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Abstract. The immune system is the second most complex biological
system after the brain. It consists in millions of cells, of various nature, in-
teracting amongst them to keep the organism safe from external enemies
(pathogens), such as viruses and bacteria. To better understand how the
immune system works, and how it reacts to certain diseases and cures,
simulations have been proposed over the years. Amongst them, we may
find agent-based ones where the organism’s actors, like cells, antibodies,
viruses, and so on, are represented as agents. In this paper, we present
the initial design and development of an agent-based simulation of the
immune system using a well-known agent framework, JADE. We present
the engineering choices we made and the instantiation of some steps of
the secondary immune system response. We discuss the implementation
in JADE, and we present some experimental results.

Keywords: Agent-based Simulation · Immune System · JADE.

1 Introduction

The immune system of any multi-cellular organism is a very complex system
with a lot of different T-cells playing important role to keep a body free from
infections, such as those due to viruses. The goal of the virus is to hijack a cell and
use its resources to make a copy of itself (replication) and to spread those replicas
into other parts of the body. The immune system helps an organism to fight back
the infection by searching for any virus signature moving from one cell to another.
The immune system in general consists of multiple different cells with different
behaviours: some of them immediately activate and contribute to eradicate the
infection by different and complementary mechanisms, such as Phagocytes, T-
cells, B-cells; some of them remember the signature of an infection, such as
B-cells and Memory T-cells, and are essential to prevent similar infection in the
future.
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The goal of this paper is to model some of the components of the immune
system and as interacting agents using the Java Agent DEvelopment Frame-
work (JADE [2]) and simulate a situation when the immune system is under
attack from a virus. Agent-Based Model & Simulation (ABMS) is a well-known
research area focused on simulating systems following a bottom-up approach,
where agents are used to describe the actors of the simulation (for further read-
ings on ABMS techniques a review can be found in [18]). Specifically, this work
is about the engineering of an agent-based simulator in JADE. JADE is a well-
known agent framework based in Java and used in many industrial applications
for its being natively distributable, and having a shallow learning curve. We
present an initial engineering and development of a small part of the immune
system in JADE, namely the secondary immune response carried out by spe-
cialised Memory T-cells. We show the engineering process that brought us to
the development of the digital twins cells as JADE agents, and how their be-
haviours have been coded as JADE behaviours. We recognise the part currently
tackled in our integration in JADE is limited, and an over-simplification of how a
realistic multi-cellular organism’s immune system behaves; however, we decided
to focus on the engineering aspects of finding suitable mappings amongst bio-
logical entities (cells) and digital ones (agents). Above all, we are interested in
presenting the skeleton of an agent-based simulator, called MAiS (Multi-Agent
immune System), which is going to serve us as a base for future developments
and extensions that will be considered to properly model the actual immune
system. Finally, we point out that no simulation of the immune system has ever
been proposed in JADE.

The paper is structured as follows. Section 2 introduces background knowl-
edge on JADE and immune system to make the paper as widely accessible as
possible. Section 3 presents the engineering decisions made in the MAiS devel-
opment, as well as the main reasons for implementing the latter on top of JADE.
Section 4 presents the agents used in MAiS to represent the biological entities
and how such agents work with each other. Section 5 reports the results obtained
by carrying out experiments with MAiS. Section 6 positions the paper w.r.t. the
state of the art. Finally, Section 7 concludes the paper and points out future
directions.

2 Preliminaries

2.1 JADE

JADE3 [2] is a widely used agent framework. By being based upon Java, it is
easy to learn and to integrate to existing solutions. JADE is structured around
the idea of agents, behaviours, and containers. Agents follow the standard mean-
ing, as main actors of the system. Each agent runs on a different thread, and
it communicates with the other agents through FIPA4 compliant messages. Be-
haviours denote how the agents act, and how they achieve their goals. Containers

3 https://jade.tilab.com
4 http://www.fipa.org
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represent the abstract environment where the agents live, and can be distributed
over multiple machines. It is important to note, that agents can move amongst
different containers. This is going to be exploited in the paper to simulate the
passage of viruses and lymphocyte amongst different cells. Note that, since the
containers can be deployed on different machines, the agents not only move, but
their computations move as well. This aspect is of paramount importance in case
the system to model becomes too big to be handled by a single machine; as it
would happen for a realistic immune system comprised of millions of cells.

