
Quantifying the Relationship Between Software
Design Principles and Performance in Jason: a
Case Study with Simulated Mobile Robots

Patrick Gavigan and Babak Esfandiari

Carleton University, Ottawa, Canada
{patrickgavigan,babak}@sce.carleton.ca

Abstract. We investigated the relationship between various design ap-
proaches of AgentSpeak code for Jason Beliefs-Desires-Intentions (BDI)
agents and their performance in a simulated automotive collision avoid-
ance scenario. Also explored was how the approaches affected software
maintainability, assessed through coupling, cohesion, and cyclomatic com-
plexity. We then compared each agent’s performance, specifically their
reasoning cycle duration and their responsiveness. Our findings revealed
that agents with looser coupling and higher cohesion are more respon-
sive to stimuli, implying that more maintainable AgentSpeak can result
in better performing agents. Performance was inversely related to cyclo-
matic complexity.

1 Introduction

While there has been a great deal of work in the Agent-Oriented Software En-
gineering (AOSE) community on the design of Multi-Agent Systems (MAS),
there doesn’t seem to be much guidance in terms of how software design princi-
ples should be applied to writing individual agents using AgentSpeak. Different
approaches have trade-offs in terms of their software maintainability and their
performance. This work aims to study this trade-off in the context of a simulated
autonomous car developed with Jason [2][11]. As in [14][20], the agents drove the
car on a street toward an obstacle and needed to stop in time to avoid a collision.
There is a high number of perceptions being generated from the car’s sensors,
which is a factor in the performance of the agent.

One possible design approach, not necessarily recommended, would be to
write AgentSpeak code exclusively with goal-directed behaviours - plans that are
only triggered by achievement goals. Another extreme design approach would be
to write exclusively reactive behaviour using only belief-triggered plans. A more
idiomatic approach would be to balance the design of the agent’s behaviour us-
ing a combination of goal-triggered plans and belief-triggered plans to reduce
the scope of concerns that each plan needs to handle, hopefully improving main-
tainability. A judicious use of custom event and option selection functions can
also help reduce the number of guards in plans and the number of candidate
plans, as well as reduce the dependency between plans and their ordering.

2 Gavigan and Esfandiari

To assess the maintainability of these approaches, we adapt software engi-
neering metrics from the object-oriented design field aiming to evaluate coupling,
cohesion, and complexity. These concepts and the specific metrics are detailed
later in this paper.

To assess the performance impact of the various design approaches, and the
possible trade-offs with maintainability criteria, we measure the duration of the
agent’s reasoning cycle, the time it took for the agent to decide to stop to avoid
the collision, and the number of collisions that occurred for each agent.

In the remainder of this paper we first look at related work that has explored
software engineering metrics in the AOSE field as well as work on the perfor-
mance of Beliefs-Desires-Intentions (BDI) agents. This is followed by a discussion
of the experiment setup and the alternative agent designs. These alternative de-
signs are then assessed using the adapted concepts of coupling, cohesion and
complexity. Next, these alternative designs are tested in the collision avoidance
scenario. Finally, the noted performance difference is investigated with a profiler
to identify the underlying cause.

2 Background and Related Work

Although there are a number of metrics used by the field of AOSE, these met-
rics tend to focus on the interactions between multiple agents and less about
the design of individual agents. Examples of these include social ability, auton-
omy, and proactivity [23]. Another theme in AOSE is the development of design
methodologies. Wooldridge et. al. provided Gaia [27] which focuses on the roles
of agents within a MAS in terms of concepts such as permissions, responsibilities,
protocols, activities, liveness properties, and safety properties. Kinny et. al. [12]
propose a process that examines roles and responsibilities of agents, plans that
may be used to achieve them, and belief structure of the system. Miles et. al. [17]
noted that object-oriented software provides highly cohesive and separated com-
ponents that can be modified individually, and highlighted that this type of
design would benefit the design of agent software.

The object-oriented community assesses maintainability using the concepts
of coupling and cohesion [25][1]. Coupling refers to how interconnected a class
is with another class. When software has loose coupling, changes to one class
don’t break other classes and force additional changes. The connections be-
tween classes should follow well-defined interfaces and not be over-reliant on
the implementation-specific details of these interfaces. Cohesion refers to the
number of tasks or responsibilities of each class or method. For software to have
high cohesion, the modules, classes, or methods should each be responsible for
one, well defined, task or concern. Having higher cohesion increases the likeli-
hood that the code can be reused. Although there is some precedent for using
these metrics with MAS, specifically in terms of the connections between agents,
there does not seem to be widespread adoption of these types of metrics for as-
sessing the connections and responsibilities of the plans within an agent [10].
There is also precedent for using these metrics to assess declarative software

Design Principles and Mobile Robot Performance in Jason 3

implemented in languages such as Prolog [13] [21], which has a syntax similar
to AgentSpeak. Another useful metric is McCabe’s [15] Cyclomatic complexity
which is calculated using the number of edges and nodes in a program’s control
graph and the number of connections it has to external modules. Naturally it is
preferable for software to be less complex. This has also been used in the context
of MAS, again focusing on the connections between agents [4] and has been used
for evaluating declarative software in Prolog [19].

There has been effort to examine the performance of BDI agents. Stabile and
Sichman [24] found that depending on the number of perceptions Jason handles,
belief update and unification accounted for up to 99% of execution time. Miller
and Esfandiari [18] investigated the time complexity of Jason’s reasoning cycle
components. Through profile testing they confirmed their analysis and found
that increasing the number of perceptions resulted in a polynomial growth in
execution time and that increasing the number of beliefs and plans resulted
in a linear growth in execution time. Concerned about Stabile and Sichman’s
findings, Pantoja et. al. tested their ARGO agent’s performance in terms of its
responsiveness to stimuli by having it drive a car toward a wall and observed the
stopping performance [20][14]. They found that perception filtering removed the
need for the agent to update beliefs from irrelevant sensors and led to improved
performance. Cardoso et. al. [3] used the same approach to prevent their agent
from being overwhelmed.

Wesz [26] compared agent behaviour code implemented using Jason with Ja-
CaMo to similar behaviours implemented in Python and found that the Jason
agents generally had fewer lines of code, interpreting this to mean that the Ja-
son code was less complex. Although the number of lines of code can provide
some insight, the metrics of coupling and cohesion [25][1] are preferred for as-
sessing maintainability and the cyclomatic complexity [15] metric is preferred
for assessing complexity.

