th Inter-
national Conference on Autonomous Agents and MultiAgent Systems. p. 813–822.
AAMAS ’18, International Foundation for Autonomous Agents and Multiagent
Systems, Richland, SC (2018)

13. Cypher, A., Smith, D.C.: Kidsim: End user programming of simulations.
In: Proceedings of the SIGCHI Conference on Human Factors in Comput-
ing Systems. p. 27–34. CHI ’95, ACM Press/Addison-Wesley Publishing Co.,
USA (1995). https://doi.org/10.1145/223904.223908, https://doi-org.ezproxy.
unibo.it/10.1145/223904.223908

14. Fielding, R.T.: Architectural styles and the design of network-based software ar-
chitectures. University of California, Irvine (2000)

15. Georgeff, M.P., Lansky, A.L.: Reactive reasoning and planning. In: AAAI. vol. 87,
pp. 677–682 (1987)

16. Hirsch, B., Konnerth, T., Heßler, A.: Merging Agents and Services — the
JIAC Agent Platform, pp. 159–185. Springer US, Boston, MA (2009).
https://doi.org/10.1007/978-0-387-89299-35, https://doi.org/10.1007/

978-0-387-89299-3_5

https://doi.org/10.1007/b116049
https://doi.org/https://doi.org/10.1016/j.cl.2017.06.001
https://www.sciencedirect.com/science/article/pii/S1477842416301075
https://www.sciencedirect.com/science/article/pii/S1477842416301075
https://doi.org/10.1145/223904.223908
https://doi-org.ezproxy.unibo.it/10.1145/223904.223908
https://doi-org.ezproxy.unibo.it/10.1145/223904.223908
https://doi.org/10.1007/978-0-387-89299-3_5
https://doi.org/10.1007/978-0-387-89299-3_5
https://doi.org/10.1007/978-0-387-89299-3_5

Agent-Oriented Visual Programming for the Web of Things 17

17. Hu, M., Winikoff, M., Cranefield, S.: Teaching novice programming using goals
and plans in a visual notation. In: Proceedings of the Fourteenth Australasian
Computing Education Conference. vol. 123, pp. 43–52 (01 2012)

18. Huffman, S.B., Laird, J.E.: Flexibly instructable agents. J. Artif. Int. Res. 3(1),
271–324 (nov 1995)

19. Ko, A.J., Abraham, R., Beckwith, L., Blackwell, A., Burnett, M., Erwig, M., Scaf-
fidi, C., Lawrance, J., Lieberman, H., Myers, B., et al.: The state of the art in end-
user software engineering. ACM Computing Surveys (CSUR) 43(3), 1–44 (2011)

20. Lieberman, H.: Your Wish is My Command: Programming by Example. Morgan
Kaufmann Publishers Inc., San Francisco, CA, USA (2001)

21. Maloney, J., Resnick, M., Rusk, N., Silverman, B., Eastmond, E.: The scratch pro-
gramming language and environment. ACM Transactions on Computing Education
(TOCE) 10(4), 1–15 (2010)

22. Mason, D., Dave, K.: Block-based versus flow-based programming for naive pro-
grammers. In: 2017 IEEE blocks and beyond workshop (B&B). pp. 25–28. IEEE
(2017)

23. Mayer, S., Inhelder, N., Verborgh, R., Van de Walle, R., Mattern, F.: Configura-
tion of smart environments made simple: Combining visual modeling with seman-
tic metadata and reasoning. In: 2014 International Conference on the Internet of
Things (IOT). pp. 61–66. IEEE (2014)

24. Morrison, J.P.: Flow-based programming. In: Proc. 1st International Workshop on
Software Engineering for Parallel and Distributed Systems. pp. 25–29 (1994)

25. Nardi, B.A.: A small matter of programming: perspectives on end user computing.
MIT press (1993)

26. O’Neill, E., Lillis, D., O’Hare, G.M.P., Collier, R.W.: Delivering multi-agent mi-
croservices using cartago. In: Baroglio, C., Hubner, J.F., Winikoff, M. (eds.) Engi-
neering Multi-Agent Systems. pp. 1–20. Springer International Publishing, Cham
(2020)

27. Pokress, S.C., Veiga, J.J.D.: MIT App Inventor: Enabling personal mobile com-
puting. arXiv preprint arXiv:1310.2830 (2013)

28. Rao, A.S.: AgentSpeak(L): BDI agents speak out in a logical computable lan-
guage. In: European Workshop on Modelling Autonomous Agents in a Multi-Agent
World (1996). https://doi.org/10.1007/BFb0031845, https://doi.org/10.1007/
BFb0031845

29. Ray, P.P.: A survey on visual programming languages in internet of things. Scien-
tific Programming 2017 (2017)

30. Ricci, A.: “go to the children”: Rethinking intelligent agent design and program-
ming in a developmental learning perspective. In: Proceedings of the International
Conference on Autonomous Agents and Multiagent Systems – Blue Sky Track
(May 2022), https://www.alexandria.unisg.ch/256718/

31. Ricci, A., Piunti, M., Viroli, M.: Environment programming in multi-agent sys-
tems: an artifact-based perspective. Autonomous Agents and Multi-Agent Systems
23(2), 158–192 (Sep 2011)

32. Rodriguez, S., Gaud, N., Galland, S.: Sarl: A general-purpose agent-oriented pro-
gramming language. In: 2014 IEEE/WIC/ACM International Joint Conferences
on Web Intelligence (WI) and Intelligent Agent Technologies (IAT). vol. 3, pp.
103–110 (2014). https://doi.org/10.1109/WI-IAT.2014.156

33. Smith, D.C., Cypher, A., Tesler, L.: Programming by example: Novice
programming comes of age. Commun. ACM 43(3), 75–81 (mar 2000).
https://doi.org/10.1145/330534.330544, https://doi.org/10.1145/330534.

330544

https://doi.org/10.1007/BFb0031845
https://doi.org/10.1007/BFb0031845
https://doi.org/10.1007/BFb0031845
https://www.alexandria.unisg.ch/256718/
https://doi.org/10.1109/WI-IAT.2014.156
https://doi.org/10.1145/330534.330544
https://doi.org/10.1145/330534.330544
https://doi.org/10.1145/330534.330544

18 S. Burattini et al.

34. Taillandier, P., Vo, D.A., Amouroux, E., Drogoul, A.: Gama: A simulation platform
that integrates geographical information data, agent-based modeling and multi-
scale control. In: Desai, N., Liu, A., Winikoff, M. (eds.) Principles and Practice of
Multi-Agent Systems. pp. 242–258. Springer Berlin Heidelberg, Berlin, Heidelberg
(2012)

35. Terveen, L.G., Murray, L.T.: Helping users program their personal agents. In:
Proceedings of the SIGCHI Conference on Human Factors in Computing Sys-
tems. p. 355–361. CHI ’96, Association for Computing Machinery, New York, NY,
USA (1996). https://doi.org/10.1145/238386.238568, https://doi-org.ezproxy.
unibo.it/10.1145/238386.238568

36. Weintrop, D.: Block-based programming in computer science education. Commu-
nications of the ACM 62(8), 22–25 (2019)

https://doi.org/10.1145/238386.238568
https://doi-org.ezproxy.unibo.it/10.1145/238386.238568
https://doi-org.ezproxy.unibo.it/10.1145/238386.238568

	Agent-Oriented Visual Programming for the Web of Things