2.2 The Secondary Immune Response Scenario

The immune system is our second most complex system, after the brain. It
involves many different actors (i.e., cells of our body’s tissues, pathogens like
bacteria and viruses), each one with different features, capabilities and objec-
tives. Depending on the scenario, and the current state of our organism, we may
find ourselves with a complete different set of cells involved in defending us, and
that carry out different tasks.

In this section we consider a simple – but correct – scenario, that will be
used as the case study for the initial design and implementation of MAiS.

1. Some time ago, Alice got an infection from a virus V , which infected cells
of tissue TIS (target cells). The infection fired a reaction from the immune
system that, besides successfully fighting V , also activated the generation of
Memory T-cells specific for V , that we name MemT (V ). Memory T-cells are
a subset of T Lymphocytes and their primary function is augmented immune
response once the pathogen that initially caused their generation (V in this
scenario) attacks the body again. Memory T-cells may ‘wander’ in the blood
and in tissues close to those that had been infected by the pathogen, even
30 years after the first infection.

2. Alice comes into contact with V again.
3. V enters her body via her mouth and tries to infect cells of tissue TIS again.

It may succeed in this attempt with some infection success rate ISR. Let us
suppose that one cell C(TIS)a becomes infected. Two events take place:
(a) C(TIS)a becomes a virus-making factory: V can in fact use it to move to

‘infectable neighbouring cells’, and infect them. The amount and density
of infectable neighbouring cells depends on TIS, on the point the virus
entered the body, and on other factors.

(b) C(TIS)a can be recognized as infected thanks to a peptide (an antigen)
on its membrane surface, acting as a manifesto for its health state: when
a cell is infected with a virus, it has pieces of antigens of that virus – the
virus ‘signature’ – on its surface, not present when the cell is healthy.

4. One Memory T-cell trained to recognize V , MemT (V )b, that was wandering
close to C(TIS)a, perceives pieces of V ’s antigen on the cell’s membrane5.

5. MemT (V )b kills C(TIS)a: this is the only way to stop the proliferation and
spread of V .

5 Memory T-cellsMemT (V ) recognize only antigens of V , since they are virus-specific.
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6. Depending on TIS, cells may be re-generated (cellular replication) to cope
with the fact that some amount of C(TIS) infected cells were killed; repli-
cation may accelerate to re-establish some stable number of cells, or may
not take place at all, depending on TIS. For example, cells of the nervous
systems cannot be replicated (perennial cells), hepatic cells can, but only as
a response of a serious damage and up to some extent (stable cells), blood
cells are continuously replicated (labile cells). If the damage is too vast, even
tissues with labile cells may not be able to restore at the healthy situation
holding before the virus infection.

3 The engineering of MAiS

MAiS has been engineered to be a highly scalable and distributed agent-based
immune system simulator. Even though in this paper we only focus on a simple
sub-process of the immune system’s response, we tackle all the fundamental as-
pects of its full engineering. Specifically, we address how to represent the main
immune system’s components inside JADE. As we mentioned in the introduc-
tion, the main actors of the immune system are the cells. A cell does not only
denote the building block of any organic system, but it also represents the point
of attack for viruses as well (for replication). Because of its importance, we
started the engineering of MAiS from the cells.

Container Cell AgentCell Agent Cell Agent

Cell Agent Cell Agent Cell Agent

Cell Agent Cell Agent Cell Agent

T-cell Agent

Virus
Agent

Antigen

Cell

T-cell

Antigen

Virus

Fig. 1. Schematic of how the biological components (left) are mapped into MAiS
(right).