3 Methodology

Our study of the trade-offs between the design of agents using AgentSpeak and
their performance requires both a test environment in which their performance
can be assessed and a set of alternative designs to compare. This section provides
the details of the collision avoidance experiment, including the performance met-
rics measured. This is followed by the design details for each of the alternative
agents.

3.1 Collision Avoidance Experiment Setup

In our test, each agent drove the car toward an obstacle to trigger its obstacle
avoidance behaviour to stop the car. There are several ways to observe the
differences in agent performance. For example, the agents’ reasoning times and
reaction to stimuli can be measured, as in [20][14]. The experiment was as follows:

– Measure the reasoning rate and perception rate. Was the agent keeping up?

4 Gavigan and Esfandiari

– Measure the time from the observation of the obstacle to the stop action.
– Observe if the collision was avoided or not.
– Compare the results of different agent designs. Was there a difference?

AirSim’s automotive neighbourhood was used for our experiment as it pro-
vided a safe and repeatable test environment. AirSim is an open-source high
fidelity simulator maintained by Microsoft [16][22]. To perform the experiments,
Jason was connected to AirSim using SAVI ROS BDI [9], meaning that the only
difference between the agents was their internal implementation. The agent had
access to a variety of sensors and actuators, including a Global Positioning Sys-
tem (GPS) sensor, a compass, a speedometer, an obstacle detection laser imag-
ing, detection, and ranging (LIDAR), a lane-keep assist camera, and a cruise con-
troller for controlling the throttle and breaks. Sensor data from each of the sen-
sors is provided to the agent for every reasoning cycle. Our software is available
on GitHub [6] and videos of the car driving are available on YouTube [5][7][8].
These videos include examples of the car stopping before the obstacle [8], crash-
ing into the obstacle [7], and an additional video of the car swerving to avoid
the obstacle and continue driving to the end of the street to its destination [5].

3.2 Agent Designs

A set of design alternatives are needed for measuring the trade-offs between
design principles and performance. As mentioned earlier, two extreme design
approaches would be to write AgentSpeak plans using only goal triggers and
plans using only belief triggers, yielding exclusively goal-directed or reactive
agents. Although these design approaches are somewhat artificial and not nec-
essarily how agents may be designed in practice, it was noticed anecdotally that
novice AgentSpeak programmers would take these approaches. By using these
extremes it also enables differences in performance and software properties to be
observed. Designing more idiomatically would include balancing the use of both
goal-triggered and belief-triggered plans. This approach was used in concert with
a behaviour prioritization scheme which prioritizes safety-related event triggers
over others and selects non-default plans over default plans. The last alternative,
which provides context for the results for the BDI agents in comparison to more
traditional software design was an imperative program written in Python. The
following paragraphs and listings detail the designs of these alternatives and the
prioritization scheme.

Behaviour Prioritization The idiomatic agent makes use of a behaviour pri-
oritization scheme which selects events related to safety over events related to
movement. It also prioritizes non-default plans over default plans. These two
features are expected to reduce the number of plan guards, the number of candi-
date plans associated with each event trigger, and the dependency on the relative
ordering between plans. This is further expected to reduce the scope of concerns
that each plan needs to handle, hopefully improving maintainability.

Design Principles and Mobile Robot Performance in Jason 5

The selection of safety related plans over movement plans was implemented
by overriding the event selection function in Jason’s Agent class. The customized
methods are provided in listing 1. In order for the function to select the highest
priority event, it needs to have knowledge of the types of behaviour that each
event triggers. This was provided by a set of prioritization beliefs, which specified
if the events were tied to safety or movement behaviour. To select the highest
priority event, the getHighestPriorityEvent method queries the belief base
for these prioritization beliefs to identify the priority level of each trigger in
the queue. These are compared to a list of event priorities, which provides the
relative ranking.

Listing 1: Event Selection.

1 protected List <String > eventPriorities = Arrays.asList("safety", "movement");
2 public Event selectEvent(Queue <Event > events) {
3 Event selected;
4 if (events.size() > 1) {
5 selected = this.getHighestPriorityEvent(events);
6 } else {
7 selected = super.selectEvent(events);
8 }
9 events.remove(selected);

10 return selected;
11 }
12 protected Event getHighestPriorityEvent(Queue <Event > events) {
13 BeliefBase beliefs = this.getBB ();
14 for (String priority : eventPriorities) {
15 for (Event event : events) {
16 String trigger = event.getTrigger (). getLiteral (). getFunctor ();
17 for (Literal belief : beliefs) {
18 if (belief.getFunctor (). contentEquals(priority)) {
19 List <Term > terms = belief.getTerms ();
20 for (Term term : terms) {
21 if (term.toString (). contentEquals(trigger)) {
22 return event;
23 }
24 }
25 }
26 }
27 }
28 }
29 return super.selectEvent(events);
30 }

The prioritization of non-default plans over default plans was implemented by
overriding the option selection function in Jason’s Agent class. Shown in listing 2,
the method checks the length of the context for all of the available options. It
returns the first available option that does not have an empty context. If no
alternatives are available the default plan is returned.

Listing 2: Option Selection.

1 @Override
2 public Option selectOption(List <Option > options) {
3 Option selected;
4 if (options.size() > 1) {
5 selected = this.getHighestPriorityOption(options);
6 } else {
7 selected = super.selectOption(options);
8 }
9 options.remove(selected);

6 Gavigan and Esfandiari

10 return selected;
11 }
12 protected Option getHighestPriorityOption(List <Option > options) {
13 Option priorityOption = null;
14 Iterator <Option > optionInstance = options.iterator ();
15 boolean first = true;
16 while (optionInstance.hasNext ()) {
17 Option current = optionInstance.next ();
18 Plan currentPlan = current.getPlan ();
19 LogicalFormula context = currentPlan.getContext ();
20 if (first) {
21 priorityOption = current;
22 first = false;
23 }
24 if (context != null) {
25 priorityOption = current;
26 break;
27 }
28 }
29 return priorityOption;
30 }

Supporting Rules To drive the car, the different BDI agents were supported
by the rules in listing 3. The first six rules set the threshold for the collision
avoidance behaviour, calculate if the car is near or at a particular location (for
navigation purposes), calculate range and bearing, and calculate course correc-
tions using the compass. The next three rules calculate the steering setting based
on the degree of course correction needed. These rules set the steering setting
to the maximum magnitude when the course correction was greater than 20°. If
the magnitude was smaller, the steering setting was dampened by dividing it by
180, a crude but effective way of controlling steering. The last rule extracts the
steering setting from a lane-keep perception if the lane-keep assist module was
successful at detecting the lane.

