
A Framework for Developing Interactive
Intelligent Systems in Unity

Andreas Brännström[0000−0001−9379−4281] and Juan Carlos
Nieves[0000−0003−4072−8795]

Department of Computing Science
Umeå University

SE-901 87, Umeå, Sweden
{andreasb, jcnieves}@cs.umu.se

Abstract. This paper introduces a lightweight framework for imple-
menting intelligent interactive systems (IIS). In particular, systems that
integrate symbolic knowledge bases for reasoning, planning and rational
decision-making in interactions with humans. This is done by integrat-
ing Web Ontology Language (OWL)-based reasoning and Answer Set
Programming (ASP)-based planning software. In order to provide inter-
active user components, the framework is encompassed in a widely used
game development tool, Unity. The proposed framework, UnityIIS, is the
first approach for integrating OWL together with ASP in Unity. Its cen-
tral functionalities for knowledge representation and knowledge revision
is presented together with an example application created in the frame-
work. A chatbot agent, embodied in Augmented Reality, is designed,
following a Belief, Desire, Intention (BDI) agent model. The set of tools
that the framework provides can be applied for developing IIS research
prototypes as well as being an asset in teaching practices.

Keywords: Software frameworks · Symbolic reasoning · Agent modeling
· Multi-agent systems · Game development.

1 Introduction

Along with advances in artificial intelligence (AI) methods and related tech-
nologies, the emergence of Internet of Things (IoT), and the widespread use of
wearable smart devices with advanced sensor technology, there is an increased in-
terest in designing and developing Intelligent and Interactive Systems (IIS) [24].
The IIS research field studies interactions between humans and intelligent sys-
tems, to develop intelligent digital artifacts that can interact with humans and
their environment (increasingly commonly in Mixed-Reality environments, us-
ing Virtual Reality (VR) or Augmented Reality (AR) technology) to personalize
and support human activities. However, designing and developing intelligent in-
teractive systems are challenging due to that systems usually require composite
multi-modal [25] and multi-agent system (MAS) [8] architectures that integrates
several types of intelligent technologies, together with interactive components



2 A. Brännström and J.C. Nieves

directed toward the human users. A multi-modal and multi-agent architecture
is required in order to model complex human domains that often need to be
analyzed in different ways, in terms of, e.g., context reasoning, planning, and ra-
tional decision-making, interwoven with a variety of learning components (e.g.,
as input models or weight revisions). Such diverse operations may require mul-
tiple reasoning and planning technologies that are executed in a sequence or in
parallel. For instance, context reasoning may lead to goal recognition, which in
turn guides a planning procedure.

A variety of tools for developing agent-based systems are available (e.g., Ja-
CaMo [4], JADE [3], Tweety [23]). However, integrating agent technologies with
human interaction components (e.g., 2D, 3D or Mixed-Reality interfaces) can
pose a technical overhead. Research communities and teaching practices need
practical tools and frameworks that support implementing IIS research proto-
types, providing functionalities for multi-modal reasoning architectures [17].

This paper introduces a framework for implementing intelligent interactive
systems that integrates symbolic knowledge bases for reasoning, planning and
rational decision-making in interactions with humans. While there is a variety
of technologies and tools available, the framework is centered on three main
technologies: Web Ontology Language (OWL) [14], Answer Set Programming
(ASP) [12], and the Unity Game Engine [20].

OWL, originally developed for the Semantic Web to ensure a common un-
derstanding of information on the Web, has been applied in different areas for
representing and sharing knowledge. In the setting of IIS, ontologies are useful
for providing personalized human interactions, e.g., by reasoning with knowledge
from different sources and modalities, to create cooperative agent technologies
across Web-sources, people, (IoT) devices, and physical-virtual spaces.

Answer Set Programming (ASP) is a well-known declarative programming
paradigm which has its roots in logic programming and non-monotonic reason-
ing to solve difficult, typically NP-hard, search problems, useful for different
knowledge representation and reasoning tasks. In the setting of IIS and in the
proposed framework, we particularly highlight ASP-based planning and action
reasoning [12].

The proposed framework integrates OWL and ASP with a widely used game
development tool, the Unity Game Engine, that previously has been used for
multi-agent applications [2, 19]. Unity provides a wide range of functionalities
to develop interactive games and applications, for 2D, 3D and Mixed-Reality
interfaces, which can be deployed on a variety of (mobile) devices. We intro-
duce ‘Unity Interactive Intelligent Systems’ (UnityIIS) framework which enables
operations such as create, query, update and delete on OWL-ontologies and
ASP-programs, which support implementation of multi-modal reasoning archi-
tectures with functionalities such as knowledge revision, goal deliberation, action
reasoning and planning. The framework has been applied to develop various pro-
totypes [1, 5] and is accessible online for academic and research purposes1.