Figure 1 graphically shows the engineering of the immune system’s pillar
components in MAiS. On the left, we may find a schematic representation of
a region of cells in the organic system. While, on the right, we may find the
counterpart in MAiS, where each cell is represented as an agent (Cell Agent).
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One important aspect to clarify is the locality of cells. Indeed, each cell is not an
island, but is connected to other cells. This aspect has been mapped into MAiS
by adding each Cell Agent inside a JADE container. Then, to maintain the po-
sitioning of the cells, the JADE containers are stored keeping the information
about their neighbour containers (i.e., neighbour cells). This can be schemat-
ically represented as a grid of containers (as shown in Figure 1). We decided
to specify a cell as the combination of a Cell Agent and a JADE container for
two main reasons: (i) to exploit the agents’ mobility feature of JADE; (ii) to
exploit the intrinsic distribution of containers in JADE. Thanks to (i), if we
denote a cell as a container, we can natively implement in JADE the movement
of T-cells and viruses through the movement of T-Cell Agents and Virus Agents
between containers. Such feature is available in JADE, and allows the agents
to move between containers in a transparent way. This is very important both
for T-cells, that need to move around the system searching for viruses, and for
viruses as well, that need to replicate to neighbour cells. On the other hand,
thanks to (ii), by denoting the cells as containers, we can distribute the latter
on multiple machines. By doing that, we can exploit the computational power of
cluster of machines as well as parallel computing. This aspect is of paramount
importance when the immune system to model starts growing; since it would
be increasingly hard for a single machine to handle millions of cells (i.e., mil-
lions of agents). These two features make JADE a suitable candidate to specify
distributed simulations of the immune system.

4 Agents

Now that we have clarified the topology of the immune system representation in
JADE as a grid of containers, we can focus on the main actors of the immune
system and their agent representation.

We have three different typology of agents: Cell Agents, T-Cell Agents, and
Virus Agents.

4.1 Cell Agent

A Cell Agent, as the name suggests, represents a cell in the body of a multi-
cellular organism. It lives inside a JADE container and has an identifying peptide
(i.e., the antigen) which is used by the immune system to verify the status of
the cell (healthy or infected). In case a cell is detected as infected, the immune
system reacts by killing such cell (by means of T-cells). The entire “identify and
kill” process is necessary to avoid the propagation of the infection to other cells.

To represent this behaviour in MAiS, each Cell Agent stores its antigen infor-
mation, and allows other agents in the system to interact with it. Such antigen is
expressed by the cell antigen as as string storing the peptide ammino sequence.
T-Cell Agents can read such antigen to recognise if belonging to a known virus,
or, Virus Agents can replace cellular antigen with an own viral antigen to sim-
ulate the binding of the virus with the cell membrane (action performed by the
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virus for replicating itself through the cell). We discuss these two mechanics when
we present the corresponding agents in the following sections. The identification
carried out by a T-Cell Agent is obtained by checking the corresponding string
antigen for a complete match (i.e., the antigen peptide sequence has to be 100%
equal to the one known by the T-cell).

In here, we present the behaviours of the Cell Agent, and how it communi-
cates with the other agents in the MAS.

Let us focus on the behaviour first. A Cell Agent enacts three different be-
haviours, which correspond to three different states.

Healthy: At the beginning of the simulation, the Cell Agent is healthy and has not
been infected by any virus, yet. In this state, the Cell Agent listens for com-
munications from any possible agent, including Virus Agents. This listening
phase is obtained in JADE by the use of a Cyclic Behaviour6, where the agent
accepts communications from other agents in its container (i.e., agents that
are local to it). In this phase, a Virus Agent can move to the Cell Agent’s
container, and send a message to the latter triggering the infection. This
causes the Cyclic Behaviour to be removed, and the Cell Agent’s antigen to
be modified according to the Virus Agent needs.