Listing 3: Localization and Steering Rules.

1 obstacleStop :- obstacle(Distance) & Distance < 7.0.
2 nearLocation(Location , Range) :- gps(CurLat ,CurLon) & locationName(Location ,
3 [Lat ,Lon]) & navigation.range(CurLat ,CurLon ,Lat ,Lon ,Range) & Range < 20.
4 atLocation(Location , Range) :- gps(CurLat ,CurLon) & locationName(Location ,
5 [Lat ,Lon]) & navigation.range(CurLat ,CurLon ,Lat ,Lon ,Range) & Range < 7.
6 destinationRange(Location ,Range)
7 :- locationName(Location ,[DestLat ,DestLon]) & gps(CurLat ,CurLon)
8 & navigation.range(CurLat ,CurLon ,DestLat ,DestLon ,Range).
9 destinationBearing(Location ,Bearing)

10 :- locationName(Location ,[DestLat ,DestLon]) & gps(CurLat ,CurLon)
11 & navigation.bearing(CurLat ,CurLon ,DestLat ,DestLon ,Bearing).
12 courseCorrection(TargetBearing , Correction)
13 :- compass(CurrentBearing) & declanation(Declanation)
14 & (Correction = TargetBearing - (CurrentBearing + Declanation)).
15 steeringSetting(TargetBearing ,1)
16 :- courseCorrection(TargetBearing ,Correction) & (Correction >= 20).
17 steeringSetting(TargetBearing ,-1)
18 :- courseCorrection(TargetBearing ,Correction) & (Correction <= -20).
19 steeringSetting(TargetBearing ,Correction /180) :- courseCorrection(
20 TargetBearing ,Correction) & (Correction < 20) & (Correction > -20).
21 lkaSteering(Steering)
22 :- lane(Steering ,A,B,C,D) & ((not (C == 0)) | (not (D == 0))).

Design Principles and Mobile Robot Performance in Jason 7

Idiomatic Agent The idiomatic agent used separate triggers for collision avoid-
ance, maneuvering, steering, and speed control. It also used the behaviour pri-
oritization scheme discussed earlier, which prioritized collision avoidance over
other plans. Without this the plans would need to be provided in order of their
relative priority or include mutually exclusive contexts which, although compli-
cates maintainability, seems to be fairly common practice. Listing 4 provides the
plans, triggered by the !waypoint() goal, responsible for driving the car using
lane and compass following. This goal was identified for the event selection func-
tion using the movement(waypoint) belief. Except for the first plan, for the case
where the car had arrived, the plans each readopted !waypoint() to continue
driving the car to the destination. The second slowed the car as it approached
its destination and the third was applicable when the car was not near its des-
tination. In this case the lane-keep assist was enabled and the speed was set to
its cruising speed. The last of the !waypoint() plans is a default plan which
maintained recursion if the other plans weren’t applicable. Collision avoidance
was implemented separately using a high priority atomic belief-triggered plan.
This plan triggered when the LIDAR sensor detected an obstacle and stopped
the car when the distance to the obstacle was less than its threshold. The cus-
tomized event selection function identified this as a safety related event using
the safety(obstacle) belief, enabling it to select this event over others, If this
plan was applicable, it would be set as the agent’s intention.

Listing 4: Idiomatic Agent Driving Plans.

1 movement(waypoint).
2 +! waypoint(Location) : atLocation(Location ,_)
3 <- !controlSpeed (0); !controlSteering (0,lkaOff).
4 +! waypoint(Location) : nearLocation(Location ,_) & (not atLocation(Location ,_))
5 & destinationBearing(Location ,Bearing) <- !controlSteering(Bearing ,
6 lkaOff); !controlSpeed (3); !waypoint(Location).
7 +! waypoint(Location)
8 : (not nearLocation(Location ,_)) & destinationBearing(Location ,Bearing)
9 <- !controlSteering(Bearing ,lkaOn); !controlSpeed (8); !waypoint(Location).

10 +! waypoint(Location) <- !waypoint(Location).
11 safety(obstacle).
12 @obstacleAvoidance [atomic]
13 +obstacle(Distance) : obstacleStop <- !controlSpeed (0).

Speed and steering settings were handled by the plans in listing 5. The
+!controlSpeed() plans used a belief so that the speed wasn’t reset needlessly.
The first plan updated the speed if a change was needed, followed by the second
which handled the case where the belief was present. The cruise control, which
controlled the accelerator and brake, was commanded using setSpeed(). The
last +!controlSpeed() plan was the default, applicable when no change was
needed. Also provided are the steering plans. The first of these was for steering
the car with magnetic bearing angles, useful if the lane-keep assist was disabled
or the lane was not detected. The second plan used the lane-keep assist to follow
the road. Lastly the default plan is provided.

Listing 5: Speed and Steering Control.

1 +! controlSpeed(Speed) : speedSetting(Old) & (Old \== Speed)
2 <- -speedSetting(_); +speedSetting(Speed); setSpeed(Speed).

8 Gavigan and Esfandiari

3 +! controlSpeed(Speed) : not speedSetting(_)
4 <- +speedSetting(Speed); setSpeed(Speed).
5 +! controlSpeed(_).
6 +! controlSteering(Bearing ,LkaSetting) : steeringSetting(Bearing ,Steering)
7 & ((not lkaSteering(_)) | (LkaSetting == lkaOff)) <- steering(Steering).
8 +! controlSteering(Bearing ,lkaOn) : lkaSteering(Steering)
9 <- steering(Steering).

10 +! controlSteering(_,_).