1 https://git.io/JMpC6



Interactive Intelligent Systems in Unity 3

The rest of this paper is organized as follows. In Section 2, we summarize
previous frameworks for implementing agent and MAS-based interactive intelli-
gent systems. In Section 3, we introduce the UnityIIS framework and its main
components. Section 4 presents an example application, a chatbot agent, based
on the framework. Section 5 and 6 concludes the paper, discussing potentials,
limitations and directions for future work.

2 Related Work

There is a large number of tools available for implementing intelligent systems,
utilizing agent and multi-agent system (MAS) technologies [10] (e.g., JaCaMo [4],
JADE [3], JACK Intelligent Agents [7], MadKIT [13], and Tweety [23]). How-
ever, these tools are often large and overwhelming for small-scale applications
and projects. Furthermore, these tools often require a high technical overhead
when developing systems that involve human interactions, i.e., where (graphi-
cal) user interface components must be integrated with the agent-components.
This becomes an issue in, e.g., teaching practices, when engaging students in
development of interactive intelligent systems, or when developing small-scale
research prototypes. A way to approach this is to integrate different agent rea-
soning components with an interactive game development environment, such as
Unity. Within the Unity platform, a variety of frameworks and libraries have
been introduced to aid Unity game developers with agent-based functionalities.
These frameworks have mostly centered on Machine Learning (ML)-based ap-
proaches. For instance, the Machine Learning Agents (ML-Agents) toolkit [15]
was introduced for Unity. The ML-Agents toolkit simplifies integration of re-
inforcement learning, imitation learning agents as well as scripted agents into
games developed in Unity.

When it comes to the area of rational agents and logic programming, there
are a set of interesting tools available. EmbASP [9] is a framework for integrating
logic programming in external systems for generic applications. Similar to the
present paper, EmbASP is created to help developers to integrate complex rea-
soning tasks in applications through logic-based solvers. EmbASP is a prominent
tool for integrating logic programming in Unity. However, the software is cur-
rently limited to desktop and Android devices, leaving out a variety of mobile,
VR and AR devices. Furthermore, it lacks support for OWL ontologies.

A widely used tool for integrating logic programming into external systems
is Tweety [23]. Tweety is a Java library that provides a general interface layer
for doing research and working with different logical formalisms and knowledge
representation approaches. Similar to UnityIIS, through Tweety, different logic
based approaches can be integrated in external systems, such as Unity. While
Tweety has a rich selection of functionalities, the Java-based approach requires
the programmer to develop the integration to Unity, which can constitute a large
technical overhead, especially for smaller research prototypes.

In order to decrease this overhead for research prototypes in Unity, we need
lightweight frameworks that in a plug-and-play manner integrates symbolic rea-



4 A. Brännström and J.C. Nieves

soning approaches, such as Answer Set Programming and OWL ontology rea-
soning into Unity. This is where we see the main benefits of the introduced
framework, combining relevant tools for developing interactive intelligent sys-
tems that can be deployed on a large span of devices. In addition, due to its
lightweight approach, the introduced framework can be integrated with previous
frameworks, such as Tweety and ML-Agents, for a broader functionality.

3 The UnityIIS Framework

The UnityIIS framework is divided into modules to integrate varying agent-
modeling and knowledge representation tools. The main modules are 1) the
‘OWL Unity Package’ to enable ontology reasoning, and 2) the ‘ASP Unity
Package’ to enable ASP-based action reasoning and planning. The modules can
be applied together or individually depending on the needs of the specific appli-
cation. A set of helper functions is provided for creating, querying and updating
OWL-ontologies and ASP-programs. Through the helper functions, procedural
updates can be made to an agent’s knowledge base. Knowledge revisions are
interwoven in the Unity game engine’s main update loop (or by using parallel
threads). This allows multi-agent architectures with agents that act and interact
in parallel. In this way, dynamic logic-based functionality is enabled for building
autonomous rational agents in a graphical development environment.

Conceptually, the architecture takes multi-modal inputs from the user, the
game environment, and potential sensors. The inputs (processed through suitable
input/sensor models) together with current environment variables is collected in
a game state data structure. The game state is converter to OWL facts and
sent in an OWL ontology file to the ontology reasoner. The ontology inference is
processed and converted to ASP facts, sent in an ASP program file to the ASP
solver. Answer sets are collected, filtered, and provided as input to application
specific operations (see Figure 1).

Fig. 1: UnityIIS Conceptual Architecture.