Infected: After a Cell Agent has been infected by a Virus Agent, the only Cyclic Be-
haviour which remains listens to T-Cell Agents (since cannot be infected
anymore by being already infected the behaviour listening for the Virus
Agent is removed after the previous step). Such behaviour listens for mes-
sages from any T-Cell which is located inside the Cell Agent’s container.
When this happens, the T-Cell Agent asks the Cell Agent to communicate
its own antigen, and if the antigen (which was previously modified by the
virus) is recognised by the T-Cell Agent, the Cell Agent (along with its
residing virus) is killed.

Regenerating: After the Cell Agent has been killed by the T-Cell Agent, the Cell Agent can
start a process of rebirth (induced by neighbour cells). Hence, a new Cell
Agent is created to substitute the previously killed one. After that, the cell
is considered healthy again and the process can restart.

We want to linger a bit longer on the regeneration phase. In particular, we
have to point out that the act of regenerating a new cell is not a trivial process,
and is not always possible in real life scenarios. Indeed, not all cells in the human
body can be regenerated; an example are brain and heart cells, which once they
are lost, for any reason, are not regenerated by the body (causing the affected
organ to function in a more limited way, i.e., never fully recovering). In MAiS,
we are currently focusing on cells that can be regenerated, according to some
regeneration factor (which of course would depend on the typology of the cell).

The other fundamental aspect of the Cell Agent is the communication with
the other agents in the system. As we mentioned before, depending on which
state the Cell Agent currently is, the communication may vary. When the Cell
Agent is healthy, the infection from a Virus Agent can be triggered by message

6 A behaviour which is cyclically executed by the JADE agent (until is not removed).
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exchange. The same reasoning is followed with the T-Cell Agent as well, which
can trigger the destruction of the cell and the virus by message exchange. Specif-
ically, at the Cell Agent level, we may find three different kind of messages being
exchanged:

Virus→Cell: When the Virus Agent enters the Cell Agent’s container, it sends a message
to the Cell Agent informing the latter of the attack and requesting the Cell
Agent to change. This is obtained in JADE by exchanging an REQUEST mes-
sage7 over a specific communication channel, named Update Antigen Peptide.

Cell↔T-Cell: When a T-Cell Agent enters the Cell Agent’s container, it sends a message to
the Cell Agent asking to verify the cell’s antigen. This is obtained in JADE
by exchanging a REQUEST message over a specific communication channel,
named Antigen Peptide Verification. Upon such request, the Cell Agent
sends a message over the same channel informing the T-Cell of the current
antigen peptide sequence.

T-Cell→Cell: Finally, when a T-Cell Agent has killed a Cell Agent (along with its virus),
it sends a message to the Cell Agent asking to start the regeneration pro-
cess. This is obtained in JADE by exchanging an INFORM message over the
Start Regeneration communication channel (which triggers the cell regen-
eration).

4.2 T-Cell Agent

The T-Cell Agent is the agent which executes the task of identifying and killing
infected cells. Upon initiation, the T-Cell Agent is created inside a random con-
tainer. This is a mobile agent which can move from one container to another
one. Such movement is allowed only between containers that are neighbours on
the grid (as presented in Section 3). After moving to a new container, the T-Cell
Agent asks the Cell Agent present in that container to verify its antigen peptide
sequence. Upon retrieval of the antigen peptide, it performs an identification
process to detect whether the cell has been infected by a virus known by the
T-Cell Agent. If that is the case, it kills the Cell Agent present in that container
and sends a request to the corresponding Cell Agent to start the regeneration
process. After completing the killing step, the T-Cell Agent restarts moving to
a new neighbour container and it repeats its Cyclic Behaviours.

As we did for the Cell Agent, let us know focus on the behaviours of the
T-Cell Agent. In more detail, a T-Cell agent enacts three different behaviours,
which correspond to three different states.