Goal-Directed Agent Listing 6 provides the goal-directed agent, which only
used plans triggered by achievement goals and didn’t use the prioritization
scheme. Without the prioritization the plans needed to be provided in order
of their relative priority and have mutually exclusive contexts, otherwise the
reasoner would select the first applicable plan it found rather than the most
appropriate. The driving plans were triggered by !waypoint(). The first plan
stopped the car at its destination, followed by a plan that stopped the car for
an obstacle. Next were two plans responsible for steering the car with either the
lane-keep, if available, or the compass. The agent controlled speed and steering
using the plans in listing 5.

Listing 6: Goal-Directed Agent Decision Making.

1 +! waypoint(Location) : atLocation(Location ,_)
2 <- !controlSpeed (0); !controlSteering (0,lkaOff).
3 +! waypoint(Location) : obstacleStop <- !controlSpeed (0).
4 +! waypoint(Location) : nearLocation(Location ,_) & (not atLocation(Location ,_))
5 & destinationBearing(Location ,Bearing) & (not obstacleStop) <-
6 !controlSteering(Bearing ,lkaOff); !controlSpeed (3); !waypoint(Location).
7 +! waypoint(Location) : (not nearLocation(Location ,_))
8 & destinationBearing(Location ,Bearing) & (not obstacleStop)
9 <- !controlSteering(Bearing ,lkaOn); !controlSpeed (8); !waypoint(Location).

10 +! waypoint(Location) <- !waypoint(Location).

Reactive Agent The reactive agent’s plans, in listing 7, were triggered by the
LIDAR beliefs at each reasoning cycle. Similar to the goal-directed agent these
plans were listed in descending order of priority and had mutually exclusive
contexts to ensure the correct one was selected. The first two plans stopped the
car for collision avoidance and when the car was at its destination followed by the
third plan for slowing the car near the destination. The last two plans handled
steering using the lane-keep assist or the compass. The reactive agent did not use
the speed or steering control sub-goals as this agent was implemented without
goals. Instead, it used the setSpeed() action directly.

Listing 7: Reactive Agent Decision Making.

1 +obstacle(Distance) : obstacleStop <- setSpeed (0).
2 +obstacle(Distance) : (not obstacleStop) & navigate(Location)
3 & atLocation(Location ,_) <- setSpeed (0).
4 +obstacle(Distance) : navigate(Location) & nearLocation(Location ,_)
5 & (not atLocation(Location ,_)) & destinationBearing(Location ,Bearing)
6 & (not obstacleStop) & steeringSetting(Bearing , Steering)
7 <- steering(Steering); setSpeed (3).
8 +obstacle(Distance) : navigate(Location) & (not nearLocation(Location ,_))
9 & destinationBearing(Location ,Bearing) & (not obstacleStop)

Design Principles and Mobile Robot Performance in Jason 9

10 & lkaSteering(Steering) <- steering(Steering); setSpeed (8).
11 +obstacle(Distance) : navigate(Location) & (not nearLocation(Location ,_))
12 & destinationBearing(Location ,Bearing) & (not obstacleStop)
13 & (not lkaSteering(_)) & steeringSetting(Bearing , Steering)
14 <- steering(Steering); setSpeed (8).

Imperative Agent The last alternative, in listing 8, used imperative software
in Python instead of the BDI reasoner. When data was received, the script would
drive by following the lane and stopping when an obstacle was observed within
range. The first check assessed if the car was near an obstacle and stopped if
needed. The next determined if the car had started driving and set the the
controller’s speed. The last option handled steering using the lane-keep assist or
compass steering. The function for calculating the compass steering setting is
also provided in the listing.

Listing 8: Imperative Agent Decision Making.

1 def decide(gps , compass , lane , speed , obstacle):
2 global stopRange , currentSpeedSetting , speedSetPoint
3 action = ’’
4 if (obstacle < stopRange):
5 action = ’setSpeed (0)’
6 elif currentSpeedSetting == 0:
7 currentSpeedSetting = speedSetPoint
8 action = ’setSpeed(’ + str(currentSpeedSetting) + ’)’
9 else:

10 (lkaSteering ,_,_,c,d) = lane
11 if ((c != 0) or (d != 0)):
12 action = ’steering(’ + str(lkaSteering) + ’)’
13 else:
14 compassSteering = getCompassSteering(gps ,compass)
15 action = ’steering(’ + str(compassSteering) + ’)’
16 if action != ’’:
17 act(action ,actionsPublisher)
18 sendMessage(action ,outboxPublisher)
19 def getCompassSteering(gps ,compass):
20 global destination , wgs84 , declanation
21 (curLat ,curLon) = gps
22 current = wgs84.GeoPoint(latitude=curLat , longitude=curLon ,
23 degrees = True)
24 destinationBearing = destination.delta_to(current). azimuth_deg [0]
25 courseCorrection = destinationBearing - (compass + declanation)
26 if courseCorrection >= 20:
27 steeringSetting = 1
28 elif courseCorrection <= -20:
29 steeringSetting = -1
30 else:
31 steeringSetting = courseCorrection /180
32 return steeringSetting

4 Assessment of Software Engineering Properties

Discussed in section 2, maintainable object-oriented software tends to have loose
coupling and high cohesion [1][25]. Shifting focus to MAS, although these metrics
have been applied to the interactions between agents, there does not seem to be
an accepted definition for examining the connections between plans within an

10 Gavigan and Esfandiari

agent. Therefore, the spirit of these metrics needed to be adapted. This adapta-
tion, and the assessment of coupling and cohesion for the agents studied in this
paper, are discussed in section 4.1.

The assessment of software complexity uses McCabe’s cyclomatic complexity,
based on the number of possible paths through a program [15]. As was the case
with coupling and cohesion, there was limited use of this metric for assessing
AgentSpeak code. The definition of this metric and its use for assessing the
agents studied in this paper is provided in section 4.2.

4.1 Assessment of Coupling and Cohesion

Consider what would make for loose coupling between plans; changes made to
plans with loose coupling should not require changes to other plans, especially
not plans triggered by different events. To isolate changes to plans from each
other, each triggering event should trigger the fewest possible number of plans,
ideally with fewer terms in their contexts. Designing this way reduces the like-
lihood of changes to one plan affecting many others, as there are fewer plans
and terms that could require changing. Plans should be implemented without
concern for the order in which they are provided in the plan base, nor what other
goals the agent may have. Otherwise, changes to the order of the plans could
result in changes in the agent’s behaviour.