ASP and OWL reasoners are accessed remotely through a Web API (Appli-
cation Programming Interface). Due to the Web API approach, the developer



Interactive Intelligent Systems in Unity 5

does not have to be concerned about system integrations nor system dependen-
cies and can instead focus on application specific development. The Web API
solution further allows the system to be deployed on any (mobile) device with
internet access. With minor adjustments to the framework, the reasoners can in-
stead be accessed locally on the device. This adaption can be important for some
applications where data privacy and external transmissions must be considered.
In the following subsections, we present the main components of the framework.

3.1 OWL Ontology Module

The ‘OWL Unity Package’ integrates an ontology reasoner, BaseVISor [18], to
the Unity platform through a Web API. BaseVISor is a forward-chaining infer-
ence engine optimized for the processing of RDF triples. BaseVISor supports
reasoning services such as realization, classification, satisfiability, conjunctive
query answering, entailment, and consistency.

UnityIIS’s Web API accesses BaseVISor by running a remote command line
execution on a BaseVISor standalone application. In a HTTP call from Unity,
rules and/or facts are appended in a BaseVISor (BVR) file. The BVR file is
an XML file written in BaseVISor markup language. The BVR file includes
references to OWL ontology files. Furthermore, in the BVR file, additional facts
can be defined in terms of RDF-triples (⟨subject, predicate, object⟩), and rules
(⟨head, body⟩) for complementing and processing ontology inferences.

The most central functions of the ‘OWL Unity Package’ are presented below,
which allows creating, updating and deleting inference rules, queries, facts and
BaseVISor inference response filters before connecting to the ontology reasoner:

– UpdateOWLFile() - Updates an OWL ontology file. This allows adding,
creating, updating and deleting facts or inference rules in the ontology file
before connecting to the ontology reasoner.

– UpdateBVRFile() - Updates RDF-formatted content in a BVR file. This
allows adding, creating, updating and deleting facts, rules, queries and re-
sponse formats before connecting to the ontology reasoner.

– OWLConverter() - Converts input from the Unity application to OWL-
format. This allows converting user and environment input into facts, rules,
queries, etc.

– RDFConverter() - Converts input from the Unity application to BaseVI-
Sor RDF-format. This allows converting user and environment input into
facts, rules, queries, etc.

– QueryOntology() - Starts a request to the ontology reasoner API. The
most recent BVR file and OWL file contents are sent in the request. The
ontology inference is returned and collected to be further processed in Unity.

3.2 Answer Set Programming Module

The ‘ASP Unity Package’ integrates an Answer Set Programming (ASP) solver
and grounder, Clingo [11], to the Unity platform through a Web API by running



6 A. Brännström and J.C. Nieves

a remote command line execution on a Clingo standalone application. UnityIIS
provides a set of helper functions to allow querying ASP knowledge bases, up-
dating facts and inference rules, and retrieving solutions in terms of answer sets.
The most central functions are presented below:

– UpdateASProgram() - Updates an ASP program file. This allows adding,
creating, updating and deleting facts, constraints, action specifications, goal
specifications, etc., before connecting to the solver.

– ASPConverter() - Converts input from the Unity application to ASP-
format. This allows converting user input, environment input, and prior on-
tology inferences, into ASP-formatted facts, goals, rules, queries, etc.

– QueryASProgram() - Connects to a Web API with the ASP solver, Clingo.
The most recent ASP program file content is sent in the request. The ASP
answer sets are returned and collected to be further processed in Unity.

3.3 Web API to OWL/ASP Reasoners

The UnityIIS Web API is accessed through HTTP requests from the UnityIIS
application, delivering updated BVR, OWL and ASP files to the server. The
server API, written in PHP, receives the HTTP requests and executes server side
command line operations to initiate the BaseVISor and Clingo batch programs.
Before executing the batch programs, received BVR, OWL and ASP files are
temporarily stored on the server to be appended in the reasoning processes.
BaseVISor and Clingo batch programs are accessed in separate calls in order to
enable individual executions and separate processing of results. This allows, for
instance, ontology inferences (e.g., context recognition) to be appended to the
ASP program input for further processing (e.g., planning).

4 Example: BDI Chatbot in Augmented Reality

Using the components of the UnityIIS framework, we develop an Augmented
Reality (AR) chatbot [5], following a BDI (Belief, Desire, Intention) agent model
[22] (see Fig 2-a). Belief is the agent’s internal knowledge of its environment,
which is updated during the interaction by getting new observations. Desires are
goals that the agent aims to fulfill, which are updated during the interaction by
reflecting upon new beliefs. Intentions are what goals the agent has chosen to
achieve, selected in a deliberation process and used for generating a plan.