Searching: The T-Cell Agent’s standard behaviour is to move between neighbour cells.
This is obtained in JADE by instantiating a One-Shot Behaviour8 which
makes the agent move from the current container to a neighbour one. This
is obtained by calling the native JADE method doMove(), which moves
the agent into a destination container (passed as argument). The movement

7 A message with INFORM FIPA performative.
8 A behaviour which is executed by the agent only once.
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is completely handled by the JADE framework, and makes the movement
amongst different cell containers transparent to the T-Cell Agent.

Checking: After completing the movement and having reached a new cell to inspect, the
T-Cell Agent communicates with the Cell Agent inside the currently visited
container asking for its antigen peptide sequence. This is implemented as a
One-Shot behaviour and consists in not only the communication step with
the Cell Agent, but in the verification of the antigen peptide sequence as
well. After such identification is completed, if the T-Cell detected the antigen
peptide as the one of the virus, then the T-Cell Agent carries on with the
killing of the Cell Agent (along with its residing virus). Otherwise, the T-Cell
Agent restarts moving as explained in the previous step, since the currently
analysed cell is healthy (or is infected by a virus that is not recognisable by
the T-Cell Agent9).

Killing: In case the antigen peptide sequence of the analysed Cell Agent actually
matches the one recognised by the T-Cell Agent, there is an infected cell
to kill (to stop the replication). In JADE this is obtained by instantiating
a One-Shot Behaviour calling the JADE native method kill(), which kills
an agent in the MAS. After the Cell Agent, and its Virus Agent, have been
killed, the T-Cell Agent communicates to the Cell Agent in the container
asking to start the regeneration process. After that, it restarts moving.

The communication aspects which are relevant for the T-Cell Agent are the
messages exchanged with the Cell Agent about the verification of the antigen
peptide sequence. We have already explained how such message passing works in
the previous section, where the T-Cell agent sends a REQUEST message over the
Antigen Peptide Verification communication channel to the Cell Agent, and
waits for the corresponding INFORM message containing the sequence to verify.

Figure 2 reports a Sequence Diagram on the interaction between a Cell Agent
and a T-Cell Agent. Such diagram schematically presents the steps carried out
by a T-Cell Agent w.r.t. a Cell Agent, as we explained previously. Note that, the
diagram is very abstract. To be more precise, the doMove() method requires the
name of the target container in advance (such information is stored inside each
Cell Agent, which keeps track of both the current container, and the neighbour
ones). The rest of the methods and messages used in the diagram have been
presented before, and their meaning is straightforward.

4.3 Virus Agent

The Virus Agent mimics a virus in real life whose goal is to replicate itself
exploiting the resources of the host cells. Differently from the T-Cell Agent,
the Virus Agent is not a mobile agent. In fact, it can only move by replicating
itself to the adjacent cells. Like it happens in nature, the Virus Agent has a
replication factor, which defines how many copies the Virus Agent can make of

9 We have to keep in mind that a T-Cell Agent is specific for a single Virus Agent, it
knows how to recognise and destroy only that kind of virus; all other viruses in the
system are invisible to it.
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Cell Agent T-Cell Agent

REQ: Antigen Peptide Verification

doMove()

INF: Antigen Peptide Sequence

verifyPeptideSeq()

opt [PeptideSeq matches Virus PeptideSeq]

kill()

loop

Virus Agent

kill()

Fig. 2. Sequence diagram of the interaction amongst a Cells Agents and T-Cell Agents.

itself before destroying the host cell. Such replication factor is an input parameter
of MAiS, and it can be customised to simulate different replication scenarios.
The Virus Agent is spawn in a random container in the grid at the beginning
of the simulation (naturally multiple viruses can be spawn at the same time).
Subsequently, the Virus Agent asks the cell in such container to change its own
antigen peptide sequence by marking that the virus is now present in that cell.
Once the infection of the cell is completed, the Virus Agent starts replicating to
the neighbour cells. This is obtained by spawning a random number (according
to the replication factor) of instantiations of the Virus Agent in a random set of
neighbour cells. Once a new Virus Agent is created inside a neighbour cell, then
the same process described above is reiterated (i.e., infection and replication, in
this order). Since a cell could have been previously infected by another instance
of the same virus, the Virus Agent also checks if the Cell Agent can, or not, be
infected. In case this is not possible, then the Virus Agent stops replicating and
dies. Otherwise, it infects the Cell Agent and continues its replication.