Shifting to cohesion, plans that have high cohesion should only be responsible
for a single concern. For example, a triggering event for plans that implement
steering and speed control, rather than only one of those two concerns, would
have lower cohesion. One possible way to increase cohesion could be to use sub-
goals. With each event triggering fewer behaviours there should not need to be
many plans per trigger. Beliefs should only be maintained by plans triggered by
the same triggering event, separating the concern for these beliefs to specific plan
sets. This separation of concerns between the different behaviours encapsulates
them within the plans that are triggered by each event.

Based on the discussion above, several properties were used to assess the
coupling and cohesion of alternative agents in this study. These are enumerated
below. The measurements of these properties for that alternative designs are
provided in table 1.

1. The number of triggering events in the program,
2. The number of plans associated with each triggering event,
3. The number of logic expressions joined by conjunction in the plan contexts

(which was the format used by all the plans in this study), and
4. The number of concerns addressed by the plans triggered.

The idiomatic agent has four different event triggers, each responsible for a
single concern – either avoiding an obstacle, controlling the car, controlling the
speed, or controlling the steering. The plans that implement these concerns have
relatively simple contexts, consisting of conjunctions of fewer logic expressions
than the alternatives. It also has fewer plans per trigger.

Design Principles and Mobile Robot Performance in Jason 11

Table 1: Properties of BDI Agent Alternatives.

Idiomatic Goal-Directed Reactive

Triggering Events 4 3 1

Plans
per Event

Obstacle 1 – 5
Waypoint 4 5 –

ControlSpeed 3 3 –
ControlSteering 3 3 –

Logic
Expressions
per Context

Obstacle 1/1=1 – 21/5 = 4.2
Waypoint 6/4=1.5 9/5 = 1.8 –

ControlSpeed 3/3=1 3/3=1 –
ControlSteering 3/3=1 3/3=1 –

Concerns
per Trigger

Obstacle 1 – 4
Waypoint 1 2 –

ControlSpeed 1 1 –
ControlSteering 1 1 –

The goal-directed agent only used achievement goal-triggered plans, meaning
that the collision avoidance needed to be handled by the waypoint plans. As a re-
sult, the waypoint plans had two concerns to manage rather than one, increasing
the number of logic expressions joined by conjunctions in the plan contexts and
the number of triggered plans. There was another important difference between
the goal-directed and idiomatic agents – the goal-directed agent did not have
access to the behaviour prioritization scheme, meaning that the plans needed to
be listed in order based on their relative priority with each other or have mutual
exclusion guaranteed in their contexts. This dramatically increased the coupling
between the plans.

The reactive agent also did not use the prioritization scheme, meaning that it
needed to have mutual exclusion between the plan contexts and the plans needed
to be listed in their relative priority. This version defined plans exclusively using
belief-triggers which resulted in the most complicated of the BDI agents, where
a single event trigger was associated with all of the aspects of controlling the
car. The five plans that were implemented had relatively complicated contexts,
far more so than either of the alternative agents.

In addition to the BDI agents, an imperative version of the car controller
was written using a Python function which was made up of a set of nested
conditional statements. This function provided an action for the car given a
set of perceptions, and was responsible for controlling the speed, steering, and
avoiding collisions. The conditional statements in this function had a depth of
three, making this a rather complicated function with relatively poor cohesion.
However, as it did not interact with other modules, the coupling metric was not
applicable.

Table 2 provides a relative comparison of the different implementations in
terms of their performance on coupling and cohesion based on the previously

12 Gavigan and Esfandiari

discussed plan attributes. The idiomatic agent scored highest on both coupling
and cohesion. This was for several reasons: the plans could be provided in any
order, each triggering event was tied to a single responsibility, and the resulting
plans had fewer plans per trigger and fewer logic statements in their plan con-
texts. The goal-directed agent was second place for both coupling and cohesion,
ranked behind the idiomatic agent. For coupling this was because of the lack of
prioritization of behaviour, meaning that the plans needed to be listed in relative
priority while ensuring mutual exclusion. This resulted in more logic statements
in the plan contexts and an additional plan for !waypoint. For cohesion this was
because the concerns for collision avoidance were combined with the concern for
maneuvering the car. The imperative version did not have any connections with
other modules and therefore the coupling metric was not applicable. The imper-
ative version did however score poorly on cohesion, as it was implemented with
a nested conditional statement that needed to address all the behaviours of the
agent. If any changes were required, the nested conditional statements would
need to be unravelled and redesigned. The worst scores were held by the reac-
tive agent, which had very poor coupling and cohesion – any change in one plan
would likely require changes to many other plans. These plans were the most
complex with the most logic expressions in the plan contexts, most concerns per
trigger, and most plans per event. This was scored worse than the imperative
agent as these behaviours were implemented in separate plan blocks: at least in
the imperative agent the conditional statement was contained in a single block.

Table 2: Relative Rank for Coupling and Cohesion (Best: 1, Worst: 4).

Version Idiomatic Goal-Directed Reactive Imperative

Coupling 1 2 3 N/A
Cohesion 1 2 4 3

4.2 Assessment of Cyclomatic Complexity

McCabe’s [15] cyclomatic complexity is based on the number of possible paths
through a program. It is defined by M = E−N +2P , where the parameters are
properties of a program’s control graph where E is the number of edges, N is
the number of nodes, and P is the number of connected components. The goal
should be to have software that has low cyclomatic complexity.

To assess the cyclomatic complexity of the different agents it was first nec-
essary to draw the node graphs for each of the components of the agents. The
nodes in the control graph represent lines of AgentSpeak code and the edges
are execution paths between those lines through the different triggered plans.
An example of these node graphs, and the resulting analysis, is provided for the
idiomatic agent’s collision avoidance plan in figure 1. In this case, the plan is

Design Principles and Mobile Robot Performance in Jason 13

triggered on the perception of obstacle(). There are two execution paths for
this component: either the obstacle is in range and the plan is applicable and
the stop action is run, or it is not and the plan is not executed. The connected
component was the behaviour prioritization scheme.

Property Value

Edges (E) 3
Nodes (N) 3
Connected Components (P) 1

Cyclomatic Complexity (M) 2

Fig. 1: Node Graph of Idiomatic Agent’s Collision Avoidance Behaviour.