The belief of the agent is represented in an OWL ontology, for context rea-
soning and goal recognition, and in an ASP program, for planning and action
reasoning. The UnityIIS framework enables belief revisions (OWL/ASP file up-
dates) at application run time by interweaving the agent’s control loop with
the Unity game loop. The Unity game loop does cyclic update iterations on a
given frequency. During each frame, external inputs are processed, game status
is updated, and graphics are redrawn.

Through a chatbot style interaction, user input is collected and converted
to OWL and ASP input strings. The OWL input strings are sent to the OWL



Interactive Intelligent Systems in Unity 7

(a) AR Chatbot

Device
 
 
 
 
 
 
 
 

Mixed Reality Device (Interface) 

Affective
Cues 

Message/
Utterance 

Contextal 
Cues

User

 
Input Fusion and OWL/ASP Converter

Mixed Reality Avatar Controller

Facial ExpressionSuggestions Body Animation

OUTPUT OUTPUT OUTPUT

 
Environment
Ontology 

 

User
Ontology

OWL Reasoner 
(Goal recogn.) 

Agent Controller 

Actions

Dialogue Manager

ASP Solver/Clingo
(Planning)

INPUT INPUT INPUT

Agent Avatar 

User
Constraints

 
Environment
Constraints 

 

Unity App.

(b) System Architecture

Fig. 2: Example: BDI Chatbot in Augmented Reality.

ontology reasoner to deliberate about contextual goal definitions. The ontology
inference is converted to ASP and appended to the ASP input string, which is
sent to the ASP solver. The ASP solver generates a plan for interaction, and
decides on suitable actions (see Fig 2-b).

5 Discussion

This paper has presented a development framework, UnityIIS, composed of a set
of tools to develop agent-based and MAS-based interactive intelligent systems.
The underlying Unity platform allows agent modeling components to be inte-
grated with graphical and user interaction components in a modular way. The
components of the framework can further be integrated with other packages for
Unity for interweaving other AI and agent-based components, such as machine
learning (e.g., the ML-Agents toolkit [15]).

UnityIIS is the first development framework that integrates OWL ontology
reasoning together with ASP in Unity. UnityIIS is inline with the idea of multi-
modal reasoning agents architectures [17]. The framework is aimed to reduce
technical overhead when developing interactive intelligent systems, making it
practical for implementing research prototypes.

A limitation of the framework regards the general problem when ontologies
become larger, which can result in exponentially increased computational com-
plexities for certain operations [16]. This can become an issue for applications
with large ontologies that require quick response times. To account for this,



8 A. Brännström and J.C. Nieves

the framework can with minimal changes access reasoning tools through a lo-
cal command line interface instead of the Web API solution. Furthermore, the
lightweight open-ended architecture can be improved, with more strict frame-
work structures (e.g., in line with particular agent meta-models [6,21,22]). This
would streamline and accelerate the development of certain applications.

6 Conclusion and Future Work

In this paper, we introduce the UnityIIS framework, developed for implementing
interactive intelligent systems, powered by OWL ontologies and ASP programs,
in Unity. The framework delivers accessible tools for knowledge representation,
agent and MAS-based interactive systems. The framework aims to decrease tech-
nical overhead (often the case with current, more extensive, frameworks) when
developing IIS systems, suitable for developing research prototypes as well as
being utilized by teaching practices in the topic of IIS. In future work, we aim to
integrate additional logic-based reasoning and knowledge representation tools,
as well as adding features to develop different agent models, such as the BDI
agent model and different MAS models. UnityIIS will further be extended with
functionalities toward dialogue systems.

Acknowledgements This work was partially funded by the Knut and Alice
Wallenberg Foundation.

References

1. Andreas, B., Kampik, T., Nieves, J.C.: Towards human-aware epistemic planning
for promoting behavior-change. In: Workshop on Epistemic Planning (EpiP)@
ICAPS, Online, October 26-30, 2020 (2020)

2. Becker-Asano, C., Ruzzoli, F., Hölscher, C., Nebel, B.: A multi-agent system based
on unity 4 for virtual perception and wayfinding. Transportation Research Procedia
2, 452–455 (2014)

3. Bellifemine, F., Bergenti, F., Caire, G., Poggi, A.: Jade—a java agent development
framework. In: Multi-agent programming, pp. 125–147. Springer (2005)

4. Boissier, O., Bordini, R.H., Hübner, J.F., Ricci, A., Santi, A.: Multi-agent ori-
ented programming with jacamo. Science of Computer Programming 78(6), 747–
761 (2013)