After a certain amount of time (which can be parameterised in MAiS), the
Virus Agent kills the host Cell Agent and thereby commits suicide. Hence, once
the resources of a cell have been completely consumed by the virus, the virus
dies (i.e., the corresponding Virus Agent is killed calling the kill() method).

Let us now focus on the behaviours of the Virus Agent. Specifically, such
agent enacts three different behaviour, which correspond to three different states
of the agent.

Infecting: When an agent is born in a container, the first thing it does is to try to
infect the hosting cell (i.e., the Cell Agent inside the container). To achieve
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this in JADE, a One-Shot Behaviour is instantiated. Such behaviour has the
task of communicating with the Cell Agent. In more detail, the Virus Agent
informs the Cell Agent of being infected, and forcing the latter to change
the antigen peptide sequence, consequently.

Cloning: After the Cell Agent inside the container has been successfully infected,
the Virus Agent starts spreading amongst the neighbour cells. This is ob-
tained by means of another One-Shot Behaviour, which calls the JADE na-
tive createNewAgent()method to spawn new Virus Agents inside neighbour
cells. Such method is used a random number of times, on a random number
of neighbour cells (depending on the replication factor).

Killing: After the cell has been infected, and the Virus Agent has successfully com-
pleted its cloning phase, the Virus Agent keeps feeding on the cell resources
(simulated inside the Cell Agent). When such resources end, the Virus Agent
kills the cell (by calling kill()method on the Cell Agent), and kills itself (by
calling the kill() method on itself). This sequence of actions is performed
inside a One-Shot Behaviour as well.

The only communication carried out by the Virus Agent is the one with the
Cell Agent. The message passing involved in such communication are used to
inform the Cell Agent that has been infected by a virus, and that the antigen pep-
tide sequence needs to be updated. This is obtained by sending an INFORM mes-
sage from the Virus Agent to the Cell Agent over the Update Antigen Peptide

communication channel.

Cell Agent Virus Agent

REQ: Update Antigen Peptide

Update Peptide

kill()

Neighbour
Container 1

createNewAgent()

Neighbour
Container n

createNewAgent()

. . .

Virus Agent

Virus Agent

kill()

Fig. 3. Sequence diagram of the interaction amongst a Cells Agents and Virus Agents.

Figure 3 reports a Sequence Diagram of the interaction between a Cell Agent
and a Virus Agent. Again, this diagram is very abstract, and serves us only to
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help the reader to better visualise the sequence of actions carried out by the
Virus and Cell Agents. Note that, on the left, the diagram shows the actions
concerning the infection of a cell. While on the right, it shows the resulting
cloning phase of the virus on the neighbour containers (i.e., neighbour cells,
since each container contains one cell in the current definition).

5 Experiments

An initial prototype of MAiS can be found as a publicly available GitHub repos-
itory10. In the current state, the tool can be customised through a list of param-
eters. Each parameter influences a different aspect of the simulation, and can be
used to model different scenarios. The available parameters are the following:

– GRID SIZE : the size of the grid of cells (as shown in Figure 1, on the right).
– T-CELL SLEEP TIME : the number of milliseconds that T-Cell Agent stays

in a cell before moving on with its exploration.
– VIRUS REPLICATION TIME : the number of milliseconds that a Virus

Agent takes to perform replication (i.e., between creation and replication).
– VIRUS REPLICATION FACTOR: the factor by which the virus multiplies.
– CELL IDENTIFYING PEPTIDE : the initial peptide of a healthy cell.
– KILL THE CELL AFTERWARD : the number of milliseconds after which

the Virus Agent kills the host cell.

Given the list of parameters presented above, we carried out experiments
varying the two following parameters:

Grid Size Given an assumption of a square-shaped universe, the grid size represents
the length of a side in unit grid.