Table 3 summarises this analysis for the alternative designs. The reactive
and imperative agents have the lowest cyclomatic complexity because the goal-
directed and idiomatic agents were made up of more components, such as their
sub-goals for controlling speed and steering. The idiomatic agent had higher cy-
clomatic complexity than the goal-directed agent because of its connection to
the prioritization scheme, however, having this additional functionality allowed
the plans for the idiomatic agent to be in any order without concern for mutual
exclusion. The goal-directed and reactive agents needed to have their plans pro-
vided in order from highest to lowest priority for the default event and option
selection functions to select the most appropriate plan to run. Furthermore, the
goal-directed, reactive, and imperative agents all had more nodes and edges in
their graphs, making the maintenance of those graphs likely more complicated
than the maintenance of the idiomatic agent’s graphs.

4.3 Software Engineering Properties Summary

The agent designed with only reactive plans had the lowest overall cyclomatic
complexity, but scored poorly on cohesion and coupling. The imperative agent
had similar cyclomatic complexity to the reactive agent but again it scored poorly
on coupling and cohesion. The idiomatic agent actually had the worst cyclomatic
complexity scores, primarily due to the connections it had to the prioritization
scheme, however it scored very well on coupling and cohesion compared to the
alternatives. This was because the idiomatic agent was able to keep each trig-
gering topic focused on a single concern, with fewer conditional terms needed in
the context guards for those plans. This indicates that the idiomatic agent used
good design practices. The idiomatic agent also had the advantage of allowing
the plans to be implemented in any order, unlike the alternatives, which either
had to ensure that the plans had mutually exclusive contexts or had to ensure
that they were provided in order of their relative priority.

14 Gavigan and Esfandiari

Table 3: Summary of Cyclomatic Complexity Parameters.

Graph
#

Edges
(E)

#
Nodes
(N)

Names of
Connected
Components

Connected
Components (P)

Cyclomatic
Complexity

(M = E −N + 2P)

Idiomatic
Collision
Avoidance

3 3 Prioritization 1 2

Idiomatic
Waypoint

13 11
Steering Goal
Speed Goal
Prioritization

3 8

Idiomatic
Speed

8 7 Prioritization 1 3

Idiomatic
Steering

5 4
Prioritization
Steering Rules

2 5

Goal-Directed
Speed

8 7 – 0 1

Goal-Directed
Steering

5 4 Steering Rules 1 3

Goal-Directed
Waypoint

15 12
Steering Goal
Speed Goal

2 7

Reactive 14 10 – 0 4

Imperative 22 17 – 0 5

5 Runtime Performance

Each of the alternative agents were tested on a desktop computer running Win-
dows 10 with an Intel Core i7-5820K CPU @ 3.30GHz with 64GB of system
RAM and an NVIDIA GTX 970 with 4GB of RAM. To assess their relative
performance, the reasoning time for each of these agents was measured and are
reported in figure 2. For the imperative version, which does not have a reasoner,
the reasoning time refers to the execution time for each of its decision cycles. It
is clear that the imperative version was able to make decisions much faster than
the BDI agents. The next fastest reasoning times are for both the idiomatic and
goal-directed agents, which appear to have very similar reasoning performance.
These reasoning times also appear to be inline with the perception period. The
slowest was the reactive agent, which appears to have had difficulty keeping
up with the perceptions. The reason for this difficulty was investigated and is
discussed later in this section.

Although the results provided in figure 2 provide some insight into the rea-
soning performance of the agents, these results are still somewhat abstract. Ul-
timately, it is more intuitive to examine how these differences in reasoning affect
the agent’s performance in an environment. To do that, the agents were observed

Design Principles and Mobile Robot Performance in Jason 15

(a) Perception period. (b) Reasoning time.

Fig. 2: Agent Perception Period and Reasoning Times.

in a collision avoidance scenario where the agent drove a simulated car toward
an obstacle to trigger an avoidance maneuver. The decision threshold for this
maneuver was varied and tested for the different agents. The effect of this was
that the agent would have a different amount of time to react to the obstacle
and stop. The two properties of the runs that were observed included if the car
crashed and the time needed for the agent to decide to stop once it was close
enough to the obstacle. Each agent was run through the scenario 10 times for
each decision threshold.

Figure 3 shows a clear difference in performance between the different agents.
None of the agents were able to prevent a crash with a decision point of 5m.
As the decision point was increased in increments of 0.5m, differences in perfor-
mance started to become evident. The imperative agent, which was previously
observed to have the fastest decision time, avoided crashes in almost every sub-
sequent test. This was significantly better than the BDI agents. Between the
BDI agents, there were also clear differences in performance. Keen readers will
notice that the reactive agent is not shown in the graphs. This is because the
reactive agent was not able to keep up with the sensory perceptions. The result
was that it was not able to stay on the road and crashed into a fence next to the
road before reaching the decision point. This occurred in every test, leaving the
idiomatic and the goal-directed agent. Between these two, the idiomatic agent
was successful at avoiding more crashes than the goal-directed agent. This was
also evident when looking at the decision time for the agents, where the goal-
directed agent took the longest to make the decision to stop and the imperative
agent was by far the fastest to decide to stop.

The observation that the idiomatic agent outperformed the goal-directed
agent in the collision avoidance scenario, and the lack of performance from the
reactive agent, raised a new question: Why was there a performance difference
between these agents? To answer this question an experiment focusing on the
performance of the reasoning cycle was performed to identify what was causing

16 Gavigan and Esfandiari

(a) Crash rate. (b) Decision time.

Fig. 3: Agent Collision Avoidance Test Results.

this difference. This experiment used a standalone Jason project with a sequence
of 50 perception sets passed to the agent for it to reason on. These perceptions
were taken from the log files from the stop trial experiment and focused on a sce-
nario where the agent should select a collision avoidance plan. Using JProfiler,
the reasoning cycle was observed to find which aspect of the reasoning cycle
was causing the difference in decision time. The profile results comparing the
idiomatic agent to the goal-directed agent are provided in figure 4. This figure
shows the difference in the call tree for the two agent runs, focusing on the differ-
ences in the average call times of agent’s methods. As can be seen in this figure,
the goal-directed agent spends significantly more time deliberating compared to
the idiomatic version. More specifically, the agent spends an additional 43µs in
the applySemanticRuleDeliberate() method.