5. Brännström, A.: Interactive rational agent embodied in augmented reality,
https://people.cs.umu.se/andreasb/index-assets/MIRAI-2021-poster.pdf

6. Brännström, A., Kampik, T., Ruiz-Dolz, R., Taverner, J.: A formal framework for
designing boundedly rational agents. In: 14th International Conference on Agents
and Artificial Intelligence (ICAART), Online, February 3-5, 2022. vol. 3, pp. 705–
714. SciTePress (2022)

7. Busetta, P., Rönnquist, R., Hodgson, A., Lucas, A.: Jack intelligent agents-
components for intelligent agents in java. AgentLink News Letter 2(1), 2–5 (1999)

8. Calegari, R., Ciatto, G., Mascardi, V., Omicini, A.: Logic-based technologies
for multi-agent systems: a systematic literature review. Autonomous Agents and
Multi-Agent Systems 35(1), 1–67 (2021)



Interactive Intelligent Systems in Unity 9

9. Calimeri, F., Fuscà, D., Germano, S., Perri, S., Zangari, J.: Fostering the use of
declarative formalisms for real-world applications: The embasp framework. New
Generation Computing 37(1), 29–65 (2019)

10. Cardoso, R.C., Ferrando, A.: A review of agent-based programming for multi-agent
systems. Computers 10(2), 16 (2021)

11. Gebser, M., Kaminski, R., Kaufmann, B., Ostrowski, M., Schaub, T., Thiele, S.:
A user’s guide to gringo, clasp, clingo, and iclingo (2008)

12. Gelfond, M., Kahl, Y.: Knowledge representation, reasoning, and the design of
intelligent agents: The answer-set programming approach. Cambridge University
Press (2014)

13. Gutknecht, O., Ferber, J.: Madkit: A generic multi-agent platform. In: Proceedings
of the fourth international conference on Autonomous agents. pp. 78–79 (2000)

14. Hitzler, P.: A review of the semantic web field. Communications of the ACM 64(2),
76–83 (2021)

15. Juliani, A., Berges, V.P., Teng, E., Cohen, A., Harper, J., Elion, C., Goy, C., Gao,
Y., Henry, H., Mattar, M., et al.: Unity: A general platform for intelligent agents.
arXiv preprint arXiv:1809.02627 (2018)

16. Li, Y., Jianhui, Z., Liu, J., Hou, Y.: Matching large scale ontologies based on filter
and verification. Mathematical Problems in Engineering 2020 (2020)

17. Mascardi, V., Weyns, D., Ricci, A., Earle, C.B., Casals, A., Challenger, M., Chopra,
A., Ciortea, A., Dennis, L.A., Díaz, Á.F., et al.: Engineering multi-agent systems:
State of affairs and the road ahead. ACM SIGSOFT Software Engineering Notes
44(1), 18–28 (2019)

18. Matheus, C.J., Baclawski, K., Kokar, M.M.: Basevisor: A triples-based inference
engine outfitted to process ruleml and r-entailment rules. In: 2006 Second Inter-
national Conference on Rules and Rule Markup Languages for the Semantic Web
(RuleML’06). pp. 67–74. IEEE (2006)

19. Mathieu, P., Picault, S.: The galaxian project: A 3d interaction-based animation
engine. In: International Conference on Practical Applications of Agents and Multi-
Agent Systems. pp. 312–315. Springer (2013)

20. Okita, A.: Learning C# programming with Unity 3D. AK Peters/CRC Press (2019)
21. Omicini, A., Ricci, A., Viroli, M.: Artifacts in the a&a meta-model for multi-agent

systems. Autonomous agents and multi-agent systems 17(3), 432–456 (2008)
22. Rao, A.S., Georgeff, M.: Bdi agents: from theory to practice. In: Proceedings of the

First International Conference on Multiagent Systems. vol. 95, pp. 312–319 (1995)
23. Thimm, M.: Tweety: A comprehensive collection of java libraries for logical aspects

of artificial intelligence and knowledge representation. In: Fourteenth International
Conference on the Principles of Knowledge Representation and Reasoning (2014)

24. Xhafa, F., Patnaik, S., Tavana, M.: Advances in Intelligent, Interactive Systems
and Applications: Proceedings of the 3rd International Conference on Intelligent,
Interactive Systems and Applications (IISA2018), vol. 885. Springer (2019)

25. Zhao, R., Wang, K., Divekar, R., Rouhani, R., Su, H., Ji, Q.: An immersive system
with multi-modal human-computer interaction. In: 2018 13th IEEE International
Conference on Automatic Face & Gesture Recognition (FG 2018). pp. 517–524.
IEEE (2018)