Replication factor The replication factor of the virus (e.g., if the replication factor is n, then
the virus makes n copies of itself to the adjacent containers in each cycle).

We perform some experiments with varying number of these two parameters
while capturing the behaviour of the system as a whole. Moreover, we were in-
terested in inspecting both the infection and death rate of the cells in the course
of the simulation. Every consecutive simulation was created with an increasing
number of containers (i.e., cells), one Virus Agent and one T-Cell Agent. At the
beginning of each simulation, the Virus Agent is dropped in a random container
and starts replicating itself according to its replication factor parameter, while
the T-Cell Agent, already present in the system since the beginning of the sim-
ulation, searches for the virus from one container to another. We also created a
Monitor Agent to dynamically keep track of the number of infected and dead
cells. Every 50 milliseconds, such agent collects the data and stores them into
a .csv file. These log files are then used to plot the so obtained results; some
of them are reported in Figure 4. Note that, every simulation is stopped when
there are no virus left in the system.

10 https://github.com/sanchayan721/Multi_agent_Immune_System
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Fig. 4. Results obtained through our experiments.

Figure 4 reports four different scenarios that we have experimented. The
first (top left) is a scenario with 100 cells (i.e., 10 × 10 grid) and replication
factor set to 2, the second (top right) with 100 cells and replication factor 4,
the third (bottom left) with 400 cells (i.e., 20 × 20 grid) and replication factor
2, and finally, the fourth (bottom right) with 400 cells and replication factor 4.
In each scenario, we can observe how there is a delay between the percentage
of infected cells, and the percentage of death cells. This derives by the intrinsic
nature of infections, where a virus first infects a cell and then, after depriving
the latter of all its resources, kills it. In most of the reported experiments (3 out
of 4), the virus ends up killing most of the cells before being killed by the T-
cell lymphocyte, or dying from starvation. Indeed, in all but the third scenario
(bottom left), the percentage of death cells reaches 60% (top left), 80% (top
right), and 90% (bottom right) of the total population of cells. In the third case,
we have an example of simulation where the t-cell is capable of detecting the virus
soon enough to stop its replication; in fact, in such simulation, the percentage of
death cells reaches only 4% of the entire population. Another interesting aspect
to note is the behaviour we obtain in the fourth scenario. In there, by having
a large matrix (200 × 200 containers) and a high replication factor, the virus
succeeds in replicating and is the scenario in fact where we obtain the highest
percentage of death cells (since the fast replication is not successfully fought by
the T-cell lymphocyte in such bigger area).

Before moving on with the related work section, we want to point out that
MAiS is currently at the beginning of its development, and the experiments



MAiS: Exploiting JADE as a Multi-Agent simulator of the Immune System 13

we carried out are only meant to show its initial results and to perform some
empirical testing. We are already planning to build on top of MAiS, to enrich
its features, and to experiment it on more challenging scenarios.

6 Related Work

Naturally, one cannot talk about agent-based simulation without citing Netl-
ogo11. Indeed, also in the context of simulating the immune system, we may
find many applications based upon Netlogo (thorough review on the topic [4]).
When considering such applications, the most relevant difference w.r.t. MAiS is
scalability. Netlogo is mainly an academic centralised simulator, and it is hard to
decentralise (only features to perform concurrent executions exist), which makes
it not suitable when the number of agents to simulate grows too much.