Fig. 4: Average Call Time Differences for Idiomatic and Goal-Directed.

With this result we can reassess why the goal-directed and reactive agents
spend more time deliberating rules than the idiomatic agent. This was an inter-
esting observation, as all three agents used the same rules, the only difference
in these agents was when these rules were in scope for the reasoner. Table 4
summarizes how the plans that are triggered by the different events make use of

Design Principles and Mobile Robot Performance in Jason 17

the rules. In the case of the idiomatic agent, the obstacle avoidance behaviour
used a single plan supported by a single rule. In the case of the goal-directed
agent, the waypoint goal-triggered plans included four rules. In addition, the
waypoint plans triggered sub-plans for controlling the speed and steering of the
car which also used several rules. The reactive agent used a single event trigger
which included plans that used all of the seven available rules.

Table 4: Agent Use of Rules.

Rule
Trigger That Uses Rule

Idiomatic Goal-Directed Reactive

obstacleStop obstacle waypoint obstacle
atLocation waypoint waypoint obstacle

nearLocation waypoint waypoint obstacle
destinationBearing waypoint waypoint obstacle
courseCorrection controlSteering controlSteering obstacle
steeringSetting controlSteering controlSteering obstacle
lkaSteering controlSteering controlSteering obstacle

To understand the impact of these rules on the performance we must consider
how a Jason agent selects which plan to set as an intention. When the agent
starts deliberating it first selects which event to use and then selects which
applicable plan triggered by the selected event will be set as the agent’s intention.
The reasoner only deliberates on rules that are used by plans triggered by the
selected event. Rules that are not tied to the selected event are not processed.
This means that in the collision avoidance scenario, the idiomatic agent only
needed to deliberate on a single rule, and only had a single plan to choose from
when setting its intention. By contrast, the goal-directed agent had four different
rules that needed to be computed in order to select to most appropriate plan for
performing collision avoidance. For the reactive agent, all seven rules needed to
be processed for every reasoning cycle.

To summarize this finding, it seems that reducing the length of the context
guards in plans and reducing the number of necessary rules can lead to a per-
formance improvement at runtime. This finding is in line with the performance
analysis in [18]. There seems to be a benefit of the separation of concerns be-
tween the plans: having each triggering event focus on a single issue with fewer
plans needed for each triggering event. This can be helped by having the event
selection function make appropriate decisions with respect to which triggering
event should be selected. In the case of the idiomatic agent, this benefit was
provided by the behaviour prioritization functionality.

18 Gavigan and Esfandiari

6 Limitations and Future Work

A challenge faced in working on this paper was the limited guidance on differ-
ent approaches that can be taken when designing AgentSpeak software. Also
limited were metrics that should be used when evaluating the maintainability
and complexity of AgentSpeak. For this reason, we proposed adapting the con-
cepts of coupling, cohesion, and cyclomatic complexity. In the case of coupling
and cohesion, these concepts were applied in spirit, without a formal definition.
Various properties of the plans were used to assess the agents relative to each
other. These properties were useful for this study but may not translate to other
agent designs or other applications. Further work is needed to both formally
define coupling and cohesion for AgentSpeak software as well as better align
these metrics with other metrics used in the field of MAS, especially from the
perspective of the design of individual agents.

The work in this paper was also limited to a single application domain –
the driving of the AirSim car in a collision avoidance scenario. Additional tests
in other domains would be useful for validating these results. Additional pro-
gramming styles could also be tested, for example Jason’s imperative style pro-
gramming with conditional statements and loops. Comparisons with other agent
programming languages, such as SARL or GOAL, could provide insight for how
Jason and BDI agents perform in general.

7 Conclusion

This paper examined the trade-offs between the design of Jason BDI agents and
the performance of these agents. Using a simulated car in a collision avoidance
scenario, the performance of the agents was compared in terms of the duration
of their reasoning cycles and their reaction to obstacles. The assessment of the
design of the agents focused on software maintainability and complexity. Inspired
by the object-oriented software community, the concepts of coupling, cohesion,
and cyclomatic complexity were adapted for use with AgentSpeak code.

We found a performance benefit, especially in terms of the agent’s respon-
siveness to stimuli, to designing AgentSpeak software with looser coupling and
higher cohesion, which implied that the software was more maintainable. Unfor-
tunately, this benefit was inversely related to the software’s cyclomatic complex-
ity, primarily due to the connections with other modules. Using profile testing,
the cause of the performance difference was found to be the processing of rules
– smaller plan contexts with fewer rules may lead to significant performance im-
provements. The reason for the performance difference being tied to the software
properties is that having plans focused on fewer concerns resulted in less com-
plicated plan contexts, which in this case meant less rule processing. The result
translated directly to a performance advantage in terms of the time to react to
obstacles as well as their relative coupling and cohesion. This suggests that well
designed and more maintainable AgentSpeak code has a performance advantage
over simpler but less maintainable AgentSpeak. Although the conclusion from

Design Principles and Mobile Robot Performance in Jason 19

this work could be interpreted to mean that rules may be causing a processing
burden for the agent, the use of rules can be useful for reducing code duplication
in the plan contexts. Therefore, good AgentSpeak code should make use of rules
to help improve their properties of coupling and cohesion, despite the perfor-
mance hit. Lastly, the BDI agents were easily outperformed by an imperative
program written in Python which offered equivalent driving behaviour for the
car, although this version did not come with the benefit of the reasoning cycle
which only adopts goals it believes it can achieve, dropping goals that are no
longer believed to be achievable or motivated.

Acknowledgement

We acknowledge the support of the Natural Sciences and Engineering Research
Council of Canada (NSERC), [funding reference number 518212].

Cette recherche a été financée par le Conseil de recherches en sciences na-
turelles et en génie du Canada (CRSNG), [numéro de référence 518212].