One first category of works which are related to the one presented in this
paper are the ones which belong to the area of Artificial Immune Systems (AIS).
In [17], the authors present an artificial immune system based intelligent multi-
agent model, named AISIMAM. In [17], AISIMAM is not used to simulate how
the immune system works, but as it happens in other disciplines, such as genetic
programming, AISIMAM aims at exploiting mechanics which efficiently work
in nature. Specifically, it applies them to a mine detection scenario. A similar
work can be found in [1], where a MAS is designed to mimic the human im-
mune system behaviour. Also here, the resulting model is applied to a certain
domain of interest, which is power system reconfiguration and restoration. AIS
have also been applied in the robotic scenario [6], where autonomous mobile
robots emulate natural behaviours of cells and molecules to realise their group
behaviours (i.e., cooperation). Similarly, in [9], AIS are also used to engineer the
organisational layer in a MAS, when exploited with simulated robot soccer. An-
other scenario where AIS have found application in MAS is the flexible job shop
scheduling problem (FJSP). In [21], the authors analyse similarities between
the FJSP and humoral immunity, which is one of the immune responses. Based
on the similarities, a new immune multi-agent scheduling system (NIMASS) to
solve the FJSP with the objective of minimizing the maximal completion time
is presented. Agent-based Artificial Immune System (AbAIS) [12] is a frame-
work which uses a hybrid architecture where heterogeneous agents evolve over a
cellular automata environment and are modelled following a genetic approach.
AbAIs is applied to intrusion detection systems (IDS). Finally, we can find AIS
implemented in JADE as well. Also in such works, the aim is not to simulate
the immune system, but to take inspiration from it to solve different tasks. We
may find [16], where an AIS is developed in JADE and used in a process for gas
purification from acidic components, or [8], where is used to minimize the mi-
crogrids operational cost and maximize the real-time response in grid-connected
microgrids, or [10], where a mobile agent-based system architecture is proposed
in JADE for machine condition monitoring by imitating human immune sys-

11 http://www.netlogoweb.org
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tem, or finally [5], where the AIS in JADE is used to handle the disruption
management in production systems monitoring and control.

Differently from MAiS, all these works are not interested on designing, engi-
neering and developing an agent-based simulation of the immune system; instead,
they are examples of how to take inspiration from the immune system to solve
general MAS problems.

The second category of works which are related to our contribution are the
ones presenting agent-based simulations of the immune system. There are numer-
ous existing works on agent-based immune system models. CAFISS [20] models
cell to cell interactions in a grid with each cell denoted through a bit string.
In [20], the authors describes a Java-based implementation of a framework for
modeling the immune system, particularly Human Immunodeficiency Virus (or
HIV) attack, using a Complex Adaptive Systems (CAS) model. The only down-
side of such solution is in its not being much scalable, indeed it has a large
overhead caused by the use of separate threads for each cell. ImmSim [14, 3] is
a simulator based on cellular automata developed in APL2 [7]; the framework
exploits task parallelism on distributed computers and, because of this, it is
able to reduce execution time and it supports large-scale simulations. ImmSim
is also the base on which ImmunoGrid [13], and Sentinel [15], two other immune
system simulators, have been built. Swarms [11] is a 3-dimensional model of
the human immune system and its response to first and second viral antigen
exposure (implemented in BREVE [19], a physics-based ABMS engine).

For a further readings on existing ABM techniques to simulate the immune
system, a thorough review can be found in [18].

To the best of our knowledge no agent-based immune system simulation has
never been proposed in JADE before.

7 Conclusions and Future Work

In this paper, we presented the building blocks of MAiS, an agent-based simula-
tor built in JADE to reproduce the human body’s immune system in a scalable
and distributed manner. We are well aware that the actual immune system is
extremely complex and that MAiS is only tackling a very specific aspect of it.
Nonetheless, the current work allowed us to focus on the initial engineering steps
required to map the immune system in JADE. In fact, we showed how some of
the main organic actors (cells, lymphocyte, and so on), can be mapped into their
corresponding agent representation in JADE, and how a specific step of the im-
mune system’s response can be simulated through such agents. Moreover, we
showed how the innate JADE agent’s mobility and containers’ distributability
are key features of such mapping.

As future directions, we are planning to build on top of MAiS, by adding
more agents and by enriching the currently available ones. Moreover, we want
to further explore the scalability and distributed features inherited by JADE,
and how such features can influence the simulation process. This last aspect will
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be extremely valuable to perform a comparison with the other existing state-of-
the-art agent-based solutions.
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