References

1. Barnes, D.J., Kolling, M.: Objects First with Java: A Practical Introduction Using
BlueJ. Pearson, Boston (2017)

2. Bordini, R.H., Hübner, J.F., Wooldridge, M.: Programming Multi-Agent Systems
in AgentSpeak Using Jason (Wiley Series in Agent Technology). John Wiley &;
Sons Ltd., The Atrium, Southern Gate, Chichester, West Sussex, England (2007)

3. Cardoso, R.C., Ferrando, A., Dennis, L.A., Fisher, M.: An interface for program-
ming verifiable autonomous agents in ros. In: Bassiliades, N., Chalkiadakis, G.,
de Jonge, D. (eds.) Multi-Agent Systems and Agreement Technologies. pp. 191–
205. Springer International Publishing, Cham (2020)

4. Far, B., Wanyama, T.: Metrics for agent-based software development. In: CCECE
2003 - Canadian Conference on Electrical and Computer Engineering. Toward a
Caring and Humane Technology (Cat. No.03CH37436). vol. 2, pp. 1297–1300 vol.2
(2003). https://doi.org/10.1109/CCECE.2003.1226137

5. Gavigan, P.: Agent in a Box Demo - Car Lane Keep and Obstacle Avoidance.
https://youtu.be/tvqkNnpKIPo, accessed: 2021-04-05

6. Gavigan, P.: AirSim Navigating Car. https://github.com/NMAI-lab/

AirSimNavigatingCar/, accessed: 2021-02-19
7. Gavigan, P.: Jason Car Agent - Crash Case. https://www.youtube.com/watch?v=

vfc_YLg0X2I, accessed: 2022-04-08
8. Gavigan, P.: Jason Car Agent - Stop Case. https://www.youtube.com/watch?v=

Rlp2wY3FDJU, accessed: 2022-04-08
9. Gavigan, P.: SAVI ROS BDI. https://github.com/NMAI-lab/savi_ros_bdi,

accessed: 2020-02-18
10. Habiba, M.: Metrics for evaluating agent oriented software engineering model. In:

2012 International Conference on Informatics, Electronics Vision (ICIEV). pp. 17–
22 (2012). https://doi.org/10.1109/ICIEV.2012.6317459

11. Hübner, J.F., Bordini, R.H.: Jason: a Java-based interpreter for an extended version
of AgentSpeak. http://jason.sourceforge.net, accessed: 2019-02-16

20 Gavigan and Esfandiari

12. Kinny, D., Georgeff, M., Rao, A.: A methodology and modelling technique for
systems of bdi agents. In: Proceedings of the 7th European Workshop on Modelling
Autonomous Agents in a Multi-Agent World: Agents Breaking Away. p. 56–71.
MAAMAW ’96, Springer-Verlag, Berlin, Heidelberg (1996)

13. Kramer, S., Kaindl, H.: Coupling and cohesion metrics for knowledge-based sys-
tems using frames and rules. ACM Trans. Softw. Eng. Methodol. 13(3), 332–358
(jul 2004). https://doi.org/10.1145/1027092.1027094, https://doi.org/10.1145/
1027092.1027094

14. Lazarin, N.M., Pantoja, C.E.: A robotic-agent platform for embedding software
agents using raspberry pi and arduino boards. 9th Software Agents, Environments
and Applications School (2015)

15. McCabe, T.: A complexity measure. IEEE Transactions on Software Engineering
SE-2(4), 308–320 (1976). https://doi.org/10.1109/TSE.1976.233837

16. Microsoft: AirSim. https://github.com/Microsoft/AirSim, accessed: 2019-03-27
17. Miles, S., Joy, M., Luck, M.: Designing agent-oriented systems by analysing agent

interactions. In: Ciancarini, P., Wooldridge, M.J. (eds.) Agent-Oriented Software
Engineering. pp. 171–183. Springer Berlin Heidelberg, Berlin, Heidelberg (2001)

18. Miller, J., Esfandiari, B.: Analysis of the execution time of the jason bdi reasoning
cycle. In: Alechina, N., Baldoni, M., Logan, B. (eds.) Engineering Multi-Agent
Systems. pp. 218–236. Springer International Publishing, Cham (2022)

19. Moores, T.T.: Applying complexity measures to rule-based prolog
programs. Journal of Systems and Software 44(1), 45–52 (1998).
https://doi.org/https://doi.org/10.1016/S0164-1212(98)10042-0, https:

//www.sciencedirect.com/science/article/pii/S0164121298100420

20. Pantoja, C.E., Stabile, M.F., Lazarin, N.M., Sichman, J.S.: ARGO: An Extended
Jason Architecture that Facilitates Embedded Robotic Agents Programming. In:
Baldoni, M., Müller, J.P., Nunes, I., Zalila-Wenkstern, R. (eds.) Engineering Multi-
Agent Systems. pp. 136–155. Springer International Publishing, Cham (2016)

21. Serebrenik, A., Schrijvers, T., Demoen, B.: Improving prolog programs: Refactoring
for prolog. In: ICLP (2004)

22. Shah, S., Dey, D., Lovett, C., Kapoor, A.: AirSim: High-Fidelity Visual and Phys-
ical Simulation for Autonomous Vehicles. In: Field and Service Robotics (2017),
https://arxiv.org/abs/1705.05065

23. Soza, H.: Quality measures for agent-oriented software. In: Shikhin,
V. (ed.) Multi-Agent Systems, chap. 2. IntechOpen, Rijeka (2019).
https://doi.org/10.5772/intechopen.79741, https://doi.org/10.5772/

intechopen.79741

24. Stabile, M.F., Sichman, J.S.: Evaluating Perception Filters in BDI Jason Agents.
In: 2015 Brazilian Conference on Intelligent Systems (BRACIS). pp. 116–121 (Nov
2015). https://doi.org/10.1109/BRACIS.2015.18

25. Stevens, W.P., Myers, G.J., Constantine, L.L.: Structured design. IBM Systems
Journal 13(2), 115–139 (1974). https://doi.org/10.1147/sj.132.0115

26. Wesz, R.: Integrating Robot Control Into The AgentSpeak(L) Programming Lan-
guage. Master’s thesis, Pontifical Catholic University of Rio Grande do Sul, Porto
Alegre, Brazil (2015)

27. Wooldridge, M., Jennings, N.R., Kinny, D.: The gaia methodology for agent-
oriented analysis and design. Autonomous Agents and Multi-Agent Systems 3(3),
285–312 (2000). https://doi.org/10.1023/A:1010071910869, https://doi.org/10.
1023/A:1010071910869

